Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background:

Lung cancer is a pervasive and persistent issue worldwide, with the highest morbidity and mortality among all cancers for many years. In the medical field, computer tomography (CT) images of the lungs are currently recognized as the best way to help doctors detect lung nodules and thus diagnose lung cancer. U-Net is a deep learning network with an encoder-decoder structure, which is extensively employed for medical image segmentation and has derived many improved versions. However, these advancements do not utilize various feature information from all scales, and there is still room for future enhancement.

Methods:

In this study, we proposed a new model called Blend U-Net, which incorporates nested structures, redesigned long and short skip connections, and deep supervisions. The nested structures and the long and short skip connections combined characteristic information of different levels from feature maps in all scales, while the deep supervision learning hierarchical representations from all-scale concatenated feature maps. Additionally, we employed a mixed loss function to obtain more accurate results.

Results:

We evaluated the performance of the Blend U-Net against other architectures on the publicly available Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset. Moreover, the accuracy of the segmentation was verified by using the dice coefficient. Blend U-Net with a boost of 0.83 points produced the best outcome in a number of baselines.

Conclusion:

Based on the results, our method achieves superior performance in terms of dice coefficient compared to other methods and demonstrates greater proficiency in segmenting lung nodules of varying sizes.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056268487231029154123
2023-11-06
2025-06-20
The full text of this item is not currently available.

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. CaoM. ChenW. Epidemiology of lung cancer in China.Thorac. Cancer20191013710.1111/1759‑7714.1291630485694
    [Google Scholar]
  3. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2016.CA Cancer J. Clin.201666173010.3322/caac.2133226742998
    [Google Scholar]
  4. KalinichM HaberD A Cancer detection: Seeking signals in bloodScience20183596378866867
    [Google Scholar]
  5. CielloA. FranchiP. ContegiacomoA. CicchettiG. BonomoL. LariciA.R. Missed lung cancer: When, where, and why?Diagn. Interv. Radiol.201723211812610.5152/dir.2016.1618728206951
    [Google Scholar]
  6. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  7. PuderbachM. KauczorH.U. Can lung MR replace lung CT?Pediatr. Radiol.200838S343945110.1007/s00247‑008‑0844‑718470453
    [Google Scholar]
  8. AberleD.R. AdamsA.M. BergC.D. BlackW.C. ClappJ.D. FagerstromR.M. GareenI.F. GatsonisC. MarcusP.M. SicksJ.D. Reduced lung-cancer mortality with low-dose computed tomographic screening.N. Engl. J. Med.2011365539540910.1056/NEJMoa110287321714641
    [Google Scholar]
  9. HuangP. ParkS. YanR. Added value of computer-aided CT image features for early lung cancer diagnosis with small pulmonary nodules: A matched case-control study.Radiology201716272528872442
    [Google Scholar]
  10. CaiJ. XuD. LiuS. ChamM.D. The added value of computer-aided detection of small pulmonary nodules and missed lung cancers.J. Thorac. Imaging201833639039510.1097/RTI.000000000000036230239461
    [Google Scholar]
  11. KrizhevskyA. SutskeverI. HintonG. ImageNet classification with deep convolutional neural networks.Adv. Neural Inf. Process. Syst.2012252
    [Google Scholar]
  12. LecunY. BottouL. BengioY. HaffnerP. Gradient-based learning applied to document recognition.Proc. IEEE199886112278232410.1109/5.726791
    [Google Scholar]
  13. ShuoW. MuZ. GevaertO. ZhenchaoT. DiD. ZhenyuL. JieT. A multi-view deep convolutional neural networks for lung nodule segmentation.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.201720171752175529060226
    [Google Scholar]
  14. ShelhamerE. LongJ. DarrellT. Fully convolutional networks for semantic segmentation.IEEE Trans. Pattern Anal. Mach. Intell.201739464065110.1109/TPAMI.2016.257268327244717
    [Google Scholar]
  15. ShenD. WuG. SukH.I. Deep learning in medical image analysis.Annu. Rev. Biomed. Eng.201719122124810.1146/annurev‑bioeng‑071516‑04444228301734
    [Google Scholar]
  16. LitjensG. KooiT. BejnordiB.E. SetioA.A.A. CiompiF. GhafoorianM. van der LaakJ.A.W.M. van GinnekenB. SánchezC.I. A survey on deep learning in medical image analysis.Med. Image Anal.201742608810.1016/j.media.2017.07.00528778026
    [Google Scholar]
  17. ChartrandG. ChengP.M. VorontsovE. DrozdzalM. TurcotteS. PalC.J. KadouryS. TangA. Deep learning: A primer for radiologists.Radiographics20173772113213110.1148/rg.201717007729131760
    [Google Scholar]
  18. TajbakhshN. JeyaseelanL. LiQ. ChiangJ.N. WuZ. DingX. Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation.Med. Image Anal.20206310169310.1016/j.media.2020.10169332289663
    [Google Scholar]
  19. RonnebergerO. FischerP. BroxT. U-net: Convolutional networks for biomedical image segmentation.18th International ConferenceMunich, GermanyOctober 5-9, 20152015234241
    [Google Scholar]
  20. DrozdzalM. VorontsovE. ChartrandG. The importance of skip connections in biomedical image segmentation.arXiv:1608.04117201610.1007/978‑3‑319‑46976‑8_19
    [Google Scholar]
  21. ZhouZ. SiddiqueeM.M.R. TajbakhshN. LiangJ. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation.IEEE Trans. Med. Imaging20203961856186710.1109/TMI.2019.295960931841402
    [Google Scholar]
  22. HuangH. LinL. TongR. Unet 3+: A full-scale connected unet for medical image segmentation.ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)202010551059
    [Google Scholar]
  23. ArmatoS.G.III McLennanG. BidautL. McNitt-GrayM.F. MeyerC.R. ReevesA.P. ZhaoB. AberleD.R. HenschkeC.I. HoffmanE.A. KazerooniE.A. MacMahonH. van BeekE.J.R. YankelevitzD. BiancardiA.M. BlandP.H. BrownM.S. EngelmannR.M. LaderachG.E. MaxD. PaisR.C. QingD.P.Y. RobertsR.Y. SmithA.R. StarkeyA. BatraP. CaligiuriP. FarooqiA. GladishG.W. JudeC.M. MundenR.F. PetkovskaI. QuintL.E. SchwartzL.H. SundaramB. DoddL.E. FenimoreC. GurD. PetrickN. FreymannJ. KirbyJ. HughesB. Vande CasteeleA. GupteS. SallamM. HeathM.D. KuhnM.H. DharaiyaE. BurnsR. FrydD.S. SalganicoffM. AnandV. ShreterU. VastaghS. CroftB.Y. ClarkeL.P. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans.Med. Phys.201138291593110.1118/1.352820421452728
    [Google Scholar]
  24. LiuY. ZhangE. XuL. Mixed-UNet: Refined class activation mapping for weakly-supervised semantic segmentation with multi-scale inferencearXiv:2205.042272022
    [Google Scholar]
  25. LiR. LiuW. YangL. SunS. HuW. ZhangF. LiW. Deep U-Net: A deep fully convolutional network for pixel-level sea-land segmentation.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.201811113954396210.1109/JSTARS.2018.2833382
    [Google Scholar]
  26. OktayO. SchlemperJ. FolgocL.L. Attention u-net: Learning where to look for the pancreas.arXiv:1804.039992018
    [Google Scholar]
  27. BaoSM HuQH YangWT Targeting epidermal growth factor receptor in non-small-cell-lung cancer: current state and future perspective.Anti-Cancer Agents Med. Chem.2019198984991
    [Google Scholar]
  28. GuY. ChiJ. LiuJ. YangL. ZhangB. YuD. ZhaoY. LuX. A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning.Comput. Biol. Med.202113710480610.1016/j.compbiomed.2021.10480634461501
    [Google Scholar]
  29. CarmoD. RibeiroJ. DertkigilS. AppenzellerS. LotufoR. RittnerL. A systematic review of automated segmentation methods and public datasets for the lung and its lobes and findings on computed tomography images.Yearb. Med. Inform.202231127729510.1055/s‑0042‑174251736463886
    [Google Scholar]
  30. LiR. XiaoC. HuangY. HassanH. HuangB. Deep learning applications in computed tomography images for pulmonary nodule detection and diagnosis: A review.Diagnostics202212229810.3390/diagnostics1202029835204388
    [Google Scholar]
  31. DugerdilA. SemenzatoL. WeillA. ZureikM. FlahaultA. Severe SARS-CoV-2 infection as a marker of undiagnosed cancer: A population-based study.Sci. Rep.2023131872910.1038/s41598‑023‑36013‑737253848
    [Google Scholar]
  32. LariciA.R. FarchioneA. FranchiP. CilibertoM. CicchettiG. CalandrielloL. del CielloA. BonomoL. Lung nodules: Size still matters.Eur. Respir. Rev.20172614617002510.1183/16000617.0025‑201729263171
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056268487231029154123
Loading
/content/journals/cmir/10.2174/0115734056268487231029154123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test