Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

We explored the relationship between secondary degeneration of white matter (WM) tracts and motor outcomes after left basal ganglia infarction and investigated alterations in the diffusion indices of WM tracts in distal areas.

Methods

Clinical neurological evaluations were accomplished using the Fugl–Meyer scale (FMS). Then, the fractional anisotropy (FA) of the bilateral superior corona radiata (SCR), cerebral peduncle (CP), corticospinal tracts (CST), and corpus callosum (CC) were measured in all patients and control subjects.

Results

Regional-based analysis revealed decreased FA values in the ipsilesional SCR, CP, and CST of the patients, compared to the control subjects at 5-time points. The relative FA (rFA) values of the SCR, CP, and CST decreased progressively with time, the lowest values recorded at 90 days before increasing slightly at 180 days after stroke. Compared to the contralateral areas, the FA values of the ipsilesional SCR and CST areas were significantly decreased (P=0.023), while those of the CP decreased at 180 days (=0.008). Compared with the values at 7 days, the rFA values of the ipsilesional SCR and CP areas were significantly reduced at 14, 30, and 90 days, while those in the CST area were significantly reduced at 14, 90, and 180 days. The CP rFA value at 7 days correlated positively with the FM scores at 180 days (=0.469, =0.037).

Conclusion

This study provides an objective, comprehensive, and automated protocol for detecting secondary degeneration of WM, which is important in understanding rehabilitation mechanisms after stroke.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056247080231116111402
2023-11-29
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056247080.html?itemId=/content/journals/cmir/10.2174/0115734056247080231116111402&mimeType=html&fmt=ahah

References

  1. ZhangM. LinQ. LuJ. RongD. ZhaoZ. MaQ. LiuH. ShuN. HeY. LiK. Pontine infarction: Diffusion-tensor imaging of motor pathways-a longitudinal study.Radiology2015274384185010.1148/radiol.1414037325356962
    [Google Scholar]
  2. PuigJ. BlascoG. SchlaugG. StinearC.M. Daunis-i-EstadellaP. BiarnesC. FiguerasJ. SerenaJ. Hernández-PérezM. Alberich-BayarriA. CastellanosM. LiebeskindD.S. DemchukA.M. MenonB.K. ThomallaG. NaelK. WintermarkM. PedrazaS. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke.Neuroradiology201759434335110.1007/s00234‑017‑1816‑028293701
    [Google Scholar]
  3. NagarajanA. RavichandarR. Glioblastoma multiforme of spinal cord - Case series in a tertiary cancer centre.J. Clin. Transl. Res.20217679279634988331
    [Google Scholar]
  4. YuQ. JiaoY. HuoR. XuH. WangJ. ZhaoS. HeQ. ZhangJ. SunY. WangS. ZhaoJ. CaoY. Application of the concept of neural networks surgery in cerebrovascular disease treatment.Brain & Heart20221122322310.36922/bh.v1i1.223
    [Google Scholar]
  5. ZhangL. LeiS. HuY. ZhaoS. ZhangM. DuanC. WeiM. GuoF. Distinctive clinicopathological features and differential gene expression of cerebral venous thrombosis mimicking brain tumors.Brain & Heart20231118818810.36922/bh.v1i1.188
    [Google Scholar]
  6. GandhiK. GillihanL. WozniakM.A. ZhuoJ. RaghavanP. Progressive Wallerian Degeneration of the Corpus Callosal Splenium in a Patient with Alexia without Agraphia: Advanced MR Findings.Neuroradiol. J.201427665365610.15274/NRJ‑2014‑1009725489886
    [Google Scholar]
  7. FukuiK. IguchiI. KitoA. WatanabeY. SugitaK. Extent of pontine pyramidal tract Wallerian degeneration and outcome after supratentorial hemorrhagic stroke.Stroke19942561207121010.1161/01.STR.25.6.12078202981
    [Google Scholar]
  8. ZhangL. XueH. ChenT. TianH. WangX. WeiX. ZhangH. MaH. RenZ. Investigation of quantitative susceptibility mapping in diagnosis of tuberous sclerosis complex and assessment of associated brain injuries at 1.5 Tesla.J. Clin. Transl. Res.20205310210832617425
    [Google Scholar]
  9. MazumdarA. MukherjeeP. MillerJ.H. MaldeH. McKinstryR.C. Diffusion-weighted imaging of acute corticospinal tract injury preceding Wallerian degeneration in the maturing human brain.AJNR Am. J. Neuroradiol.20032461057106612812927
    [Google Scholar]
  10. WatanabeH. TashiroK. Brunnstrom stages and Wallerian degenerations: A study using MRI.Tohoku J. Exp. Med.1992166447147310.1620/tjem.166.4711502693
    [Google Scholar]
  11. KuhnM.J. JohnsonK.A. DavisK.R. Wallerian degeneration: Evaluation with MR imaging.Radiology1988168119920210.1148/radiology.168.1.33809573380957
    [Google Scholar]
  12. KuhnM.J. MikulisD.J. AyoubD.M. KosofskyB.E. DavisK.R. TaverasJ.M. Wallerian degeneration after cerebral infarction: Evaluation with sequential MR imaging.Radiology1989172117918210.1148/radiology.172.1.27405012740501
    [Google Scholar]
  13. LiuX. TianW. QiuX. LiJ. ThomsonS. LiL. WangH.Z. Correlation analysis of quantitative diffusion parameters in ipsilateral cerebral peduncle during Wallerian degeneration with motor function outcome after cerebral ischemic stroke.J. Neuroimaging201222325526010.1111/j.1552‑6569.2011.00617.x21699612
    [Google Scholar]
  14. SchaechterJ.D. PerdueK.L. WangR. Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients.Neuroimage20083931370138210.1016/j.neuroimage.2007.09.07118024157
    [Google Scholar]
  15. SchaechterJ.D. FrickerZ.P. PerdueK.L. HelmerK.G. VangelM.G. GreveD.N. MakrisN. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients.Hum. Brain Mapp.200930113461347410.1002/hbm.2077019370766
    [Google Scholar]
  16. WardN.S. NewtonJ.M. SwayneO.B.C. LeeL. ThompsonA.J. GreenwoodR.J. RothwellJ.C. FrackowiakR.S.J. Motor system activation after subcortical stroke depends on corticospinal system integrity.Brain2006129380981910.1093/brain/awl00216421171
    [Google Scholar]
  17. LindenbergR. RengaV. ZhuL.L. BetzlerF. AlsopD. SchlaugG. Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke.Neurology201074428028710.1212/WNL.0b013e3181ccc6d920101033
    [Google Scholar]
  18. SchiemanckS.K. KwakkelG. PostM.W.M. KappelleL.J. PrevoA.J.H. Predicting long-term independency in activities of daily living after middle cerebral artery stroke: Does information from MRI have added predictive value compared with clinical information?Stroke20063741050105410.1161/01.STR.0000206462.09410.6f16497980
    [Google Scholar]
  19. SmithS.M. JenkinsonM. Johansen-BergH. RueckertD. NicholsT.E. MackayC.E. WatkinsK.E. CiccarelliO. CaderM.Z. MatthewsP.M. BehrensT.E.J. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data.Neuroimage20063141487150510.1016/j.neuroimage.2006.02.02416624579
    [Google Scholar]
  20. MoriS. OishiK. JiangH. JiangL. LiX. AkhterK. HuaK. FariaA.V. MahmoodA. WoodsR. TogaA.W. PikeG.B. NetoP.R. EvansA. ZhangJ. HuangH. MillerM.I. van ZijlP. MazziottaJ. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template.Neuroimage200840257058210.1016/j.neuroimage.2007.12.03518255316
    [Google Scholar]
  21. YuC. ZhuC. ZhangY. ChenH. QinW. WangM. LiK. A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke.Neuroimage200947245145810.1016/j.neuroimage.2009.04.06619409500
    [Google Scholar]
  22. QiuM. DarlingW.G. MorecraftR.J. NiC.C. RajendraJ. ButlerA.J. White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke.Neurorehabil. Neural Repair201125327528410.1177/154596831038918321357529
    [Google Scholar]
  23. PuigJ PedrazaS BlascoG Wallerian degeneration in the corticospinal tract evaluated by diffusion tensor imaging correlates with motor deficit 30 days after middle cerebral artery ischemic stroke.AJNR Am J Neuroradiol.201031713243010.3174/ajnr.A2038
    [Google Scholar]
  24. CaiJ. JiQ. XinR. ZhangD. NaX. PengR. LiK. Contralesional Cortical Structural Reorganization Contributes to Motor Recovery after Sub-Cortical Stroke: A Longitudinal Voxel-Based Morphometry Study.Front. Hum. Neurosci.20161039310.3389/fnhum.2016.0039327536229
    [Google Scholar]
  25. ThomallaG. GlaucheV. KochM.A. BeaulieuC. WeillerC. RötherJ. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke.Neuroimage20042241767177410.1016/j.neuroimage.2004.03.04115275932
    [Google Scholar]
  26. LiangZ. ZengJ. ZhangC. LiuS. LingX. XuA. LingL. WangF. PeiZ. Longitudinal investigations on the anterograde and retrograde degeneration in the pyramidal tract following pontine infarction with diffusion tensor imaging.Cerebrovasc. Dis.200825320921610.1159/00011385818216462
    [Google Scholar]
  27. MartinA. StillmanJ. MiguezM.J. McDanielH.R. KonefalJ. WoolgerJ.M. LewisJ.E. The effect of dietary supplementation on brain-derived neurotrophic factor and cognitive functioning in Alzheimer’s dementia.J. Clin. Transl. Res.20173333734310.18053/jctres.03.201703.00630895275
    [Google Scholar]
  28. LiangZ. ZengJ. LiuS. LingX. XuA. YuJ. LingL. A prospective study of secondary degeneration following subcortical infarction using diffusion tensor imaging.J. Neurol. Neurosurg. Psychiatry200778658158610.1136/jnnp.2006.09907717237143
    [Google Scholar]
  29. YinD YanX FanM Secondary degeneration detected by combining voxel-based morphometry and tract-based spatial statistics in subcortical strokes with different outcomes in hand function.AJNR Am J Neuroradiol.20133471341710.3174/ajnr.A3410
    [Google Scholar]
  30. Muhammad AtifM. AfzalF. The effects of a task-oriented walking intervention on improving balance self-efficacy in post-stroke patients.Adv. Neurol.20232238810.36922/an.388
    [Google Scholar]
  31. KoyamaT. MarumotoK. MiyakeH. DomenK. Relationship between diffusion tensor fractional anisotropy and long-term motor outcome in patients with hemiparesis after middle cerebral artery infarction.J. Stroke Cerebrovasc. Dis.20142392397240410.1016/j.jstrokecerebrovasdis.2014.05.01725169825
    [Google Scholar]
  32. PierpaoliC. BarnettA. PajevicS. ChenR. PenixL. VirtaA. BasserP. Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture.Neuroimage20011361174118510.1006/nimg.2001.076511352623
    [Google Scholar]
  33. DoronK. GazzanigaM. Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication.Cortex20084481023102910.1016/j.cortex.2008.03.00718672233
    [Google Scholar]
  34. GazzanigaM.S. Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition?Brain200012371293132610.1093/brain/123.7.129310869045
    [Google Scholar]
  35. BonzanoL. TacchinoA. RoccatagliataL. AbbruzzeseG. MancardiG.L. BoveM. Callosal contributions to simultaneous bimanual finger movements.J. Neurosci.200828123227323310.1523/JNEUROSCI.4076‑07.200818354026
    [Google Scholar]
  36. Johansen-BergH. Della-MaggioreV. BehrensT.E.J. SmithS.M. PausT. Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills.Neuroimage200736Suppl 2Suppl. 2T16T2110.1016/j.neuroimage.2007.03.04117499163
    [Google Scholar]
  37. LenziD. ConteA. MaineroC. FrascaV. FubelliF. TotaroP. CaramiaF. InghilleriM. PozzilliC. PantanoP. Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: A functional and anatomical study.Hum. Brain Mapp.200728763664410.1002/hbm.2030517080438
    [Google Scholar]
  38. PutnamM.C. WigG.S. GraftonS.T. KelleyW.M. GazzanigaM.S. Structural organization of the corpus callosum predicts the extent and impact of cortical activity in the nondominant hemisphere.J. Neurosci.200828112912291810.1523/JNEUROSCI.2295‑07.200818337422
    [Google Scholar]
  39. WangL.E. TittgemeyerM. ImperatiD. DiekhoffS. AmeliM. FinkG.R. GrefkesC. Degeneration of corpus callosum and recovery of motor function after stroke: A multimodal magnetic resonance imaging study.Hum. Brain Mapp.201233122941295610.1002/hbm.2141722020952
    [Google Scholar]
  40. OudemanJ. NederveenA.J. StrijkersG.J. MaasM. LuijtenP.R. FroelingM. Techniques and applications of skeletal muscle diffusion tensor imaging: A review.J. Magn. Reson. Imaging201643477378810.1002/jmri.2501626221741
    [Google Scholar]
  41. HaqueM.E. GabrR.E. HasanK.M. GeorgeS. ArevaloO.D. ZhaA. AldermanS. JeevarajanJ. MasM.F. ZhangX. SataniN. FriedmanE.R. SittonC.W. SavitzS. Ongoing Secondary Degeneration of the Limbic System in Patients With Ischemic Stroke: A Longitudinal MRI Study.Front. Neurol.20191015410.3389/fneur.2019.0015430890995
    [Google Scholar]
  42. LiJ. RongD.D. ShanY. ZhangM. ZhaoC. LuJ. Brain Abnormalities in Pontine Infarction: A Longitudinal Diffusion Tensor Imaging and Functional Magnetic Resonance Imaging study.J. Stroke Cerebrovasc. Dis.202231210620510.1016/j.jstrokecerebrovasdis.2021.10620534879300
    [Google Scholar]
  43. SimpkinsA.N. DiasC. NoratoG. KimE. LeighR. Early Change in Stroke Size Performs Best in Predicting Response to Therapy.Cerebrovasc. Dis.2017443-414114910.1159/00047794528683442
    [Google Scholar]
  44. HuhnK. EngelhornT. LinkerR.A. NagelA.M. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis.Front. Neurol.2019108410.3389/fneur.2019.0008430804885
    [Google Scholar]
  45. CroweM.J. BresnahanJ.C. ShumanS.L. MastersJ.N. BeattieM.S. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys.Nat. Med.199731737610.1038/nm0197‑738986744
    [Google Scholar]
  46. MarinM.A. CarmichaelS.T. Mechanisms of demyelination and remyelination in the young and aged brain following white matter stroke.Neurobiol. Dis.201912651210.1016/j.nbd.2018.07.02330031782
    [Google Scholar]
  47. KimB. WinsteinC. Can Neurological Biomarkers of Brain Impairment Be Used to Predict Poststroke Motor Recovery? A Systematic Review.Neurorehabil. Neural Repair201731132410.1177/154596831666270827503908
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056247080231116111402
Loading
/content/journals/cmir/10.2174/0115734056247080231116111402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test