Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Diabetic Retinopathy is a growing problem in Asian countries. accounts for 5% to 7% of all blindness in the entire area. In India, the record of -affected patients will reach around 79.4 million by 2030.

Aims

The main objective of the investigation is to utilize 2-D colored fundus retina scans to determine if an individual possesses or not. In this regard, Engineering-based techniques such as deep learning and neural networks play a methodical role in fighting against this fatal disease.

Methods

In this research work, a Computational Model for detecting using Convolutional Neural Network (DRCNN) is proposed. This method contrasts the fundus retina scans of the -afflicted eye with the usual human eyes. Using CNN and layers like Conv2D, Pooling, Dense, Flatten, and Dropout, the model aids in comprehending the scan's curve and color-based features. For training and error reduction, the Visual Geometry Group (VGG-16) model and Adaptive Moment Estimation Optimizer are utilized.

Results

The variations in a dataset like 50%, 60%, 70%, 80%, and 90% images are reserved for the training phase, and the rest images are reserved for the testing phase. In the proposed model, model comprises 138M parameters. The accuracy is achieved maximum rate of 90% when the training dataset is reserved at 80%. The model was validated using other datasets.

Conclusion

The suggested contribution to research determines conclusively whether the provided OCT scan utilizes an effective method for detecting -affected individuals within just a few moments.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056248183231010111937
2024-01-01
2025-06-24
The full text of this item is not currently available.

References

  1. WildS. RoglicG. GreenA. SicreeR. KingH. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.Diabetes Care20042751047105310.2337/diacare.27.5.104715111519
    [Google Scholar]
  2. MaureenA. Eye health: Anatomy of the eye”, [Person’s Designation:] M.S., CVRT Available from: https://network.aphconnectcenter.org/wp-content/uploads/2019/11/3484 2022
  3. BhardwajC. JainS. SoodM. Transfer learning based robust automatic detection system for diabetic retinopathy grading.Neural Comput. Appl.20213320139991401910.1007/s00521‑021‑06042‑2
    [Google Scholar]
  4. BhardwajC. JainS. SoodM. Deep learning–based diabetic retinopathy severity grading system employing quadrant ensemble model.J. Digit. Imaging202134244045710.1007/s10278‑021‑00418‑533686525
    [Google Scholar]
  5. BhardwajC. JainS. SoodM. Hierarchical severity grade classification of non-proliferative diabetic retinopathy.J. Ambient Intell. Humaniz. Comput.20211222649267010.1007/s12652‑020‑02426‑9
    [Google Scholar]
  6. GulshanV. PengL. CoramM. StumpeM.C. WuD. NarayanaswamyA. VenugopalanS. WidnerK. MadamsT. CuadrosJ. KimR. RamanR. NelsonP.C. MegaJ.L. WebsterD.R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.JAMA2016316222402241010.1001/jama.2016.1721627898976
    [Google Scholar]
  7. DoshiD. ShenoyA. SidhpuraD. GharpureP. Diabetic retinopathy detection using deep convolutional neural networks 2016 International Conference on Computing, Analytics and Security Trends (CAST)IEEE201626126610.1109/CAST.2016.7914977
    [Google Scholar]
  8. PrattH. CoenenF. BroadbentD.M. HardingS.P. ZhengY. Convolutional neural networks for diabetic retinopathy.Procedia Comput. Sci.20169020020510.1016/j.procs.2016.07.014
    [Google Scholar]
  9. PrentašićP. LončarićS. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion.Comput. Methods Programs Biomed.201613728129210.1016/j.cmpb.2016.09.01828110732
    [Google Scholar]
  10. BhatiaK. AroraS. TomarR. Diagnosis of diabetic retinopathy using machine learning classification algorithm 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), IEEE201634735110.1109/NGCT.2016.7877439
    [Google Scholar]
  11. S KS. PA. A machine learning ensemble classifier for early prediction of diabetic retinopathy.J. Med. Syst.2017411220110.1007/s10916‑017‑0853‑x29124453
    [Google Scholar]
  12. MasoodS. LuthraT. SundriyalH. AhmedM. Identifcation of diabetic retinopathy in eye im-ages using transfer learning 2017 International Conference on Computing, Communication and Automation (ICCCA)IEEE20171183118710.1109/CCAA.2017.8229977
    [Google Scholar]
  13. GargS. JindalH. Evaluation of time series forecasting models for estimation of PM2. 5 Levels in Air. Proceedings of 6th International Conference for Convergence in Technology (I2CT)202118
    [Google Scholar]
  14. TakahashiH. TampoH. AraiY. InoueY. KawashimaH. Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy.PLoS One2017126e017979010.1371/journal.pone.017979028640840
    [Google Scholar]
  15. TingD.S.W. CheungC.Y.L. LimG. TanG.S.W. QuangN.D. GanA. HamzahH. Garcia-FrancoR. San YeoI.Y. LeeS.Y. WongE.Y.M. SabanayagamC. BaskaranM. IbrahimF. TanN.C. FinkelsteinE.A. LamoureuxE.L. WongI.Y. BresslerN.M. SivaprasadS. VarmaR. JonasJ.B. HeM.G. ChengC.Y. CheungG.C.M. AungT. HsuW. LeeM.L. WongT.Y. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes.JAMA2017318222211222310.1001/jama.2017.1815229234807
    [Google Scholar]
  16. GuptaA. ChhikaraR. Diabetic retinopathy: Present and past.Procedia Comput. Sci.20181321432144010.1016/j.procs.2018.05.074
    [Google Scholar]
  17. PawarP.M. AgrawalA.J. Retinal disease detection using machine learning techniques.HELIX201883932393710.29042/2018‑3932‑3937
    [Google Scholar]
  18. LamC. YiD. GuoM. LindseyT. Automated detection of diabetic retinopathy using deep learning.AMIA Jt. Summits Transl. Sci. Proc.2018201714715529888061
    [Google Scholar]
  19. SahlstenJ. JaskariJ. KivinenJ. TurunenL. JaanioE. HietalaK. KaskiK. Deep learning fundus image analysis for diabetic retinopathy and macular edema grading.Sci. Rep.2019911075010.1038/s41598‑019‑47181‑w
    [Google Scholar]
  20. RuamviboonsukP. KrauseJ. ChotcomwongseP. SayresR. RamanR. WidnerK. CampanaB.J.L. PheneS. HemaratK. TadaratiM. Silpa-ArchaS. LimwattanayingyongJ. RaoC. KuruvillaO. JungJ. TanJ. OrprayoonS. KangwanwongpaisanC. SukumalpaiboonR. LuengchaichawangC. FuangkaewJ. KongsapP. ChualinphaL. SareeS. KawinpanitanS. MitvongsaK. LawanasakolS. ThepchatriC. WongpichedchaiL. CorradoG.S. PengL. WebsterD.R. Author Correction: Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program.NPJ Digit. Med.2019216810.1038/s41746‑019‑0146‑531341955
    [Google Scholar]
  21. QureshiI. MaJ. AbbasQ. Recent development on detection methods for the diagnosis of diabetic retinopathy.Symmetry (Basel)201911674910.3390/sym11060749
    [Google Scholar]
  22. LiY.H. YehN.N. ChenS.J. ChungY.C. Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network.Mob. Inf. Syst.2019201911410.1155/2019/6142839
    [Google Scholar]
  23. KaurM. BhartiM. Fog computing providing data security: A review.Int. J. Comput. Sci. Eng201446
    [Google Scholar]
  24. AbdelmotaalH. IbrahimW. SharafM. AbdelazeemK. Causes and clinical impact of loss to follow-up in patients with proliferative diabetic retinopathy.J. Ophthalmol.202020201810.1155/2020/769172432089871
    [Google Scholar]
  25. GadekalluT.R. KhareN. BhattacharyaS. SinghS. MaddikuntaP.K.R. RaI.H. AlazabM. Early detection of diabetic retinopathy using pca-_rey based deep learning model.Electronics (Basel)20209227410.3390/electronics9020274
    [Google Scholar]
  26. MateenM. WenJ. NasrullahN. SunS. HayatS. Exudate detection for diabetic retinopathy using pretrained convolutional neural networks.Complexity2020202011110.1155/2020/5801870
    [Google Scholar]
  27. DecencièreE. ZhangX. CazuguelG. LayB. CochenerB. TroneC. GainP. OrdonezR. MassinP. ErginayA. ChartonB. KleinJ.C. Feedback on a publicly distributed image database: The messidor database.Image Anal. Stereol.201433323123410.5566/ias.1155
    [Google Scholar]
  28. GoceriE. Classification of skin cancer using adjustable and fully convolutional capsule layers.Biomed. Signal Process. Control20238510494910.1016/j.bspc.2023.104949
    [Google Scholar]
  29. GoceriE. Capsule neural networks in classification of skin lesions. Proceeding of International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing29362021
    [Google Scholar]
  30. GoceriE. Analysis of capsule networks for image classification. Proceeding of International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing53602021
    [Google Scholar]
  31. HiguchiT. YoshifujiN. SakaiT. KittaY. TakanoR. IkegamiT. TauraK. Clpy: A numpy compatible library accelerated with opencl 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)IEEE933940201910.1109/IPDPSW.2019.00159
    [Google Scholar]
  32. ChauhanR. GhanshalaK.K. JoshiR. Convolutional neural network (cnn) for image detection and recognition 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)IEEE278282201810.1109/ICSCCC.2018.8703316
    [Google Scholar]
  33. BhartiM. JindalH. Automatic rumour detection model on social media. Proceedings of Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)367371202010.1109/PDGC50313.2020.9315738
    [Google Scholar]
  34. JindalH. BhartiM. KasanaS.S. SaxenaS. An ensemble mosaicing and ridgelet based fusion technique for underwater panoramic image reconstruction and its refinement.Multimedia Tools Appl.20238222337193377110.1007/s11042‑023‑14594‑9
    [Google Scholar]
  35. SinghP.K. SoodS. KumarY. PaprzyckiM. PljonkinA. HongW-C. Futuristic trends in networks and computing technologies. Proceedings of Second International Conference, FTNCT 2019Chandigarh, IndiaNovember 22–23, 2019Springer Nature20201206Revised Selected Papers
    [Google Scholar]
  36. ChangJ. ShaJ. An efficient implementation of 2d convolution in cnn.IEICE Electron. Express20161320161134
    [Google Scholar]
  37. AhmadiM. VakiliS. LangloisJ.P. GrossW. Power reduction in cnn pooling layers with a preliminary partial computation strategy 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS), IEEE201812512910.1109/NEWCAS.2018.8585433
    [Google Scholar]
  38. KoB. KimH-G. OhK-J. ChoiH-J. Controlled dropout: A different approach to using dropout on deep neural network 2017 IEEE International Conference on Big Data and Smart Computing (BigComp)IEEE2017358362
    [Google Scholar]
  39. LiM. WangH. YangJ. Flattening and preferential attachment in the internet evolution 2012 14th Asia-Pacific Network Operations and Management Symposium (APNOMS), IEEE201218
    [Google Scholar]
  40. BhartiM. JindalH. Optimized clustering-based discovery framework on Internet of Things.J. Supercomput.20217721739177810.1007/s11227‑020‑03315‑w
    [Google Scholar]
  41. HuangG. LiuZ. Van Der MaatenL. WeinbergerK.Q. Densely connected convolutional networks Proceedings of the IEEE conference on computer vision and pattern recognition201747004708
    [Google Scholar]
  42. DouglasS.C. YuJ. Whyrelu units sometimes die: Analysis of single-unit error backpropagation in neural networks 2018 52nd Asilomar Conference on Signals, Systems, and Computers, IEEE2018864868
    [Google Scholar]
  43. WuthS.N. CoetzeeR. LevittS.P. Creating a python gui for a c++ image processing library. 2004 IEEE Africon. 7th Africon Conference in Africa (IEEE Cat. No. 04CH37590)IEEE2004212031206
    [Google Scholar]
  44. QassimH. VermaA. FeinzimerD. Compressed residual-vgg16 cnn model for big data places image recognition 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC)IEEE201816910.1109/CCWC.2018.8301729
    [Google Scholar]
  45. DengJ. DongW. SocherR. LiL-J. LiK. Fei-FeiL. Imagenet: A large-scale hierarchical image database2009 IEEE conference on computer vision and pattern recognition, Ieee200924825510.1109/CVPR.2009.5206848
    [Google Scholar]
  46. AryaS. SinghR. A comparative study of cnn and alexnet for detection of disease in potato and mango leaf 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)volume 1IEEE20191610.1109/ICICT46931.2019.8977648
    [Google Scholar]
  47. ZhangZ. Improved adam optimizer for deep neural networks 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)IEEE20181210.1109/IWQoS.2018.8624183
    [Google Scholar]
  48. DogoE. AfolabiO. NwuluN. TwalaB. AigbavboaC. A comparative analysis of gradient descent based optimization algorithms on convolutional neural networks 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS)IEEE2018929910.1109/CTEMS.2018.8769211
    [Google Scholar]
  49. JindalH. SaxenaS. Kasana Sewage Water Quality Monitoring Framework Using Multi-parametric Sensors, Wireless Personal Communications, Springer2017971881913
    [Google Scholar]
  50. JindalH. SaxenaS. KasanaS.S. Triangular pyramidal topology to measure temporal and spatial variations in shallow river water using Ad-hoc sensors network’.Ad Hoc Sens. Wirel. Netw.2017391-4135
    [Google Scholar]
  51. AbràmoffM.D. FolkJ.C. HanD.P. WalkerJ.D. WilliamsD.F. RussellS.R. MassinP. CochenerB. GainP. TangL. LamardM. MogaD.C. QuellecG. NiemeijerM. Automated analysis of retinal images for detection of referable diabetic retinopathy.JAMA Ophthalmol.2013131335135710.1001/jamaophthalmol.2013.174323494039
    [Google Scholar]
  52. WangL. ShoulinY. AlyamiH. LaghariA.A. RashidM. AlmotiriJ. AlyamaniH.J. AlturiseF. A novel deep learning‐based single shot multibox detector model for object detection in optical remote sensing images.Geosci. Data J.2022gdj3.16210.1002/gdj3.162
    [Google Scholar]
  53. KarimS. QadirA. FarooqU. ShakirM. LaghariA.A. Hyperspectral imaging: A review and trends towards medical imaging.Curr. Med. Imaging Rev.202219541742710.2174/157340561866622051914435835598236
    [Google Scholar]
  54. LaghariA.A. HeH. ShafiqM. KhanA. Assessment of quality of experience (QoE) of image compression in social cloud computing.Multiagent and Grid Systems201814212514310.3233/MGS‑180284
    [Google Scholar]
  55. BhartiM. SaxenaS. KumarR. A middleware approach for reliable resource selection on Internet‐of‐Things.Int. J. Commun. Syst.2020335e427810.1002/dac.4278
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056248183231010111937
Loading
/content/journals/cmir/10.2174/0115734056248183231010111937
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 2-D fundus; Convolutional neural network; Diabetic retinopathy; Hyperglycemia; NPDR; Retina
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test