Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background:

Previous studies have indicated the abnormality of the globus pallidus in neonates with hyperbilirubinemia.

Objective:

This study aims to explore the microstructure and cerebral perfusion of globus pallidus in neonatal hyperbilirubinemia by using Diffusion Tensor Imaging (DTI) and Arterial Spin Labeling (ASL) approaches.

Methods:

Thirty-seven neonates were enrolled in this study, which were classified into Bilirubin-Induced Neurologic Dysfunction (BIND) group (hyperbilirubinemia with BIND, n=12), non-BIND group (hyperbilirubinemia without BIND, n=15), and healthy controls (HC) group (n=10). The quantitative values of globus pallidus were calculated from DTI, including the Apparent Diffusion Coefficient (ADC), the Fractional Anisotropy (FA), and Volume Ratio (VR) values. Additionally, the relative Cerebral Blood Flow (rCBF) values were obtained from ASL.

Results:

It was observed that the mean DTI signal of globus pallidus was significantly different among the three groups ( < 0.05). However, there were no significant differences in the rCBF of globus pallidus among the three groups ( > 0.05). A positive correlation was also observed between the fractional anisotropy (FA) value and serum bilirubin level (r = 0.561, p = 0.002), while the VR value showed a negative correlation with serum bilirubin level (r=-0.484, =0.011). The area under the curve (AUC) of FA, VR, and FA and VR combined was 0.897, 0.858, and 0.933, respectively.

Conclusion:

The alterations of microstructure in globus pallidus, especially FA and VR value, may be valuable and sensitive at the early stage of hyperbilirubinemia encephalopathy, suggesting that early hyperbilirubinemia may lead to cytotoxic edema and decreased permeability of the cell membrane.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056266762231206074419
2024-01-01
2025-07-13
The full text of this item is not currently available.

References

  1. BhutaniV.K. WongR.J. StevensonD.K. Hyperbilirubinemia in preterm neonates.Clin. Perinatol.201643221523210.1016/j.clp.2016.01.00127235203
    [Google Scholar]
  2. LauerB.J. SpectorN.D. Hyperbilirubinemia in the newborn.Pediatr. Rev.201132834134910.1542/pir.32.8.34121807875
    [Google Scholar]
  3. GazzinS. JayantiS. TiribelliC. Models of bilirubin neurological damage: Lessons learned and new challenges.Pediatr. Res.20229371838184536302856
    [Google Scholar]
  4. ShapiroS.M. Chronic bilirubin encephalopathy: diagnosis and outcome.Semin. Fetal Neonatal Med.201015315716310.1016/j.siny.2009.12.00420116355
    [Google Scholar]
  5. MaiselsM.J. KringE. The contribution of hemolysis to early jaundice in normal newborns.Pediatrics2006118127627910.1542/peds.2005‑304216818575
    [Google Scholar]
  6. MuchowskiK.E. Evaluation and treatment of neonatal hyperbilirubinemia.Am. Fam. Physician2014891187387825077393
    [Google Scholar]
  7. WisnowskiJ.L. PanigrahyA. PainterM.J. WatchkoJ.F. Magnetic resonance imaging of bilirubin encephalopathy: Current limitations and future promise.Semin. Perinatol.201438742242810.1053/j.semperi.2014.08.00525267277
    [Google Scholar]
  8. ManningD. ToddP. MaxwellM. Jane PlattM. Prospective surveillance study of severe hyperbilirubinaemia in the newborn in the UK and Ireland.Arch. Dis. Child. Fetal Neonatal Ed.2007925F342F34610.1136/adc.2006.10536117074786
    [Google Scholar]
  9. CoskunA. YikilmazA. KumandasS. KarahanO.I. AkcakusM. ManavA. Hyperintense globus pallidus on T1-weighted MR imaging in acute kernicterus: is it common or rare?Eur. Radiol.20051561263126710.1007/s00330‑004‑2502‑215565320
    [Google Scholar]
  10. Fernández-RodriguezR. ContrerasA. De VilloriaJ.G. GrandasF. Acquired hepatocerebral degeneration: Clinical characteristics and MRI findings.Eur. J. Neurol.201017121463147010.1111/j.1468‑1331.2010.03076.x20491897
    [Google Scholar]
  11. HanquinetS. MoriceC. CourvoisierD.S. CousinV. AnooshiravaniM. MerliniL. McLinV.A. Globus pallidus MR signal abnormalities in children with chronic liver disease and/or porto-systemic shunting.Eur. Radiol.201727104064407110.1007/s00330‑017‑4808‑x28386718
    [Google Scholar]
  12. YanR. HanD. RenJ. ZhaiZ. ZhouF. ChengJ. Diagnostic value of conventional MRI combined with DTI for neonatal hyperbilirubinemia.Pediatr. Neonatol.201859216116710.1016/j.pedneo.2017.07.00928864243
    [Google Scholar]
  13. TelischakN.A. DetreJ.A. ZaharchukG. Arterial spin labeling MRI: Clinical applications in the brain.J. Magn. Reson. Imaging20154151165118010.1002/jmri.2475125236477
    [Google Scholar]
  14. Hernandez-GarciaL. LahiriA. SchollenbergerJ. Recent progress in ASL.Neuroimage201918731610.1016/j.neuroimage.2017.12.09529305164
    [Google Scholar]
  15. HameedN.N. HusseinM.A. BIND score: A system to triage infants readmitted for extreme hyperbilirubinemia.Semin. Perinatol.202145115135410.1016/j.semperi.2020.15135433309176
    [Google Scholar]
  16. MarkandON Brainstem auditory evoked potentials.J Clin Neurophysiol1994113319342
    [Google Scholar]
  17. KalitaJ. MisraU.K. BansalR. Phonophobia and brainstem excitability in migraine.Eur. J. Neurosci.20215361988199710.1111/ejn.1507833305448
    [Google Scholar]
  18. KamitaM.K. SilvaL.A.F. MagliaroF.C.L. KawaiR.Y.C. FernandesF.D.M. MatasC.G. Brainstem auditory evoked potentials in children with autism spectrum disorder.J. Pediatr.202096338639210.1016/j.jped.2018.12.01030802422
    [Google Scholar]
  19. ShahN.A. WusthoffC.J. How to use: Amplitude-integrated EEG (aEEG).Arch. Dis. Child. Educ. Pract. Ed.20151002758110.1136/archdischild‑2013‑30567625035312
    [Google Scholar]
  20. CeceH. AbuhandanM. CakmakA. YildizS. CalikM. KarakasE. KarakasO. Diffusion-weighted imaging of patients with neonatal bilirubin encephalopathy.Jpn. J. Radiol.201331317918510.1007/s11604‑012‑0166‑423207647
    [Google Scholar]
  21. WangX. WuW. HouB.L. ZhangP. ChineahA. LiuF. LiaoW. Studying neonatal bilirubin encephalopathy with conventional MRI, MRS, and DWI.Neuroradiology2008501088589310.1007/s00234‑008‑0423‑518563403
    [Google Scholar]
  22. ShapiroS.M. SombatiS. GeigerA. RiceA.C. NMDA channel antagonist MK-801 does not protect against bilirubin neurotoxicity.Neonatology200792424825710.1159/00010374317556843
    [Google Scholar]
  23. ZhuD. ZhangT. JiangX. HuX. ChenH. YangN. LvJ. HanJ. GuoL. LiuT. Fusing DTI and fMRI data: A survey of methods and applications.Neuroimage2014102Pt 118419110.1016/j.neuroimage.2013.09.07124103849
    [Google Scholar]
  24. HulkowerM.B. PoliakD.B. RosenbaumS.B. ZimmermanM.E. LiptonM.L. A decade of DTI in traumatic brain injury: 10 years and 100 articles later.AJNR Am. J. Neuroradiol.201334112064207410.3174/ajnr.A339523306011
    [Google Scholar]
  25. BrissaudO. AmiraultM. VillegaF. PeriotO. ChateilJ.F. AllardM. Efficiency of fractional anisotropy and apparent diffusion coefficient on diffusion tensor imaging in prognosis of neonates with hypoxic-ischemic encephalopathy: A methodologic prospective pilot study.AJNR Am. J. Neuroradiol.201031228228710.3174/ajnr.A180519959775
    [Google Scholar]
  26. YangQ. TressB.M. BarberP.A. DesmondP.M. DarbyD.G. GerratyR.P. LiT. DavisS.M. Serial study of apparent diffusion coefficient and anisotropy in patients with acute stroke.Stroke199930112382239010.1161/01.STR.30.11.238210548675
    [Google Scholar]
  27. BechL.F. DonneborgM.L. LundA.M. EbbesenF. Extreme neonatal hyperbilirubinemia, acute bilirubin encephalopathy, and kernicterus spectrum disorder in children with galactosemia.Pediatr. Res.201884222823210.1038/s41390‑018‑0066‑029892033
    [Google Scholar]
  28. WangY. BartelsH.M. NelsonL.D. A systematic review of ASL perfusion MRI in mild TBI.Neuropsychol. Rev.202033116019132808244
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056266762231206074419
Loading
/content/journals/cmir/10.2174/0115734056266762231206074419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test