Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Acute inflammation induced by COVID-19 may lead to atherosclerotic plaque development or complicate existing plaque. In this study, we aimed to determine the atherogenic effect of COVID-19 pneumonia, confirmed by thoracic computed tomography, on coronary and carotid arteries in patients who recovered from the disease.

Methods

Our study included patients who were diagnosed with COVID-19 in our hospital at least 1 year ago, recovered, and then underwent coronary CT angiography with suspected coronary artery disease. The aim was to evaluate the burden of atherosclerotic plaque in the coronary arteries of these patients who underwent coronary CT angiography.

Results

Patients were assigned to 3 groups according to the results of the CT scan. Group 1 included patients in the control group with no history of COVID-19 (n=36), group 2 included those with mild to moderate pneumonia symptoms (n=43), and group 3 included those with severe pneumonia symptoms (n=29). The calcium scores were 23.25±36.8 in group 1, 27.65±33.4 in group 2, and 53.58±55.1 in group 3. The calcium score was found to be significantly higher in group 3 patients with severe pneumonia (group 1-2 =0.885, group 1-3 <0.05, group 2-3 <0.05).

Conclusion

Although there is no conclusive evidence of a relationship between COVID-19 and atherosclerosis, our study suggests a possible relationship between them. Since this relationship was found especially in cases with severe disease in our study, we believe that the treatment should focus on preventing excessive inflammatory response, and such patients should be under control in terms of coronary artery disease.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056257710240215111748
2024-01-01
2025-07-12
The full text of this item is not currently available.

References

  1. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. NiuP. ZhanF. MaX. WangD. XuW. WuG. GaoG.F. TanW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa200101731978945
    [Google Scholar]
  2. MulitaF. VailasM. TchabashviliL. LiolisE. IliopoulosF. DrakosN. MaroulisI. The impact of the COVID-19 outbreak on emergency surgery: A Greek emergency department experience.Prz. Gastroenterol.20211619510.5114/pg.2021.10473933986894
    [Google Scholar]
  3. MulitaF. SotiropoulouM. VailasM. A multifaceted virus. Non-reducible and strangulated effects of COVID-19.J. Trauma Acute Care Surg.2021911e3410.1097/TA.000000000000321933797481
    [Google Scholar]
  4. JinY. YangH. JiW. WuW. ChenS. ZhangW. DuanG. Virology, epidemiology, pathogenesis, and control of COVID-19.Viruses202012437210.3390/v1204037232230900
    [Google Scholar]
  5. BelloR. ChinV. Abd RachmanI.M. Abd MajidR. AbdullahA.M. LeeT. ZakariaA.Z. HussainM. BasirR. The role, involvement and function(s) of interleukin-35 and interleukin-37 in disease pathogenesis.Int. J. Mol. Sci.2018194114910.3390/ijms1904114929641433
    [Google Scholar]
  6. OrtizM.E. ThurmanA. PezzuloA.A. LeidingerM.R. Klesney-TaitJ.A. KarpP.H. TanP. Wohlford-LenaneC. McCrayP.B.Jr MeyerholzD.K. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract.EBioMedicine20206010297610.1016/j.ebiom.2020.10297632971472
    [Google Scholar]
  7. ZhouM. ZhangX. QuJ. Coronavirus disease 2019 (COVID-19): A clinical update.Front. Med.202014212613510.1007/s11684‑020‑0767‑832240462
    [Google Scholar]
  8. WangD. HuB. HuC. ZhuF. LiuX. ZhangJ. WangB. XiangH. ChengZ. XiongY. ZhaoY. LiY. WangX. PengZ. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, China.JAMA2020323111061106910.1001/jama.2020.158532031570
    [Google Scholar]
  9. Torres-CastroR. Vasconcello-CastilloL. Alsina-RestoyX. Solís-NavarroL. BurgosF. PuppoH. VilaróJ. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis.Pulmonology202127432833710.1016/j.pulmoe.2020.10.01333262076
    [Google Scholar]
  10. MontenegroF. UnigarroL. ParedesG. MoyaT. RomeroA. TorresL. LópezJ.C. GonzálezF.E.J. Del PozoG. López-CortésA. DiazA.M. VasconezE. Cevallos-RobalinoD. ListerA. Ortiz-PradoE. Acute respiratory distress syndrome (ARDS) caused by the novel coronavirus disease (COVID-19): A practical comprehensive literature review.Expert Rev. Respir. Med.202115218319510.1080/17476348.2020.182032932902367
    [Google Scholar]
  11. GargS. GargM. PrabhakarN. MalhotraP. AgarwalR. Unraveling the mystery of Covid-19 cytokine storm: From skin to organ systems.Dermatol. Ther.2020336e1385910.1111/dth.1385932559324
    [Google Scholar]
  12. HendrenN.S. DraznerM.H. BozkurtB. CooperL.T.Jr Cooper Jr. Description and proposed management of the acute COVID-19 cardiovascular syndrome.Circulation2020141231903191410.1161/CIRCULATIONAHA.120.04734932297796
    [Google Scholar]
  13. HuH. MaF. WeiX. FangY. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin.Eur. Heart J.202142220620610.1093/eurheartj/ehaa19032176300
    [Google Scholar]
  14. InciardiR.M. LupiL. ZacconeG. ItaliaL. RaffoM. TomasoniD. CaniD.S. CeriniM. FarinaD. GavazziE. MaroldiR. AdamoM. AmmiratiE. SinagraG. LombardiC.M. MetraM. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19).JAMA Cardiol.20205781982410.1001/jamacardio.2020.109632219357
    [Google Scholar]
  15. MilutinovićA. ŠuputD. Zorc-PleskovičR. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review.Bosn. J. Basic Med. Sci.2020201213031465719
    [Google Scholar]
  16. LibbyP. Inflammation in atherosclerosis—no longer a theory.Clin. Chem.202167113114210.1093/clinchem/hvaa27533393629
    [Google Scholar]
  17. HuangC.Y. ShihC.M. TsaoN.W. ChenY.H. LiC.Y. ChangY.J. ChangN.C. OuK.L. LinC.Y. LinY.W. NienC.H. LinF.Y. GroEL1, from Chlamydia pneumoniae, induces vascular adhesion molecule 1 expression by p37(AUF1) in endothelial cells and hypercholesterolemic rabbit.PLoS One201278e4280810.1371/journal.pone.004280822900050
    [Google Scholar]
  18. LebedevaA. MaryukhnichE. GrivelJ.C. VasilievaE. MargolisL. ShpektorA. Productive cytomegalovirus infection is associated with impaired endothelial function in ST-elevation myocardial infarction.Am. J. Med.2020133113314210.1016/j.amjmed.2019.06.02131295440
    [Google Scholar]
  19. MontarelloN.J. NguyenM.T. WongD.T. NichollsS.J. PsaltisP.J. Inflammation in coronary atherosclerosis and its therapeutic implications.Cardiovasc. Drugs Ther.20203623476233170943
    [Google Scholar]
  20. BachmaierK. LeJ. PenningerJ.M. “Catching heart disease”: Antigenic mimicry and bacterial infections.Nat. Med.20006884184210.1038/7856110932199
    [Google Scholar]
  21. IelapiN. CaprinoF. MaliziaB. SisinniA. SsempijjaL. AndreucciM. LicastroN. SerraR. Infection, infectious agents and vascular disease.Rev. Recent Clin. Trials202116326227110.2174/157488711666621032512404533823769
    [Google Scholar]
  22. PetersonE. LoK.B. DeJoyR. SalacupG. PelayoJ. BhargavR. GulF. AlbanoJ. AzmaiparashviliZ. AmanullahA. Patarroyo-AponteG. The relationship between coronary artery disease and clinical outcomes in COVID-19: A single-center retrospective analysis.Coron. Artery Dis.202132536737110.1097/MCA.000000000000093432732512
    [Google Scholar]
  23. KumarS. KashyapB. KumarS. KapoorS. Diagnostic utility of serology and polymerase chain reaction for detection of Mycoplasma pneumoniae and Chlamydophila pneumoniae in paediatric community-acquired lower respiratory tract infections.Indian J. Med. Microbiol.202038215215610.4103/ijmm.IJMM_20_14532883927
    [Google Scholar]
  24. ZhuW. LiuS. The role of human cytomegalovirus in atherosclerosis: A systematic review.Acta Biochim. Biophys. Sin.202052433935310.1093/abbs/gmaa00532253424
    [Google Scholar]
  25. TongL. WangB.B. LiF.H. LvS.P. PanF.F. DongX.J. An updated meta-analysis of the relationship between Helicobacter pylori infection and the risk of coronary heart disease.Front. Cardiovasc. Med.2022979444510.3389/fcvm.2022.79444535571162
    [Google Scholar]
  26. ColombiD. BodiniF.C. PetriniM. MaffiG. MorelliN. MilaneseG. SilvaM. SverzellatiN. MichielettiE. Well-aerated lung on admitting chest CT to predict adverse outcome in COVID-19 pneumonia.Radiology20202962E86E9610.1148/radiol.202020143332301647
    [Google Scholar]
  27. ChoiH. QiX. YoonS.H. ParkS.J. LeeK.H. KimJ.Y. LeeY.K. KoH. KimK.H. ParkC.M. KimY.H. LeiJ. HongJ.H. KimH. HwangE.J. YooS.J. NamJ.G. LeeC.H. GooJ.M. Extension of coronavirus disease 2019 on chest CT and implications for chest radiographic interpretation.Radiol. Cardiothorac. Imaging202022e20010710.1148/ryct.202020010733778565
    [Google Scholar]
  28. AgatstonA.S. JanowitzW.R. HildnerF.J. ZusmerN.R. ViamonteM.Jr DetranoR. Quantification of coronary artery calcium using ultrafast computed tomography.J. Am. Coll. Cardiol.199015482783210.1016/0735‑1097(90)90282‑T2407762
    [Google Scholar]
  29. LazcanoU. Cuadrado-GodiaE. GrauM. SubiranaI. Martínez-CarbonellE. Boher-MassaguerM. Rodríguez-CampelloA. Giralt-SteinhauerE. Fernández-PérezI. Jiménez-CondeJ. RoquerJ. OisÁ. Increased COVID-19 mortality in people with previous cerebrovascular disease: A population-based cohort study.Stroke20225341276128410.1161/STROKEAHA.121.03625734781706
    [Google Scholar]
  30. NaeiniM.B. SahebiM. NikbakhtF. JamshidiZ. AhmadimaneshM. HashemiM. RamezaniJ. MiriH.H. Yazdian-RobatiR. A meta-meta-analysis: Evaluation of meta-analyses published in the effectiveness of cardiovascular comorbidities on the severity of COVID-19.Obes. Med.20212210032310.1016/j.obmed.2021.10032333521379
    [Google Scholar]
  31. GheblawiM. WangK. ViveirosA. NguyenQ. ZhongJ.C. TurnerA.J. RaizadaM.K. GrantM.B. OuditG.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2.Circ. Res.2020126101456147410.1161/CIRCRESAHA.120.31701532264791
    [Google Scholar]
  32. GrzegorowskaO. LorkowskiJ. Possible correlations between atherosclerosis, acute coronary syndromes and COVID-19.J. Clin. Med.2020911374610.3390/jcm911374633233333
    [Google Scholar]
  33. ZieglerT. Abdel RahmanF. JurischV. KupattC. Atherosclerosis and the capillary network; pathophysiology and potential therapeutic strategies.Cells2019915010.3390/cells901005031878229
    [Google Scholar]
  34. MarrieT.J. ShariatzadehM.R. Community-acquired pneumonia requiring admission to an intensive care unit: A descriptive study.Medicine200786210311110.1097/MD.0b013e3180421c1617435590
    [Google Scholar]
  35. LibbyP. SimonD.I. Inflammation and thrombosis.Circulation2001103131718172010.1161/01.CIR.103.13.171811282900
    [Google Scholar]
  36. TaylorA.J. BindemanJ. FeuersteinI. CaoF. BrazaitisM. O’MalleyP.G. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: Mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project.J. Am. Coll. Cardiol.200546580781410.1016/j.jacc.2005.05.04916139129
    [Google Scholar]
  37. AradY. GoodmanK.J. RothM. NewsteinD. GuerciA.D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: The St. Francis Heart Study.J. Am. Coll. Cardiol.200546115816510.1016/j.jacc.2005.02.08815992651
    [Google Scholar]
  38. ShawL.J. RaggiP. SchistermanE. BermanD.S. CallisterT.Q. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality.Radiology2003228382683310.1148/radiol.228302100612869688
    [Google Scholar]
  39. PletcherM.J. TiceJ.A. PignoneM. BrownerW.S. Using the coronary artery calcium score to predict coronary heart disease events: A systematic review and meta-analysis.Arch. Intern. Med.2004164121285129210.1001/archinte.164.12.128515226161
    [Google Scholar]
  40. ThomD.H. GraystonJ.T. SiscovickD.S. WangS.P. WeissN.S. DalingJ.R. Association of prior infection with Chlamydia pneumoniae and angiographically demonstrated coronary artery disease.JAMA19922681687210.1001/jama.1992.034900100700321608116
    [Google Scholar]
  41. ZhuJ. ShearerG.M. NormanJ.E. PintoL.A. MarincolaF.M. PrasadA. WaclawiwM.A. CsakoG. QuyyumiA.A. EpsteinS.E. Host response to cytomegalovirus infection as a determinant of susceptibility to coronary artery disease: Sex-based differences in inflammation and type of immune response.Circulation2000102202491249610.1161/01.CIR.102.20.249111076822
    [Google Scholar]
  42. de BoerO.J. van der WalA.C. BeckerA.E. Atherosclerosis, inflammation, and infection.J. Pathol.2000190323724310.1002/(SICI)1096‑9896(200002)190:3<237::AID‑PATH541>3.0.CO;2‑N10685058
    [Google Scholar]
  43. RosenfeldM.E. CampbellL.A. Pathogens and atherosclerosis: Update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis.J. Thromb. Haemost.2011106585886722012133
    [Google Scholar]
  44. JiY.N. AnL. ZhanP. ChenX.H. Cytomegalovirus infection and coronary heart disease risk: A meta-analysis.Mol. Biol. Rep.20123966537654610.1007/s11033‑012‑1482‑622311014
    [Google Scholar]
  45. JacksonL.A. CampbellL.A. KuoC.C. RodriguezD.I. LeeA. GraystonJ.T. Isolation of Chlamydia pneumoniae from a carotid endarterectomy specimen.J. Infect. Dis.1997176129229510.1086/5172709207386
    [Google Scholar]
  46. KuoC.C. GraystonJ.T. CampbellL.A. GooY.A. WisslerR.W. BendittE.P. Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15-34 years old).Proc. Natl. Acad. Sci.199592156911691410.1073/pnas.92.15.69117624342
    [Google Scholar]
  47. HuH. PierceG.N. ZhongG. The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae.J. Clin. Invest.1999103574775310.1172/JCI458210074493
    [Google Scholar]
  48. MoazedT.C. CampbellL.A. RosenfeldM.E. GraystonJ.T. KuoC. Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice.J. Infect. Dis.1999180123824110.1086/31485510353889
    [Google Scholar]
  49. LaitinenK. LaurilaA. PyhäläL. LeinonenM. SaikkuP. Chlamydia pneumoniae infection induces inflammatory changes in the aortas of rabbits.Infect. Immun.199765114832483510.1128/iai.65.11.4832‑4835.19979353072
    [Google Scholar]
  50. MuhlesteinJ.B. AndersonJ.L. HammondE.H. ZhaoL. TrehanS. SchwobeE.P. CarlquistJ.F. Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model.Circulation199897763363610.1161/01.CIR.97.7.6339495296
    [Google Scholar]
  51. Raza-AhmadA. KlassenG.A. MurphyD.A. SullivanJ.A. KinleyC.E. LandymoreR.W. WoodJ.R. Evidence of type 2 herpes simplex infection in human coronary arteries at the time of coronary artery bypass surgery.Can. J. Cardiol.19951111102510298542544
    [Google Scholar]
  52. PatelP. MendallM.A. KhulusiS. MolineauxN. LevyJ. MaxwellJ.D. NorthfieldT.C. Salivary antibodies to Hellcobacter pylori: Screening dyspeptic patients before endoscopy.Lancet1994344892151151210.1016/S0140‑6736(94)91899‑67802777
    [Google Scholar]
  53. LoJ. AbbaraS. ShturmanL. SoniA. WeiJ. Rocha-FilhoJ.A. NasirK. GrinspoonS.K. Increased prevalence of subclinical coronary atherosclerosis detected by coronary computed tomography angiography in HIV-infected men.AIDS201024224325310.1097/QAD.0b013e328333ea9e19996940
    [Google Scholar]
  54. PatonP. TabibA. LoireR. TeteR. Coronary artery lesions and human immunodeficiency virus infection.Res. Virol.1993144322523110.1016/S0923‑2516(06)80033‑68356344
    [Google Scholar]
  55. MiyamotoT. YumotoH. TakahashiY. DaveyM. GibsonF.C.III GencoC.A. Pathogen-accelerated atherosclerosis occurs early after exposure and can be prevented via immunization.Infect. Immun.20067421376138010.1128/IAI.74.2.1376‑1380.200616428788
    [Google Scholar]
  56. KoizumiY. Kurita-OchiaiT. OguchiS. YamamotoM. Nasal immunization with Porphyromonas gingivalis outer membrane protein decreases P. gingivalis-induced atherosclerosis and inflammation in spontaneously hyperlipidemic mice.Infect. Immun.20087672958296510.1128/IAI.01572‑0718426881
    [Google Scholar]
  57. CaligiuriG. Khallou-LaschetJ. VandaeleM. GastonA.T. DelignatS. MandetC. KohlerH.V. KaveriS.V. NicolettiA. Phosphorylcholine-targeting immunization reduces atherosclerosis.J. Am. Coll. Cardiol.200750654054610.1016/j.jacc.2006.11.05417678738
    [Google Scholar]
  58. FrostegårdJ. Low level natural antibodies against phosphorylcholine: A novel risk marker and potential mechanism in atherosclerosis and cardiovascular disease.Clin. Immunol.20101341475410.1016/j.clim.2009.08.01319748321
    [Google Scholar]
  59. HessamiA. ShamshirianA. HeydariK. PouraliF. Alizadeh-NavaeiR. MoosazadehM. AbrotanS. ShojaieL. SedighiS. ShamshirianD. RezaeiN. Cardiovascular diseases burden in COVID-19: Systematic review and meta-analysis.Am. J. Emerg. Med.20214638239110.1016/j.ajem.2020.10.02233268238
    [Google Scholar]
  60. PillarisettiJ. CheemaM.S. HalootJ. PandayM. BadinA. MehtaA. AndersonA.S. PrasadA. Cardiac complications of COVID-19: Incidence and outcomes.Indian Heart J.202274317017710.1016/j.ihj.2022.04.00835490848
    [Google Scholar]
  61. DemircanŞ. TekinA. TekinG. TopçuS. YiğitF. ErolT. KatırcıbaşıT. SezginA.T. BaltalıM. ÖzinB. MüderrisoğluH. Comparison of carotid intima-media thickness in patients with stable angina pectoris versus patients with acute coronary syndrome.Am. J. Cardiol.200596564364410.1016/j.amjcard.2005.04.03516125486
    [Google Scholar]
  62. SalonenJ.T. SalonenR. Ultrasonographically assessed carotid morphology and the risk of coronary heart disease.Arterioscler. Thromb.19911151245124910.1161/01.ATV.11.5.12451911709
    [Google Scholar]
  63. TakashiW. TsutomuF. KentaroF. Ultrasonic correlates of common carotid atherosclerosis in patients with coronary artery disease.Angiology200253217718310.1177/00033197020530020811952108
    [Google Scholar]
  64. AdamsM.R. NakagomiA. KeechA. RobinsonJ. McCredieR. BaileyB.P. FreedmanS.B. CelermajerD.S. Carotid intima-media thickness is only weakly correlated with the extent and severity of coronary artery disease.Circulation19959282127213410.1161/01.CIR.92.8.21277554192
    [Google Scholar]
  65. SorlieP.D. AdamE. MelnickS.L. FolsomA. SkeltonT. ChamblessL.E. BarnesR. MelnickJ.L. Cytomegalovirus/herpesvirus and carotid atherosclerosis: The aric study.J. Med. Virol.1994421333710.1002/jmv.18904201078308517
    [Google Scholar]
  66. ChiuB. ViiraE. TuckerW. FongI.W. Chlamydia pneumoniae, cytomegalovirus, and herpes simplex virus in atherosclerosis of the carotid artery.Circulation19979672144214810.1161/01.CIR.96.7.21449337182
    [Google Scholar]
  67. DoğanY. Turunç ÖzdemirA. Assessment of carotid intima-media thickness in COVID-19 survivors.Int. J. Cardiovasc. Acad.202391161910.4274/ijca.57966
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056257710240215111748
Loading
/content/journals/cmir/10.2174/0115734056257710240215111748
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Atherosclerosis; Carotid arteries; Coronary arteries; Coronary CT angiography; COVID-19
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test