Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Gastric cancer is a malignant cancerous lesion with high morbidity and mortality. Preoperative diagnosis of gastric cancer is challenging owing to the presentation of atypical symptoms and the diversity of occurrence of focal gastric lesions. Therefore, an endoscopic biopsy is used to diagnose gastric cancer in combination with imaging examination for a comprehensive evaluation of the local tumor range (T), lymph node status (N), and distant metastasis (M). The resolution of imaging examinations has significantly improved with the technological advancement in this sector. However, imaging examinations can barely provide valuable information. In clinical practice, an examination method that can provide information on the biological behavior of the tumor is critical to strategizing the treatment plan. Artificial intelligence (AI) allows for such an inspection procedure by reflecting the histological features of lesions using quantitative information extracted from images. Currently, AI is widely employed across various medical fields, especially in the processing of medical images. The basic application process of radiomics has been described in this study, and its role in clinical studies of gastric cancer has been discussed.

© 2024 The Author(s). Published by Bentham Open. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056246452231011042418
2024-01-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIM-20-e15734056246452.html?itemId=/content/journals/cmir/10.2174/0115734056246452231011042418&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  3. StanzioneA. VerdeF. RomeoV. BoccadifuocoF. MainentiP.P. MaureaS. Radiomics and machine learning applications in rectal cancer: Current update and future perspectives.World J. Gastroenterol.202127325306532110.3748/wjg.v27.i32.530634539134
    [Google Scholar]
  4. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.201515116926579733
    [Google Scholar]
  5. QinY. DengY. JiangH. HuN. SongB. Artificial intelligence in the imaging of Gastric Cancer: Current applications and future direction.Front. Oncol.20211163168610.3389/fonc.2021.63168634367946
    [Google Scholar]
  6. DuG. ZengY. ChenD. ZhanW. ZhanY. Application of radiomics in precision prediction of diagnosis and treatment of gastric cancer.Jpn. J. Radiol.202341324525736260211
    [Google Scholar]
  7. WongP.K. ChanI.N. YanH.M. GaoS. WongC.H. YanT. YaoL. HuY. WangZ.R. YuH.H. Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview.World J. Gastroenterol.202228456363637910.3748/wjg.v28.i45.636336533112
    [Google Scholar]
  8. Ba-SsalamahA. MuinD. SchernthanerR. Kulinna-CosentiniC. BastatiN. StiftJ. GoreR. MayerhoeferM.E. Texture-based classification of different gastric tumors at contrast-enhanced CT.Eur. J. Radiol.20138210e537e54310.1016/j.ejrad.2013.06.02423910996
    [Google Scholar]
  9. MaZ. FangM. HuangY. HeL. ChenX. LiangC. HuangX. ChengZ. DongD. LiangC. XieJ. TianJ. LiuZ. CT-based radiomics signature for differentiating Borrmann type IV gastric cancer from primary gastric lymphoma.Eur. J. Radiol.20179114214710.1016/j.ejrad.2017.04.00728629560
    [Google Scholar]
  10. FengB. HuangL. LiuY. ChenY. ZhouH. YuT. XueH. ChenQ. ZhouT. KuangQ. YangZ. ChenX. ChenX. PengZ. LongW. A transfer learning radiomics nomogram for preoperative prediction of borrmann type IV gastric cancer from primary gastric lymphoma.Front. Oncol.20221180220510.3389/fonc.2021.80220535087761
    [Google Scholar]
  11. SunZ.Q. HuS.D. LiJ. WangT. DuanS.F. WangJ. Radiomics study for differentiating gastric cancer from gastric stromal tumor based on contrast-enhanced CT images.J. XRay Sci. Technol.20202761021103110.3233/XST‑19057431640109
    [Google Scholar]
  12. WangR. LiuH. LiangP. ZhaoH. LiL. GaoJ. Radiomics analysis of CT imaging for differentiating gastric neuroendocrine carcinomas from gastric adenocarcinomas.Eur. J. Radiol.202113810966210.1016/j.ejrad.2021.10966233774440
    [Google Scholar]
  13. TangC.T. ZengL. YangJ. ZengC. ChenY. Analysis of the incidence and survival of gastric cancer based on the lauren classification: A large population-based study using SEER.Front. Oncol.202010121210.3389/fonc.2020.0121232850357
    [Google Scholar]
  14. WangY. LiuW. YuY. HanW. LiuJ.J. XueH.D. LeiJ. JinZ.Y. YuJ.C. Potential value of CT radiomics in the distinction of intestinal-type gastric adenocarcinomas.Eur. Radiol.20203052934294410.1007/s00330‑019‑06629‑332020404
    [Google Scholar]
  15. WangX.X. DingY. WangS.W. DongD. LiH.L. ChenJ. HuH. LuC. TianJ. ShanX.H. Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer.Cancer Imaging20202018310.1186/s40644‑020‑00358‑333228815
    [Google Scholar]
  16. SunZ. JinL. ZhangS. DuanS. XingW. HuS. Preoperative prediction for lauren type of gastric cancer: A radiomics nomogram analysis based on CT images and clinical features.J. XRay Sci. Technol.202129467568610.3233/XST‑21088834024809
    [Google Scholar]
  17. LiQ. QiL. FengQ.X. LiuC. SunS.W. ZhangJ. YangG. GeY.Q. ZhangY.D. LiuX.S. Machine learning–based computational models derived from large-scale radiographic-radiomic images can help predict adverse histopathological status of gastric cancer.Clin. Transl. Gastroenterol.20191010e0007910.14309/ctg.000000000000007931577560
    [Google Scholar]
  18. WangY. LiuW. YuY. LiuJ.J. JiangL. XueH.D. LeiJ. JinZ. YuJ.C. Prediction of the depth of tumor invasion in Gastric Cancer: Potential role of CT radiomics.Acad. Radiol.20202781077108410.1016/j.acra.2019.10.02031761666
    [Google Scholar]
  19. YardimciA.H. SelI. BektasC.T. YarikkayaE. DursunN. BektasH. AfsarC.U. GursuR.U. YardimciV.H. ErtasE. KilickesmezO. Computed tomography texture analysis in patients with gastric cancer: a quantitative imaging biomarker for preoperative evaluation before neoadjuvant chemotherapy treatment.Jpn. J. Radiol.202038655356010.1007/s11604‑020‑00936‑232140880
    [Google Scholar]
  20. SunR.J. FangM.J. TangL. LiX.T. LuQ.Y. DongD. TianJ. SunY.S. CT-based deep learning radiomics analysis for evaluation of serosa invasion in advanced gastric cancer.Eur. J. Radiol.202013210927710.1016/j.ejrad.2020.10927732980726
    [Google Scholar]
  21. PanB. ZhangW. ChenW. ZhengJ. YangX. SunJ. SunX. ChenX. ShenX. Establishment of the radiologic tumor invasion index based on radiomics splenic features and clinical factors to predict serous invasion of gastric cancer.Front. Oncol.20211168245610.3389/fonc.2021.68245634434892
    [Google Scholar]
  22. FengQ.X. LiuC. QiL. SunS.W. SongY. YangG. ZhangY.D. LiuX.S. An intelligent clinical decision support system for preoperative prediction of lymph node metastasis in gastric cancer.J. Am. Coll. Radiol.201916795296010.1016/j.jacr.2018.12.01730733162
    [Google Scholar]
  23. GaoX. MaT. CuiJ. ZhangY. WangL. LiH. YeZ. A radiomics-based model for prediction of lymph node metastasis in gastric cancer.Eur. J. Radiol.202012910906910.1016/j.ejrad.2020.10906932464581
    [Google Scholar]
  24. GaoX. MaT. CuiJ. ZhangY. WangL. LiH. YeZ. A CT-based radiomics model for prediction of lymph node metastasis in early stage gastric cancer.Acad. Radiol.2021286e155e16410.1016/j.acra.2020.03.04532507613
    [Google Scholar]
  25. LiJ. DongD. FangM. WangR. TianJ. LiH. GaoJ. Dual-energy CT–based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer.Eur. Radiol.20203042324233310.1007/s00330‑019‑06621‑x31953668
    [Google Scholar]
  26. WangY. LiuW. YuY. LiuJ. XueH. QiY. LeiJ. YuJ. JinZ. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer.Eur. Radiol.202030297698610.1007/s00330‑019‑06398‑z31468157
    [Google Scholar]
  27. YangJ. WuQ. XuL. WangZ. SuK. LiuR. YenE.A. LiuS. QinJ. RongY. LuY. NiuT. Integrating tumor and nodal radiomics to predict lymph node metastasis in gastric cancer.Radiother. Oncol.2020150899610.1016/j.radonc.2020.06.00432531334
    [Google Scholar]
  28. JiangY. WangW. ChenC. ZhangX. ZhaX. LvW. XieJ. HuangW. SunZ. HuY. YuJ. LiT. ZhouZ. XuY. LiG. Radiomics signature on computed tomography imaging: Association with lymph node metastasis in patients with gastric cancer.Front. Oncol.2019934010.3389/fonc.2019.0034031106158
    [Google Scholar]
  29. DongD. FangM.J. TangL. ShanX.H. GaoJ.B. GigantiF. WangR.P. ChenX. WangX.X. PalumboD. FuJ. LiW.C. LiJ. ZhongL.Z. De CobelliF. JiJ.F. LiuZ.Y. TianJ. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: An international multicenter study.Ann. Oncol.202031791292010.1016/j.annonc.2020.04.00332304748
    [Google Scholar]
  30. ThomassenI. van GestelY.R. van RamshorstB. LuyerM.D. BosschaK. NienhuijsS.W. LemmensV.E. de HinghI.H. Peritoneal carcinomatosis of gastric origin: A population-based study on incidence, survival and risk factors.Int. J. Cancer2014134362262810.1002/ijc.2837323832847
    [Google Scholar]
  31. KimS.J. KimH.H. KimY.H. HwangS.H. LeeH.S. ParkD.J. KimS.Y. LeeK.H. Peritoneal metastasis: Detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer.Radiology2009253240741510.1148/radiol.253208227219789243
    [Google Scholar]
  32. MasciG.M. CiccarelliF. MatteiF.I. GrassoD. AccarpioF. CatalanoC. LaghiA. SammartinoP. IafrateF. Role of CT texture analysis for predicting peritoneal metastases in patients with gastric cancer.Radiol. Med.2022127325125810.1007/s11547‑021‑01443‑835066804
    [Google Scholar]
  33. LiuS. HeJ. LiuS. JiC. GuanW. ChenL. GuanY. YangX. ZhouZ. Radiomics analysis using contrast-enhanced CT for preoperative prediction of occult peritoneal metastasis in advanced gastric cancer.Eur. Radiol.202030123924610.1007/s00330‑019‑06368‑531385045
    [Google Scholar]
  34. HuangW. ZhouK. JiangY. ChenC. YuanQ. HanZ. XieJ. YuS. SunZ. HuY. YuJ. LiuH. XiaoR. XuY. ZhouZ. LiG. Radiomics nomogram for prediction of peritoneal metastasis in patients with gastric cancer.Front. Oncol.202010141610.3389/fonc.2020.0141632974149
    [Google Scholar]
  35. ChenY. XiW. YaoW. WangL. XuZ. WelsM. YuanF. YanC. ZhangH. Dual-energy computed tomography-based radiomics to predict peritoneal metastasis in gastric cancer.Front. Oncol.20211165998110.3389/fonc.2021.65998134055627
    [Google Scholar]
  36. XueB. JiangJ. ChenL. WuS. ZhengX. ZhengX. TangK. Development and validation of a radiomics model based on 18F-FDG PET of primary gastric cancer for predicting peritoneal metastasis.Front. Oncol.20211174011110.3389/fonc.2021.74011134765549
    [Google Scholar]
  37. HuangL. FengB. LiY. LiuY. ChenY. ChenQ. LiC. HuangW. XueH. LiX. ZhouT. LiR. LongW. FengS.T. Computed tomography-based radiomics nomogram: Potential to predict local recurrence of gastric cancer after radical resection.Front. Oncol.20211163836210.3389/fonc.2021.63836234540653
    [Google Scholar]
  38. LiW. ZhangL. TianC. SongH. FangM. HuC. ZangY. CaoY. DaiS. WangF. DongD. WangR. TianJ. Prognostic value of computed tomography radiomics features in patients with gastric cancer following curative resection.Eur. Radiol.20192963079308910.1007/s00330‑018‑5861‑930519931
    [Google Scholar]
  39. ZhangW. FangM. DongD. WangX. KeX. ZhangL. HuC. GuoL. GuanX. ZhouJ. ShanX. TianJ. Development and validation of a CT-based radiomic nomogram for preoperative prediction of early recurrence in advanced gastric cancer.Radiother. Oncol.2020145132010.1016/j.radonc.2019.11.02331869677
    [Google Scholar]
  40. CoccoliniF. NardiM. MontoriG. CeresoliM. CelottiA. CascinuS. FugazzolaP. TomasoniM. GlehenO. CatenaF. YonemuraY. AnsaloniL. Neoadjuvant chemotherapy in advanced gastric and esophago-gastric cancer. Meta-analysis of randomized trials.Int. J. Surg.20185112012710.1016/j.ijsu.2018.01.00829413875
    [Google Scholar]
  41. ChenP.T. ShihT.T.F. Editorial for “Comparison of MRI and CT ‐based radiomics and their combination for early identification of pathological response to neoadjuvant chemotherapy in locally advanced gastric cancer”.J. Magn. Reson. Imaging2023583924925[PMID: 36762872 DOI:10.1002/jmri.28637].10.1002/jmri.28637
    [Google Scholar]
  42. KoderaY. Neoadjuvant chemotherapy for gastric adenocarcinoma in Japan.Surg. Today201747889990710.1007/s00595‑017‑1473‑228247105
    [Google Scholar]
  43. SunK.Y. HuH.T. ChenS.L. YeJ.N. LiG.H. ChenL.D. PengJ.J. FengS.T. YuanY.J. HouX. WuH. LiX. WuT.F. WangW. XuJ.B. CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer.BMC Cancer202020146810.1186/s12885‑020‑06970‑732450841
    [Google Scholar]
  44. WangW. PengY. FengX. ZhaoY. SeeruttunS.R. ZhangJ. ChengZ. LiY. LiuZ. ZhouZ. Development and validation of a computed tomography–based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer.JAMA Netw. Open202148e212114310.1001/jamanetworkopen.2021.2114334410397
    [Google Scholar]
  45. XieK. CuiY. ZhangD. HeW. HeY. GaoD. ZhangZ. DongX. YangG. DaiY. LiZ. Pretreatment contrast-enhanced computed tomography radiomics for prediction of pathological regression following neoadjuvant chemotherapy in locally advanced gastric cancer: A preliminary multicenter study.Front. Oncol.20221177075810.3389/fonc.2021.77075835070974
    [Google Scholar]
  46. ChenY. XuW. LiY.L. LiuW. SahB.K. WangL. XuZ. WelsM. ZhengY. YanM. ZhangH. MaQ. ZhuZ. LiC. CT-based radiomics showing generalization to predict tumor regression grade for advanced gastric cancer treated with neoadjuvant chemotherapy.Front. Oncol.20221275886310.3389/fonc.2022.75886335280802
    [Google Scholar]
  47. CuiY. ZhangJ. LiZ. WeiK. LeiY. RenJ. WuL. ShiZ. MengX. YangX. GaoX. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study.EClinicalMedicine20224610134810.1016/j.eclinm.2022.10134835340629
    [Google Scholar]
  48. JiangY. ChenC. XieJ. WangW. ZhaX. LvW. ChenH. HuY. LiT. YuJ. ZhouZ. XuY. LiG. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer.EBioMedicine20183617118210.1016/j.ebiom.2018.09.00730224313
    [Google Scholar]
  49. JinY. XuY. LiY. ChenR. CaiW. Integrative radiogenomics approach for risk assessment of postoperative and adjuvant chemotherapy benefits for gastric cancer patients.Front. Oncol.20211175527110.3389/fonc.2021.75527134804945
    [Google Scholar]
  50. LiuY. ZhangH. WangL. LinS. LuH. LiangH. LiangP. LiJ. LvP. GaoJ. Predicting response to systemic chemotherapy for advanced gastric cancer using pre-treatment dual-energy CT radiomics: A pilot study.Front. Oncol.20211174073210.3389/fonc.2021.74073234604085
    [Google Scholar]
  51. HouZ. YangY. LiS. YanJ. RenW. LiuJ. WangK. LiuB. WanS. Radiomic analysis using contrast-enhanced CT: Predict treatment response to pulsed low dose rate radiotherapy in gastric carcinoma with abdominal cavity metastasis.Quant. Imaging Med. Surg.20188441042010.21037/qims.2018.05.0129928606
    [Google Scholar]
  52. LiangZ. HuangA. WangL. BiJ. KuangB. XiaoY. YuD. HongM. ZhangT. A radiomics model predicts the response of patients with advanced gastric cancer to PD-1 inhibitor treatment.Aging202214290792210.18632/aging.20385035073519
    [Google Scholar]
  53. YoonS.H. KimY.H. LeeY.J. ParkJ. KimJ.W. LeeH.S. KimB. Tumor Heterogeneity in Human Epidermal Growth Factor Receptor 2 (HER2)-positive advanced gastric cancer assessed by CT texture analysis: Association with survival after trastuzumab treatment.PLoS One2016118e016127810.1371/journal.pone.016127827517841
    [Google Scholar]
  54. BokuN. HER2-positive gastric cancer.Gastric Cancer201417111210.1007/s10120‑013‑0252‑z23563986
    [Google Scholar]
  55. WangY. YuY. HanW. ZhangY.J. JiangL. XueH.D. LeiJ. JinZ.Y. YuJ.C. CT radiomics for distinction of human epidermal growth factor receptor 2 negative gastric cancer.Acad. Radiol.2021283e86e9210.1016/j.acra.2020.02.01832303442
    [Google Scholar]
  56. LiY. ChengZ. GevaertO. HeL. HuangY. ChenX. HuangX. WuX. ZhangW. DongM. HuangJ. HuangY. XiaT. LiangC. LiuZ. A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer.Chin. J. Cancer Res.2020321627110.21147/j.issn.1000‑9604.2020.01.0832194306
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056246452231011042418
Loading
/content/journals/cmir/10.2174/0115734056246452231011042418
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test