Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Computed tomography (CT) scans are widely used to diagnose lung conditions due to their ability to provide a detailed overview of the body's respiratory system. Despite its popularity, visual examination of CT scan images can lead to misinterpretations that impede a timely diagnosis. Utilizing technology to evaluate images for disease detection is also a challenge. As a result, there is a significant demand for more advanced systems that can accurately classify lung diseases from CT scan images. In this work, we provide an extensive analysis of different approaches and their performances that can help young researchers to build more advanced systems. First, we briefly introduce diagnosis and treatment procedures for various lung diseases. Then, a brief description of existing methods used for the classification of lung diseases is presented. Later, an overview of the general procedures for lung disease classification using machine learning (ML) is provided. Furthermore, an overview of recent progress in ML-based classification of lung diseases is provided. Finally, existing challenges in ML techniques are presented. It is concluded that deep learning techniques have revolutionized the early identification of lung disorders. We expect that this work will equip medical professionals with the awareness they require in order to recognize and classify certain medical disorders.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056248176230923143105
2023-10-16
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e15734056248176.html?itemId=/content/journals/cmir/10.2174/0115734056248176230923143105&mimeType=html&fmt=ahah

References

  1. CruzA.A. Global surveillance, prevention and control of chronic respiratory diseases: A comprehensive approach.World Health Organization2007
    [Google Scholar]
  2. LevineS.M. MarciniukD.D. Global impact of respiratory disease.Chest202216151153115410.1016/j.chest.2022.01.01435051424
    [Google Scholar]
  3. The Global Impact of Respiratory Disease.Glob. Impac. Respirat.Dis.2017
    [Google Scholar]
  4. Amani YahiaouiO.E. YumusakN. A new method of automatic recognition for tuberculosis disease diagnosis using support vector machines.Biomed. Res.20172842084212
    [Google Scholar]
  5. American Thoracic SocietyDiagnostic standards and classification of tuberculosis in adults and children.Am. J. Respir. Crit. Care Med.20001614 Pt 11376139510764337
    [Google Scholar]
  6. WalvekarS. ShindeS. Efficient medical image segmentation of COVID-19 chest ct images based on deep learning techniques.2021 International Conference on Emerging Smart Computing and Informatics (ESCI)2021203610.1109/ESCI50559.2021.9397043
    [Google Scholar]
  7. KieuS.T.H. BadeA. HijaziM.H.A. KolivandH. A survey of deep learning for lung disease detection on medical images: State-of-the-art, taxonomy, issues and future directions.J. Imaging202061213110.3390/jimaging612013134460528
    [Google Scholar]
  8. ToğaçarM. ErgenB. CömertZ. Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks.Biocybern. Biomed. Eng.2020401233910.1016/j.bbe.2019.11.004
    [Google Scholar]
  9. VarshniD. ThakralK. AgarwalL. NijhawanR. MittalA. Pneumonia detection using cnn based feature extraction.2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT),2019 pp.1-7.10.1109/ICECCT.2019.8869364
    [Google Scholar]
  10. OzkanH. OsmanO. SahinS. Computer aided detection of pulmonary embolism in computed tomography angiography images.2013 International Conference on Electronics, Computer and Computation (ICECCO),2013 pp.355-358.10.1109/ICECCO.2013.6718301
    [Google Scholar]
  11. BaloghEP MillerBT BallJR The Diagnostic ProcessWashington (DC)National Academies Press (US)2015
    [Google Scholar]
  12. CroftP. AltmanD.G. DeeksJ.J. DunnK.M. HayA.D. HemingwayH. LeRescheL. PeatG. PerelP. PetersenS.E. RileyR.D. RobertsI. SharpeM. StevensR.J. Van Der WindtD.A. Von KorffM. TimmisA. The science of clinical practice: Disease diagnosis or patient prognosis? Evidence about “what is likely to happen” should shape clinical practice.BMC Med.20151312010.1186/s12916‑014‑0265‑425637245
    [Google Scholar]
  13. WangZ. BovikA.C. SheikhH.R. SimoncelliE.P. Image quality assessment: From error visibility to structural similarity.IEEE Trans. Image Process.200413460061210.1109/TIP.2003.81986115376593
    [Google Scholar]
  14. GoelN. YadavA. SinghB.M. Medical image processing: A review.In: 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH).,2016, pp.57-62.
    [Google Scholar]
  15. BinhN.T. KhareA. Adaptive complex wavelet technique for medical image denoising.IFMBE Proc.20102719619910.1007/978‑3‑642‑12020‑6_49
    [Google Scholar]
  16. Po-Hsiang Tsui Chih-Kuang Yeh Chih-Chung Huang Noise-assisted correlation algorithm for suppressing noise-induced artifacts in ultrasonic Nakagami images.IEEE Trans. Inf. Technol. Biomed.201216331432210.1109/TITB.2011.217785122155965
    [Google Scholar]
  17. TrayushT. BathlaR. SainiS. ShuklaV.K. IoT in Healthcare: Challenges, Benefits, applications, and opportunities.2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)2021, pp.107-111.10.1109/ICACITE51222.2021.9404583
    [Google Scholar]
  18. UllahK. ShahM.A. ZhangS. Effective ways to use Internet of Things in the field of medical and smart health care.2016 International Conference on Intelligent Systems Engineering (ICISE)2016, pp.372-379.10.1109/INTELSE.2016.7475151
    [Google Scholar]
  19. AngraS. AhujaS. Machine learning and its applications: A review.2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC),2017, pp.57-60.10.1109/ICBDACI.2017.8070809
    [Google Scholar]
  20. ChellappaR. TheodoridisS. van SchaikA. Advances in machine learning and deep neural networks.Proc. IEEE2021109560761110.1109/JPROC.2021.3072172
    [Google Scholar]
  21. ShailajaK. SeetharamuluB. JabbarM.A. Machine learning in healthcare: A review.2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA),2018, pp.910-914.10.1109/ICECA.2018.8474918
    [Google Scholar]
  22. FerdousM. DebnathJ. ChakrabortyN.R. Machine learning algorithms in healthcare: A literature survey.2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),Kharagpur, India, 2020, pp. 1-6.10.1109/ICCCNT49239.2020.9225642
    [Google Scholar]
  23. JiaX. Image recognition method based on deep learning.2017 29th Chinese Control And Decision Conference (CCDC),Chongqing, China, 2017, pp. 4730-4735.10.1109/CCDC.2017.7979332
    [Google Scholar]
  24. KrizhevskyA. SutskeverI. HintonG.E. ImageNet classification with deep convolutional neural networks.Commun. ACM2017606849010.1145/3065386
    [Google Scholar]
  25. ZeilerM.D. FergusR. Visualizing and understanding convolutional networks. FleetD. PajdlaT. SchieleB. TuytelaarsT. Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer ScienceSpringerCham2014868981883310.1007/978‑3‑319‑10590‑1_53
    [Google Scholar]
  26. SimonyanK ZissermanA. Very deep convolutional networks for large-scale image recognition.arXiv:1409.1556v62014
    [Google Scholar]
  27. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016, pp.770-778.10.1109/CVPR.2016.90
    [Google Scholar]
  28. LamoureuxS.F. BollmannJ. Image Acquisition.Image Analysis, Sediments and Paleoenvironments.DordrechtKluwer Academic Publishers1134
    [Google Scholar]
  29. NadkarniN.S. BorkarS. Detection of lung cancer in ct images using image processing.2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI),Tirunelveli, India, 2019, pp. 863-866.10.1109/ICOEI.2019.8862577
    [Google Scholar]
  30. MansoorA. BagciU. FosterB. XuZ. PapadakisG.Z. FolioL.R. UdupaJ.K. MolluraD.J. Segmentation and image analysis of abnormal lungs at CT: Current approaches, challenges, and future trends.Radiographics20153541056107610.1148/rg.201514023226172351
    [Google Scholar]
  31. YamashitaR. NishioM. DoR.K.G. TogashiK. Convolutional neural networks: an overview and application in radiology.Insights Imaging20189461162910.1007/s13244‑018‑0639‑929934920
    [Google Scholar]
  32. NazirI. HaqI.U. KhanM.M. QureshiM.B. UllahH. ButtS. Efficient pre-processing and segmentation for lung cancer detection using fused CT images.Electronics20211113410.3390/electronics11010034
    [Google Scholar]
  33. ChaturvediP. JhambA. VananiM. NemadeV. Prediction and classification of lung cancer using machine learning techniques.IOP. Conf. Ser. Mater. Sci.Eng.2021109901205910.1088/1757‑899X/1099/1/012059
    [Google Scholar]
  34. VenkateshC. BojjaP. Lung cancer detection using bio-inspired algorithm in ct scans and secure data transmission through iot cloud.Int. J. Adv. Comput. Sci. Appl.2020111110.14569/IJACSA.2020.0111148
    [Google Scholar]
  35. BobanB.M. MegalingamR.K. Lung diseases classification based on machine learning algorithms and performance evaluation.2020 International Conference on Communication and Signal Processing (ICCSP),Chennai, India, 2020, pp. 0315-0320.10.1109/ICCSP48568.2020.9182324
    [Google Scholar]
  36. TaherF. SammoudaR. Lung cancer detection by using artificial neural network and fuzzy clustering methods.2011 IEEE GCC Conference and Exhibition (GCC).2011, pp. 295-298.10.1109/IEEEGCC.2011.5752535
    [Google Scholar]
  37. PotghanS. RajamenakshiR. BhiseA. Multi-layer perceptron based lung tumor classification.2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA),2018, pp. 499-502.10.1109/ICECA.2018.8474864
    [Google Scholar]
  38. SongQ. ZhaoL. LuoX. DouX. Using deep learning for classification of lung nodules on computed tomography images.J. Healthc. Eng.201720171710.1155/2017/831474029065651
    [Google Scholar]
  39. Bariqi AbdillahAB Image processing based detection of lung cancer on CT scan images.J. Phys. Conf. Ser.2017893012063
    [Google Scholar]
  40. AjaiA.K. AnithaA. Clustering based lung lobe segmentation and optimization based lung cancer classification using CT images.Biomed. Signal Process. Control20227810398610.1016/j.bspc.2022.103986
    [Google Scholar]
  41. TsivgoulisM. PapastergiouT. MegalooikonomouV. An improved SqueezeNet model for the diagnosis of lung cancer in CT scans.Mach. Learn. Appl.20221010039910.1016/j.mlwa.2022.100399
    [Google Scholar]
  42. PandianR. VedanarayananV. Ravi KumarD.N.S. RajakumarR. Detection and classification of lung cancer using CNN and Google net. Measurement.Sensors202224100588
    [Google Scholar]
  43. TyagiS. TalbarS.N. LCSCNet: A multi-level approach for lung cancer stage classification using 3D dense convolutional neural networks with concurrent squeeze-and-excitation module.Biomed. Signal Process. Control20238010439110.1016/j.bspc.2022.104391
    [Google Scholar]
  44. Mohana PriyaR. VenkatesanP. An efficient image segmentation and classification of lung lesions in pet and CT image fusion using DTWT incorporated SVM.Microprocess. Microsyst.20218210395810.1016/j.micpro.2021.103958
    [Google Scholar]
  45. AsunthaA. SrinivasanA. Deep learning for lung Cancer detection and classification.Multimedia Tools Appl.20207911-127731776210.1007/s11042‑019‑08394‑3
    [Google Scholar]
  46. NaqiS.M. SharifM. JaffarA. Lung nodule detection and classification based on geometric fit in parametric form and deep learning.Neural Comput. Appl.20203294629464710.1007/s00521‑018‑3773‑x
    [Google Scholar]
  47. MarentakisP. KaraiskosP. KoulouliasV. KelekisN. ArgentosS. OikonomopoulosN. LoukasC. Lung cancer histology classification from CT images based on radiomics and deep learning models.Med. Biol. Eng. Comput.202159121522610.1007/s11517‑020‑02302‑w33411267
    [Google Scholar]
  48. ChoeJ. HwangH.J. SeoJ.B. LeeS.M. YunJ. KimM.J. JeongJ. LeeY. JinK. ParkR. KimJ. JeonH. KimN. YiJ. YuD. KimB. Content-based image retrieval by using deep learning for interstitial lung disease diagnosis with chest CT.Radiology2022302118719710.1148/radiol.202120416434636634
    [Google Scholar]
  49. YadavP. MenonN. RaviV. VishvanathanS. Lung-GANs: Unsupervised representation learning for lung disease classification using chest CT and X-Ray images.IEEE Trans. Eng. Manage.20237082774278610.1109/TEM.2021.3103334
    [Google Scholar]
  50. XieY. XiaY. ZhangJ. SongY. FengD. FulhamM. CaiW. Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on Chest CT.IEEE Trans. Med. Imaging2019384991100410.1109/TMI.2018.287651030334786
    [Google Scholar]
  51. XieY. ZhangJ. XiaY. Semi-supervised adversarial model for benign–malignant lung nodule classification on chest CT.Med. Image Anal.20195723724810.1016/j.media.2019.07.00431352126
    [Google Scholar]
  52. VenkateshC. RamanaK. LakkisettyS.Y. BandS.S. AgarwalS. MosaviA. A neural network and optimization based lung cancer detection system in CT images.Front. Public Health20221076969210.3389/fpubh.2022.76969235747775
    [Google Scholar]
  53. AgrawalH. Pneumonia detection using image processing and deep learning.2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS),2021, pp.67-73.10.1109/ICAIS50930.2021.9395895
    [Google Scholar]
  54. ZhangD. RenF. LiY. NaL. MaY. Pneumonia detection from chest x-ray images based on convolutional neural network.Electronics20211013151210.3390/electronics10131512
    [Google Scholar]
  55. ChagasJ.V.S.D. de A RodriguesD. IvoR.F. HassanM.M. de AlbuquerqueV.H.C. FilhoP.P.R. A new approach for the detection of pneumonia in children using CXR images based on an real-time IoT system.J. Real-Time Image Process.20211841099111410.1007/s11554‑021‑01086‑y33747237
    [Google Scholar]
  56. GoyalS. SinghR. Detection and classification of lung diseases for pneumonia and COVID-19 using machine and deep learning techniques.J. Ambient Intell. Humaniz. Comput.20211443239325934567277
    [Google Scholar]
  57. ChouhanV. SinghS.K. KhampariaA. GuptaD. TiwariP. MoreiraC. DamaševičiusR. de AlbuquerqueV.H.C. A novel transfer learning based approach for pneumonia detection in chest x-ray images.Appl. Sci.202010255910.3390/app10020559
    [Google Scholar]
  58. Al MamlookR.E. ChenS. BziziH.F. Investigation of the performance of machine learning classifiers for pneumonia detection in chest X-ray Images.2020 IEEE International Conference on Electro Information Technology (EIT),Chicago, IL, USA, 2020, pp. 098-104.10.1109/EIT48999.2020.9208232
    [Google Scholar]
  59. RajaramanS. CandemirS. KimI. ThomaG. AntaniS. Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs.Appl. Sci.2018810171510.3390/app810171532457819
    [Google Scholar]
  60. WangQ. YangD. LiZ. ZhangX. LiuC. Deep regression via multi-channel multi-modal learning for pneumonia screening.IEEE Access20208785307854110.1109/ACCESS.2020.2990423
    [Google Scholar]
  61. Cano-EspinosaC. CazorlaM. GonzálezG. Computer aided detection of pulmonary embolism using multi-slice multi-axial segmentation.Appl. Sci.2020108294510.3390/app10082945
    [Google Scholar]
  62. MingJ.T.C. NoorN.M. RijalO.M. KassimR.M. YunusA. Lung disease classification using different deep learning architectures and principal component analysis.2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS),Kuching, Malaysia, 2018, pp. 187-190.10.1109/ICBAPS.2018.8527385
    [Google Scholar]
  63. HuhtanenH. NymanM. MohsenT. VirkkiA. KarlssonA. HirvonenJ. Automated detection of pulmonary embolism from CT-angiograms using deep learning.BMC Med. Imaging20222214310.1186/s12880‑022‑00763‑z35282821
    [Google Scholar]
  64. MyersM.H. BeliaevI. LinK.I. Machine learning techniques in detecting of pulmonary embolisms.2007 International Joint Conference on Neural Networks,2007, pp.385-390.10.1109/IJCNN.2007.4370987
    [Google Scholar]
  65. AjmeraP. KharatA. SethJ. RathiS. PantR. GawaliM. KulkarniV. MaramrajuR. KediaI. BotchuR. KhaladkarS. A deep learning approach for automated diagnosis of pulmonary embolism on computed tomographic pulmonary angiography.BMC Med. Imaging202222119510.1186/s12880‑022‑00916‑036368975
    [Google Scholar]
  66. MaX. FergusonE.C. JiangX. SavitzS.I. ShamsS. A multitask deep learning approach for pulmonary embolism detection and identification.Sci. Rep.20221211308710.1038/s41598‑022‑16976‑935906477
    [Google Scholar]
  67. WangL. LinZ.Q. WongA. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images.Sci. Rep.20201011954910.1038/s41598‑020‑76550‑z33177550
    [Google Scholar]
  68. YangY. FengX. ChiW. LiZ. DuanW. LiuH. LiangW. WangW. ChenP. HeJ. LiuB. Deep learning aided decision support for pulmonary nodules diagnosing: A review.J. Thorac. Dis.201810S77S867S87510.21037/jtd.2018.02.5729780633
    [Google Scholar]
  69. QinC. YaoD. ShiY. SongZ. Computer-aided detection in chest radiography based on artificial intelligence: A survey.Biomed. Eng. Online201817111310.1186/s12938‑018‑0544‑y30134902
    [Google Scholar]
  70. AzuajeF. Artificial intelligence for precision oncology: Beyond patient stratification.NPJ Precis. Oncol.201931610.1038/s41698‑019‑0078‑130820462
    [Google Scholar]
  71. TanY. GuoP. MannH. MarleyS.E. ScottM.L.J. SchwartzL.H. GhiorghiuD.C. ZhaoB. Assessing the effect of CT slice interval on unidimensional, bidimensional and volumetric measurements of solid tumours.Cancer Imaging201212349750510.1102/1470‑7330.2012.004623113962
    [Google Scholar]
  72. YasakaK. AkaiH. MackinD. CourtL. MorosE. OhtomoK. KiryuS. Precision of quantitative computed tomography texture analysis using image filtering.Medicine20179621e699310.1097/MD.000000000000699328538408
    [Google Scholar]
  73. KimH. ParkC.M. LeeM. ParkS.J. SongY.S. LeeJ.H. Impact of reconstruction algorithms on ct radiomic features of pulmonary tumors: Analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability.PLoS One.20161110e0164924
    [Google Scholar]
  74. Shafiq-ul-HassanM. ZhangG.G. LatifiK. UllahG. HuntD.C. BalagurunathanY. AbdalahM.A. SchabathM.B. GoldgofD.G. MackinD. CourtL.E. GilliesR.J. MorosE.G. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels.Med. Phys.20174431050106210.1002/mp.1212328112418
    [Google Scholar]
  75. GirardiD. KüngJ. KleiserR. SonnbergerM. CsillagD. TrenklerJ. HolzingerA. Interactive knowledge discovery with the doctor-in-the-loop: A practical example of cerebral aneurysms research.Brain Inform.20163313314310.1007/s40708‑016‑0038‑227747590
    [Google Scholar]
  76. YuM.K. MaJ. FisherJ. KreisbergJ.F. RaphaelB.J. IdekerT. Visible machine learning for biomedicine.Cell201817371562156510.1016/j.cell.2018.05.05629906441
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056248176230923143105
Loading
/content/journals/cmir/10.2174/0115734056248176230923143105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test