Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

A clinical medical image provides vital information about a person's health and bodily condition. Typically, doctors monitor and examine several types of medical images individually to gather supplementary information for illness diagnosis and treatment. As it is arduous to analyze and diagnose from a single image, multi-modality images have been shown to enhance the precision of diagnosis and evaluation of medical conditions.

Objective

Several conventional image fusion techniques strengthen the consistency of the information by combining varied image observations; nevertheless, the drawback of these techniques in retaining all crucial elements of the original images can have a negative impact on the accuracy of clinical diagnoses. This research develops an improved image fusion technique based on fine-grained saliency and an anisotropic diffusion filter to preserve structural and detailed information of the individual image.

Methods

In contrast to prior efforts, the saliency method is not executed using a pyramidal decomposition, but rather an integral image on the original scale is used to obtain features of superior quality. Furthermore, an anisotropic diffusion filter is utilized for the decomposition of the original source images into a base layer and a detail layer. The proposed algorithm's performance is then contrasted to those of cutting-edge image fusion algorithms.

Results

The proposed approach cannot only cope with the fusion of medical images well, both subjectively and objectively, according to the results obtained, but also has high computational efficiency.

Conclusion

Furthermore, it provides a roadmap for the direction of future research.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056269626231201042100
2024-01-01
2025-04-24
The full text of this item is not currently available.

References

  1. KoundalD. GuptaS. SinghS. Computer aided thyroid nodule detection system using medical ultrasound images.Biomed. Signal Process. Control20184011713010.1016/j.bspc.2017.08.025
    [Google Scholar]
  2. KaushalC. BhatS. KoundalD. SinglaA. Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images.IRBM201940421122710.1016/j.irbm.2019.06.001
    [Google Scholar]
  3. JamesA.P. DasarathyB.V. Medical image fusion: A survey of the state of the art.Inf. Fusion20141941910.1016/j.inffus.2013.12.002
    [Google Scholar]
  4. El-GamalF.E-Z.A. ElmogyM. AtwanA. AtwanA. Current trends in medical image registration and fusion.Egyptian Informatics Journal20161719912410.1016/j.eij.2015.09.002
    [Google Scholar]
  5. HermessiH. MouraliO. ZagroubaE. Multimodal medical image fusion review: Theoretical background and recent advances.Signal Processing202118310803610.1016/j.sigpro.2021.108036
    [Google Scholar]
  6. KaurH KoundalD KadyanV. Image Fusion Techniques: A Survey.Arch. Comput. Methods Eng.202128744254447202110.1007/s11831‑021‑09540‑7
    [Google Scholar]
  7. LiS. KangX. FangL. HuJ. YinH. Pixel-level image fusion: A survey of the state of the art.Inf. Fusion20173310011210.1016/j.inffus.2016.05.004
    [Google Scholar]
  8. TirupalT. MohanB.C. KumarS.S. Multimodal medical image fusion techniques – A review.Curr. Signal Transduct. Ther.202116214216310.2174/1574362415666200226103116
    [Google Scholar]
  9. ZhangH. XuH. TianX. JiangJ. MaJ. Image fusion meets deep learning: A survey and perspective.Inf. Fusion2021761132333610.1016/j.inffus.2021.06.008
    [Google Scholar]
  10. ZhaoC. XiangS. WangY. CaiZ. ShenJ. ZhouS. ZhaoD. SuW. GuoS. LiS. Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium.Expert Syst. Appl.202321411910511910510.1016/j.eswa.2022.119105
    [Google Scholar]
  11. JainP. TyagiV. A survey of edge-preserving image denoising methods.Inf. Syst. Front.201618115917010.1007/s10796‑014‑9527‑0
    [Google Scholar]
  12. FrintropS. KlodtM. RomeE. A real-time visual attention system using integral imagesProceedings of the 5th International Conference on Computer Vision Systems200710.2390/biecoll‑icvs2007‑66
    [Google Scholar]
  13. IttiL. KochC. NieburE. A model of saliency-based visual attention for rapid scene analysis.IEEE Trans. Pattern Anal. Mach. Intell.199820111254125910.1109/34.730558
    [Google Scholar]
  14. TreismanA.M. GeladeG. A feature-integration theory of attention.Cognit. Psychol.19801219713610.1016/0010‑0285(80)90005‑57351125
    [Google Scholar]
  15. ViolaP. JonesM. Rapid object detection using a boosted cascade of simple featuresProceedings of the IEEE Conference on Computer Vision and Pattern Recognition200122823510.1109/CVPR.2001.990517
    [Google Scholar]
  16. BorjiA. ChengM.M. HouQ. JiangH. LiJ. Salient object detection: A survey.Computational Visual Media20195211715010.1007/s41095‑019‑0149‑9
    [Google Scholar]
  17. PizerS.M. AmburnE.P. AustinJ.D. CromartieR. GeselowitzA. GreerT. ter Haar RomenyB. ZimmermanJ.B. ZuiderveldK. Adaptive histogram equalization and its variations.Comput. Vis. Graph. Image Process.198739335536810.1016/S0734‑189X(87)80186‑X
    [Google Scholar]
  18. MontaboneS. SotoA. Human detection using a mobile platform and novel features derived from a visual saliency mechanism.Image Vis. Comput.201028339140210.1016/j.imavis.2009.06.006
    [Google Scholar]
  19. PeronaP. MalikJ. Scale-space and edge detection using anisotropic diffusion.IEEE Trans. Pattern Anal. Mach. Intell.199012762963910.1109/34.56205
    [Google Scholar]
  20. SunJ. HanQ. KouL. ZhangL. ZhangK. JinZ. Multi-focus image fusion algorithm based on Laplacian pyramids.J. Opt. Soc. Am. A Opt. Image Sci. Vis.201835348049010.1364/JOSAA.35.00048029522052
    [Google Scholar]
  21. PajaresG. Manuel de la CruzJ. A wavelet-based image fusion tutorial.Pattern Recognit.20043791855187210.1016/j.patcog.2004.03.010
    [Google Scholar]
  22. YangY. ParkD.S. HuangS. RaoN. Medical image fusion via an effective wavelet-based approach.EURASIP J. Adv. Signal Process.20102010157934110.1155/2010/579341
    [Google Scholar]
  23. KingsburyN. Image processing with complex wavelets.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.199935717602543256010.1098/rsta.1999.0447
    [Google Scholar]
  24. NaiduV.P.S. DT CWT based image Fusion2023Available from: https://www.mathworks.com/matlabcentral/fileexchange/32086-dt-cwt-based-image-fusion MATLAB Central File Exchange.
    [Google Scholar]
  25. SrivastavaR. PrakashO. KhareA. Local energy-based multimodal medical image fusion in curvelet domain.IET Comput. Vis.201610651352710.1049/iet‑cvi.2015.0251
    [Google Scholar]
  26. BavirisettiD.P. KolluV. GangX. DhuliR. Fusion of MRI and CT images using guided image filter and image statistics.Int. J. Imaging Syst. Technol.201727322723710.1002/ima.22228
    [Google Scholar]
  27. Available from: https://github.com/biswajitcsecu/Guided-Bilateral-Filter-based-Medical-Image-Fusion-Using-Visual-Saliency-Map-in-the-Wavelet-Domain
  28. LiuY. WangZ. Simultaneous image fusion and denoising with adaptive sparse representation.IET Image Process.20159534735710.1049/iet‑ipr.2014.0311
    [Google Scholar]
  29. ZhuR LiX ZhangX MaM. MRI and CT medical image fusion based on synchronized-anisotropic diffusion model.IEEE Access20208913369135010.1109/ACCESS.2020.2993493
    [Google Scholar]
  30. TanW. TiwariP. PandeyH.M. MoreiraC. JaiswalA.K. Multimodal medical image fusion algorithm in the era of big data.Neural Comput. Appl.202012110.1007/s00521‑020‑05173‑2
    [Google Scholar]
  31. BavirisettiD.P. DhuliR. Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform.IEEE Sens. J.201616120320910.1109/JSEN.2015.2478655
    [Google Scholar]
  32. MaJ. ZhouZ. WangB. ZongH. Infrared and visible image fusion based on visual saliency map and weighted least square optimization.Infrared Phys. Technol.20178281710.1016/j.infrared.2017.02.005
    [Google Scholar]
  33. ZhangS. LiX. ZhuR. ZhangX. WangZ. ZhangS. Medical image fusion algorithm based on L0 gradient minimization for CT and MRI.Multimedia Tools Appl.20218014211352116410.1007/s11042‑021‑10596‑7
    [Google Scholar]
  34. AlseelawiN. Tuama HazimH. AlrikabiH.T.S. A novel method of multimodal medical image fusion based on hybrid approach of NSCT and DTCWT.Int J Online and Biomed Eng202218311413310.3991/ijoe.v18i03.28011
    [Google Scholar]
  35. PetrovicV. XydeasC. Objective image fusion performance characterization.IEEE International Conference on Computer Vision20051866187110.1109/ICCV.2005.175
    [Google Scholar]
  36. WangZ. BovikA.C. SheikhH.R. SimoncelliE.P. Image quality assessment: From error visibility to structural similarity.IEEE Trans. Image Process.200413460061210.1109/TIP.2003.81986115376593
    [Google Scholar]
  37. KaurH. VigR. KumarN. DograA. SharmaA. GoyalB. Objective Image Quality Assessment of Pixel Level Image Fusion Algorithms for Medical ImagingIEEE Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)20231810.1109/ICEEICT56924.2023.10157703
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056269626231201042100
Loading
/content/journals/cmir/10.2174/0115734056269626231201042100
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test