Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Purpose

To evaluate the predictive value of 3.0T MRI Intravoxel Incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) combined with texture analysis (TA) in the histological grade of rectal adenocarcinoma.

Methods

Seventy-one patients with rectal adenocarcinoma confirmed by pathology after surgical resection were collected retrospectively. According to pathology, they were divided into a poorly differentiated group (n=23) and a moderately differentiated group (n=48). The IVIM-DWI parameters and TA characteristics of the two groups were compared, and a prediction model was constructed by multivariate logistic regression analysis. ROC curves were plotted for each individual and combined parameter.

Results

There were statistically significant differences in D and D* values ​​between the two groups ( < 0.05). The three texture parameters SmallAreaEmphasis, Median, and Maximum had statistically significant differences between groups ( = 0.01, 0.004, 0.009, respectively). The logistic regression prediction model showed that D*, the median, and the maximum value were significant independent predictors, and the AUC of the regression prediction model was 0.860, which was significantly higher than other single parameters.

Conclusion

3.0T MRI IVIM-DWI parameters combined with TA can provide valuable information for predicting the histological grades of rectal adenocarcinoma one week before the operation.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056243265231024054017
2024-01-01
2025-06-16
The full text of this item is not currently available.

References

  1. SunD. ChenY. FangJ.Y. Influence of the microbiota on epigenetics in colorectal cancer.Natl. Sci. Rev.2019661138114810.1093/nsr/nwy16034691992
    [Google Scholar]
  2. Health Commission of PRCN. National guidelines for diagnosis and treatment of colorectal cancer 2020 in China (English version).Chin. J. Cancer Res.202032441544510.21147/j.issn.1000‑9604.2020.04.0132965276
    [Google Scholar]
  3. ChenS. ChenY. HuC. JingH. CaoY. LiuX. Association of clinicopathological features with UbcH10 expression in colorectal cancer.J. Cancer Res. Clin. Oncol.2010136341942610.1007/s00432‑009‑0672‑719779934
    [Google Scholar]
  4. LiuL.L. SunJ.D. XiangZ.L. A nomogram to predict the prognosis of patients with unresected rectal adenocarcinoma undergoing chemoradiotherapy: A population-based study.J. Cancer202112164745476110.7150/jca.6164234234846
    [Google Scholar]
  5. HuangQ. QinH. XiaoJ. HeX. XieM. HeX. YaoQ. LanP. LianL. Association of tumor differentiation and prognosis in patients with rectal cancer undergoing neoadjuvant chemoradiation therapy.Gastroenterol. Rep.20197428329010.1093/gastro/goy04531413836
    [Google Scholar]
  6. BootJ. Gomez-MunozF. Beets-TanR.G.H. Imaging of rectal cancer.Radiologe201959S1465010.1007/s00117‑019‑0579‑531616956
    [Google Scholar]
  7. AkashiM. NakahusaY. YakabeT. EgashiraY. KogaY. SumiK. NoshiroH. IrieH. TokunagaO. MiyazakiK. Assessment of aggressiveness of rectal cancer using 3-T MRI: Correlation between the apparent diffusion coefficient as a potential imaging biomarker and histologic prognostic factors.Acta Radiol.201455552453110.1177/028418511350315424005562
    [Google Scholar]
  8. TaoY.Y. ZhouY. WangR. GongX.Q. ZhengJ. YangC. YangL. ZhangX.M. Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases.World J. Clin. Cases20208153164317610.12998/wjcc.v8.i15.316432874971
    [Google Scholar]
  9. Le BihanD. What can we see with IVIM MRI?Neuroimage2019187566710.1016/j.neuroimage.2017.12.06229277647
    [Google Scholar]
  10. GaoF. ShiB. WangP. WangC. FangX. DongJ. LinT. The value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging combined with texture analysis of evaluating the extramural vascular invasion in rectal adenocarcinoma.Front. Oncol.20221281313810.3389/fonc.2022.81313835311135
    [Google Scholar]
  11. LiuZ. WangS. DongD. WeiJ. FangC. ZhouX. SunK. LiL. LiB. WangM. TianJ. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges.Theranostics2019951303132210.7150/thno.3030930867832
    [Google Scholar]
  12. CoppolaF. GianniniV. GabelloniM. PanicJ. DefeudisA. Lo MonacoS. CattabrigaA. CocozzaM.A. PastoreL.V. PoliciM. CarusoD. LaghiA. ReggeD. NeriE. GolfieriR. FaggioniL. Radiomics and magnetic resonance imaging of rectal cancer: From engineering to clinical practice.Diagnostics202111575610.3390/diagnostics1105075633922483
    [Google Scholar]
  13. ShinJ. SeoN. BaekS.E. SonN.H. LimJ.S. KimN.K. KoomW.S. KimS. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy.Radiology2022303235135810.1148/radiol.21198635133200
    [Google Scholar]
  14. ZhangY. ZhangK. JiaH. FangX. LinT. WeiC. QianL. DongJ. Feasibility of predicting pelvic lymph node metastasis based on IVIM-DWI and texture parameters of the primary lesion and lymph nodes in patients with cervical cancer.Acad. Radiol.20222971048105710.1016/j.acra.2021.08.02634654623
    [Google Scholar]
  15. LiC. ZhengM. ZhengX. FangX. DongJ. WangC. WangT. Predictive Ki-67 proliferation index of cervical squamous cell carcinoma based on IVIM-DWI combined with texture features.Contrast Media Mol. Imaging202120211810.1155/2021/887306533531882
    [Google Scholar]
  16. YaoW. LiuJ. ZhengJ. LuP. ZouS. XuY. Study on diagnostic value of quantitative parameters of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in prostate cancer.Am. J. Transl. Res.20211343696370234017553
    [Google Scholar]
  17. ZhangY. ZhangK. JiaH. XiaB. ZangC. LiuY. QianL. DongJ. IVIM-DWI and MRI-based radiomics in cervical cancer: Prediction of concurrent chemoradiotherapy sensitivity in combination with clinical prognostic factors.Magn. Reson. Imaging202291374410.1016/j.mri.2022.05.00535568271
    [Google Scholar]
  18. HuH. JiangH. WangS. JiangH. ZhaoS. PanW. 3.0 T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer.Abdom. Radiol.202146113414310.1007/s00261‑020‑02594‑432462386
    [Google Scholar]
  19. JiaH. JiangX. ZhangK. ShangJ. ZhangY. FangX. GaoF. LiN. DongJ. A nomogram of combining IVIM‐DWI and MRI radiomics from the primary lesion of rectal adenocarcinoma to assess nonenlarged lymph node metastasis preoperatively.J. Magn. Reson. Imaging202256365866710.1002/jmri.2806835090079
    [Google Scholar]
  20. SunH. XuY. XuQ. DuanJ. ZhangH. LiuT. LiL. ChanQ. XieS. WangW. Correlation between intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging parameters in rectal cancer.Acad. Radiol.2019267e134e14010.1016/j.acra.2018.08.01230268719
    [Google Scholar]
  21. SunH. XuY. SongA. ShiK. WangW. Intravoxel incoherent motion MRI of rectal cancer: Correlation of diffusion and perfusion characteristics with prognostic tumor markers.AJR Am. J. Roentgenol.20182104W139W14710.2214/AJR.17.1834229446674
    [Google Scholar]
  22. ZhengX. GuoW. DongJ. QianL. Prediction of early response to concurrent chemoradiotherapy in cervical cancer: Value of multi-parameter MRI combined with clinical prognostic factors.Magn. Reson. Imaging20207215916610.1016/j.mri.2020.06.01432621877
    [Google Scholar]
  23. LiuN. YangX. LeiL. PanK. LiuQ. HuangX. Intravoxel incoherent motion model in differentiating the pathological grades of esophageal carcinoma: Comparison of mono-exponential and bi-exponential fit model.Front. Oncol.20211162589110.3389/fonc.2021.62589133912449
    [Google Scholar]
  24. GajeP.N. Amalia CeausuR. JitariuA. StratulS.I. RusuL.C. PopoviciR.A. RaicaM. Mast cells: Key players in the shadow in oral inflammation and in squamous cell carcinoma of the oral cavity.BioMed Res. Int.201620161910.1155/2016/923508027847826
    [Google Scholar]
  25. UsluH. ÖnalT. TosunM. ArslanA.S. CiftciE. UtkanN.Z. Intravoxel incoherent motion magnetic resonance imaging for breast cancer: A comparison with molecular subtypes and histological grades.Magn. Reson. Imaging202178354110.1016/j.mri.2021.02.00533556485
    [Google Scholar]
  26. AkerM. GaneshanB. AfaqA. WanS. GrovesA.M. ArulampalamT. Magnetic resonance texture analysis in identifying complete pathological response to neoadjuvant treatment in locally advanced rectal cancer.Dis. Colon Rectum201962216317010.1097/DCR.000000000000122430451764
    [Google Scholar]
  27. SzczypińskiP.M. StrzeleckiM. MaterkaA. KlepaczkoA. MaZda—A software package for image texture analysis.Comput. Methods Programs Biomed.2009941667610.1016/j.cmpb.2008.08.00518922598
    [Google Scholar]
  28. ParkY.W. OhJ. YouS.C. HanK. AhnS.S. ChoiY.S. ChangJ.H. KimS.H. LeeS.K. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging.Eur. Radiol.20192984068407610.1007/s00330‑018‑5830‑330443758
    [Google Scholar]
  29. ZeydanliT. KilicH.K. Performance of quantitative CT texture analysis in differentiation of gastric tumors.Jpn. J. Radiol.2022401566510.1007/s11604‑021‑01181‑x34304383
    [Google Scholar]
  30. KirienkoM. SolliniM. CorbettaM. VoulazE. GozziN. InterlenghiM. GallivanoneF. CastiglioniI. AsseltaR. DugaS. SoldàG. ChitiA. Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer.Eur. J. Nucl. Med. Mol. Imaging202148113643365510.1007/s00259‑021‑05371‑733959797
    [Google Scholar]
  31. WangJ. HuY. ZhouX. BaoS. ChenY. GeM. JiaZ. A radiomics model based on DCE-MRI and DWI may improve the prediction of estimating IDH1 mutation and angiogenesis in gliomas.Eur. J. Radiol.202214711014110.1016/j.ejrad.2021.11014134995947
    [Google Scholar]
  32. ChiangS.F. HuangH.H. TsaiW.S. Chin-Ming TanB. YangC.Y. HuangP.J. Yi-Feng ChangI. LinJ. LuP.S. ChinE. LiuY.H. YuJ.S. ChiangJ.M. HungH.Y. YouJ.F. LiuH. Comprehensive functional genomic analyses link APC somatic mutation and mRNA-miRNA networks to the clinical outcome of stage-III colorectal cancer patients.Biomed. J.202245234736010.1016/j.bj.2021.03.00135550340
    [Google Scholar]
  33. LiC. WangX. CasalI. WangJ. LiP. ZhangW. XuE. LaiM. ZhangH. Growth differentiation factor 15 is a promising diagnostic and prognostic biomarker in colorectal cancer.J. Cell. Mol. Med.20162081420142610.1111/jcmm.1283026990020
    [Google Scholar]
  34. WangM.J. LiY. WangR. WangC. YuY.Y. YangL. ZhangY. ZhouB. ZhouZ.G. SunX.F. Downregulation of microRNA-124 is an independent prognostic factor in patients with colorectal cancer.Int. J. Colorectal Dis.201328218318910.1007/s00384‑012‑1550‑322885837
    [Google Scholar]
  35. FanY. LiD. QianJ. LiuY. FengH. LiD. Increased expression of FERM domain-containing 4A protein is closely associated with the development of rectal cancer.Exp. Ther. Med.201611242142610.3892/etm.2015.293326893625
    [Google Scholar]
  36. YinJ.D. SongL.R. LuH.C. ZhengX. Prediction of different stages of rectal cancer: Texture analysis based on diffusion-weighted images and apparent diffusion coefficient maps.World J. Gastroenterol.202026172082209610.3748/wjg.v26.i17.208232536776
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056243265231024054017
Loading
/content/journals/cmir/10.2174/0115734056243265231024054017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test