Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective:

This study aimed to investigate whether there is a correlation between quantitative parameters of dual-energy computed tomography (DECT) and the relative expression of HIF-1α in patients with non-small cell lung cancer (NSCLC) to preliminarily explore the value of DECT in evaluating the hypoxia of tumor microenvironment and tumor biological behavior and provide more information for the treatment of NSCLC.

Methods:

This retrospective research included 36 patients with pathologically confirmed NSCLC who underwent dual-energy enhanced CT scans. The quantitative parameters of DECT were analyzed, including iodine concentration, water concentration, the CT values corresponding to 40keV, 70keV, 100keV, and 130keV in arterial and venous phases, and the normalized iodine concentration and the slope of the energy spectrum curve were calculated. Postoperative specimens underwent HIF immunohistochemical staining by two pathologists. Spearman correlation analysis was adopted as the statistical methodology. The data were analyzed by SPSS26.0 statistical software.

Results:

Water concentration (=0.659, <0.001 and = 0.632, <0.001, the CT values corresponding to 100keV (r=0.645, <0.001 and = 0.566, <0.001) and 130keV (=0.687, <0.001 and = 0.682, <0.001) in arterial and venous phases, and CT value of 70keV in arterial phase (=0.457, =0.005) were positively correlated with HIF-1α expression level. There was no correlation among iodine concentration, standardized iodine concentration, CT value of 40keV, λHU, and HIF-1α expression in arterial and venous levels ( >0.05).

Conclusion:

The quantitative parameters of DECT have a certain correlation with HIF-1α expression in NSCLC. Moreover, it has been demonstrated that DECT can be used to predict hypoxia in tumor tissues and the prognosis of lung cancer patients.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056271811231129105859
2024-03-19
2025-05-10
The full text of this item is not currently available.

References

  1. RelliV. TrerotolaM. GuerraE. AlbertiS. Abandoning the notion of non-small cell lung cancer.Trends Mol. Med.201925758559410.1016/j.molmed.2019.04.01231155338
    [Google Scholar]
  2. WangM. HerbstR.S. BoshoffC. Toward personalized treatment approaches for non-small-cell lung cancer.Nat. Med.20212781345135610.1038/s41591‑021‑01450‑234385702
    [Google Scholar]
  3. HeL.Y. LiL. GuoM.L. ZhangY. ZhangH.Z. Relationship between CD4+CD25+ treg and expression of hIF-1α and Ki-67 in NSCLC patients.Eur. Rev. Med. Pharmacol. Sci.20151981351135525967708
    [Google Scholar]
  4. LiY. ZhangY. LiX. HuangY. ChenW. HeL. ZhangY. Status of hypoxia-inducible factor-1α expression in non-small cell lung cancer.Pharmazie202176940441134481529
    [Google Scholar]
  5. JacksonA.L. ZhouB. KimW.Y. HIF, hypoxia and the role of angiogenesis in non-small cell lung cancer.Expert Opin. Ther. Targets201014101047105710.1517/14728222.2010.51161720854179
    [Google Scholar]
  6. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  7. Roma-RodriguesC. MendesR. BaptistaP. FernandesA. Targeting tumor microenvironment for cancer therapy.Int. J. Mol. Sci.201920484010.3390/ijms2004084030781344
    [Google Scholar]
  8. JingX. YangF. ShaoC. WeiK. XieM. ShenH. ShuY. Role of hypoxia in cancer therapy by regulating the tumor microenvironment.Mol. Cancer201918115710.1186/s12943‑019‑1089‑931711497
    [Google Scholar]
  9. WangG.L. JiangB.H. RueE.A. SemenzaG.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.Proc. Natl. Acad. Sci. USA199592125510551410.1073/pnas.92.12.55107539918
    [Google Scholar]
  10. MaxwellP.H. WiesenerM.S. ChangG.W. CliffordS.C. VauxE.C. CockmanM.E. WykoffC.C. PughC.W. MaherE.R. RatcliffeP.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.Nature1999399673327127510.1038/2045910353251
    [Google Scholar]
  11. HiramiY. AoeM. TsukudaK. HaraF. OtaniY. KoshimuneR. HanabataT. NagahiroI. SanoY. DateH. ShimizuN. Relation of epidermal growth factor receptor, phosphorylated-Akt, and hypoxia-inducible factor-1α in non-small cell lung cancers.Cancer Lett.2004214215716410.1016/j.canlet.2004.04.02815363541
    [Google Scholar]
  12. SemenzaG.L. Signal transduction to hypoxia-inducible factor 1.Biochem. Pharmacol.2002645-699399810.1016/S0006‑2952(02)01168‑112213597
    [Google Scholar]
  13. SauerbeckJ. AdamG. MeyerM. Spectral CT in Oncology.Röfo Fortschr. Geb. Röntgenstr. Neuen Bildgeb. Verfahr.20231951212910.1055/a‑1902‑994936167316
    [Google Scholar]
  14. SchirraC.O. BrendelB. AnastasioM.A. RoesslE. Spectral CT: A technology primer for contrast agent development.Contrast Media Mol. Imaging201491627010.1002/cmmi.157324470295
    [Google Scholar]
  15. AdamS.Z. RabinowichA. KessnerR. BlacharA. Spectral CT of the abdomen: Where are we now?Insights Imaging202112113810.1186/s13244‑021‑01082‑734580788
    [Google Scholar]
  16. ZegadłoA. ŻabickaM. Kania-PudłoM. MaliborskiA. RóżykA. SośnickiW. Assessment of solitary pulmonary nodules based on virtual monochrome images and iodine-dependent images using a single-source dual-energy CT with Fast kVp Switching.J. Clin. Med.202098251410.3390/jcm908251432759779
    [Google Scholar]
  17. XuX. SuiX. ZhongW. XuY. WangZ. JiangJ. GeY. SongL. DuQ. WangX. SongW. JinZ. Clinical utility of quantitative dual-energy CT iodine maps and CT morphological features in distinguishing small-cell from non-small-cell lung cancer.Clin. Radiol.201974426827710.1016/j.crad.2018.10.01230691731
    [Google Scholar]
  18. ZhangZ. ZouH. YuanA. JiangF. ZhaoB. LiuY. ChenJ. ZuoM. GongL. A single enhanced dual-energy CT scan may distinguish lung squamous cell carcinoma from adenocarcinoma during the venous phase.Acad. Radiol.202027562462910.1016/j.acra.2019.07.01831447258
    [Google Scholar]
  19. AokiM. HiroseK. SatoM. AkimotoH. KawaguchiH. HatayamaY. FujiokaI. TanakaM. OnoS. TakaiY. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy.J. Radiat. Res. (Tokyo)201657438138610.1093/jrr/rrv10026826198
    [Google Scholar]
  20. DouP. LiuZ. XieL. MengC. WangC. CuiY. HuC. ChengG. ChenJ. MengY. XuK. The predictive value of energy spectral CT parameters for assessing Ki-67 expression of lung cancer.Transl. Cancer Res.2020974267427810.21037/tcr‑19‑2769a35117793
    [Google Scholar]
  21. WuF. ZhouH. LiF. WangJ. AiT. SpectralC.T. Spectral CT imaging of lung cancer.Acad. Radiol.201825111398140410.1016/j.acra.2018.04.01729752156
    [Google Scholar]
  22. YuY. ChengJ.J. LiJ.Y. ZhangY. LinL.Y. ZhangF. XuJ.R. ZhaoX.J. WuH.W. Determining the invasiveness of pure ground-glass nodules using dual-energy spectral computed tomography.Transl. Lung Cancer Res.20209348449510.21037/tlcr.2020.03.3332676312
    [Google Scholar]
  23. LiuG. LiM. LiG. LiZ. LiuA. PuR. CaoH. LiuY. Assessing the blood supply status of the focal ground-glass opacity in lungs using spectral computed tomography.Korean J. Radiol.201819113013810.3348/kjr.2018.19.1.13029354009
    [Google Scholar]
  24. JiaY. XiaoX. SunQ. JiangH. Gemstone spectral imaging in lung cancer.Medicine20189729e1117010.1097/MD.000000000001117030024500
    [Google Scholar]
  25. SilvaA.C. MorseB.G. HaraA.K. PadenR.G. HongoN. PavlicekW. Dual-energy (spectral) CT: Applications in abdominal imaging.Radiographics20113141031104610.1148/rg.31410515921768237
    [Google Scholar]
  26. ZhangY. TangJ. XuJ. ChengJ. WuH. Analysis of pulmonary pure ground-glass nodule in enhanced dual energy CT imaging for predicting invasive adenocarcinoma: comparing with conventional thin-section CT imaging.J. Thorac. Dis.20179124967497810.21037/jtd.2017.11.0429312701
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056271811231129105859
Loading
/content/journals/cmir/10.2174/0115734056271811231129105859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test