Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

A contrast agent-free approach would be preferable to the frequently used invasive approaches for evaluating cerebral perfusion in chronic migraineurs (CM). In this work, non-invasive quantitative volumetric perfusion imaging was used to evaluate alterations in cerebral perfusion in CM.

Methods

We used conventional brain structural imaging sequences and 3D pseudo-continuous arterial spin labeling (3D PCASL) to examine thirteen CM patients and fifteen normal controls (NCs). The entire brain gray matter underwent voxel-based analysis, and the cerebral blood flow (CBF) values of the altered positive areas were retrieved to look into the clinical variables' significant correlation.

Results

Brain regions with the decreased perfusion were located in the left postcentral gyrus, bilateral middle frontal gyrus, left middle occipital gyrus, left superior parietal lobule, left medial segment of superior frontal gyrus, and right orbital part of the inferior frontal gyrus. White matter fibers with decreased perfusion were located in bilateral superior longitudinal tracts, superior corona radiata, external capsules, anterior and posterior limbs of the internal capsule, anterior corona radiata, inferior longitudinal fasciculus, and right corticospinal tract. However, the correlation analysis showed no significant correlation between the CBF value of the above positive brain regions with clinical variables ( > 0.05).

Conclusion

The current study provided more useful information to comprehend the pathophysiology of CM and revealed a new insight into the neural mechanism of CM from the pattern of cerebral hypoperfusion.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056219963231124043007
2024-01-01
2025-06-24
The full text of this item is not currently available.

References

  1. FerrariM.D. GoadsbyP.J. BursteinR. KurthT. AyataC. CharlesA. AshinaM. van den MaagdenbergA.M.J.M. DodickD.W. Migraine.Nat. Rev. Dis. Primers202281210.1038/s41572‑021‑00328‑435027572
    [Google Scholar]
  2. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition.Cephalalgia.2018381121110.1177/0333102417738202
    [Google Scholar]
  3. NatoliJ.L. ManackA. DeanB. ButlerQ. TurkelC.C. StovnerL. LiptonR.B. Global prevalence of chronic migraine: A systematic review.Cephalalgia201030559960910.1111/j.1468‑2982.2009.01941.x19614702
    [Google Scholar]
  4. AndreouA.P. EdvinssonL. Mechanisms of migraine as a chronic evolutive condition.J. Headache Pain201920111710.1186/s10194‑019‑1066‑031870279
    [Google Scholar]
  5. KimS. KangM. ChoiS. A case report of sporadic hemiplegic migraine associated cerebral hypoperfusion: Comparison of arterial spin labeling and dynamic susceptibility contrast perfusion MR imaging.Eur. J. Pediatr.2016175229529810.1007/s00431‑015‑2609‑226250760
    [Google Scholar]
  6. GoadsbyP.J. HollandP.R. Pathophysiology of migraine.Neurol. Clin.201937465167110.1016/j.ncl.2019.07.00831563225
    [Google Scholar]
  7. AndersenA.R. FribergL. OlsenT.S. OlesenJ. Delayed hyperemia following hypoperfusion in classic migraine. Single photon emission computed tomographic demonstration.Arch. Neurol.198845215415910.1001/archneur.1988.005202600400173257687
    [Google Scholar]
  8. SchytzH.W. AminF.M. SelbJ. BoasD.A. Non-invasive methods for measuring vascular changes in neurovascular headaches.J. Cereb. Blood Flow Metab.201939463364910.1177/0271678X1772413828782410
    [Google Scholar]
  9. FloeryD. VoskoM.R. FellnerF.A. FellnerC. GinthoerC. GruberF. RansmayrG. DoerflerA. UderM. BradleyW.G. Acute-onset migrainous aura mimicking acute stroke: MR perfusion imaging features.AJNR Am. J. Neuroradiol.20123381546155210.3174/ajnr.A302022517281
    [Google Scholar]
  10. ArkinkE.B. BleekerE.J.W. SchmitzN. SchoonmanG.G. WuO. FerrariM.D. van BuchemM.A. van OschM.J.P. KruitM.C. Cerebral perfusion changes in migraineurs: A voxelwise comparison of interictal dynamic susceptibility contrast MRI measurements.Cephalalgia201232427928810.1177/033310241143598522290556
    [Google Scholar]
  11. ChenZ.Y. GuanZ.W. YuS.Y. MaL. Comparison of 3D pseudo-continuous arterial spin labeling and positron emission tomography-computed tomography in the brain disorders.Zhongguo Yi Xue Ke Xue Yuan Xue Bao201436437738410.3881/j.issn.1000‑503X.2014.04.00625176205
    [Google Scholar]
  12. ChenZ. MaL. Hyperperfusion of multiple sclerosis plaques characterized by 3D FSE arterial spin labelling.Chin. Med. Sci. J.201429319419610.1016/S1001‑9294(14)60069‑925264891
    [Google Scholar]
  13. FurtnerJ. BenderB. BraunC. SchittenhelmJ. SkardellyM. ErnemannU. BisdasS. Prognostic value of blood flow measurements using arterial spin labeling in gliomas.PLoS One201496e9961610.1371/journal.pone.009961624911025
    [Google Scholar]
  14. KleinmanJ.T. ZaharchukG. MlynashM. OgdieA.A. StrakaM. LansbergM.G. SchwartzN.E. KempS. BammerR. AlbersG.W. OlivotJ.M. Automated perfusion imaging for the evaluation of transient ischemic attack.Stroke20124361556156010.1161/STROKEAHA.111.64497122474058
    [Google Scholar]
  15. MatsuuraK. MaedaM. OkamotoK. ArakiT. MiuraY. HamadaK. KanamaruK. TomimotoH. Usefulness of arterial spin-labeling images in periictal state diagnosis of epilepsy.J. Neurol. Sci.20153591-242442910.1016/j.jns.2015.10.00926478131
    [Google Scholar]
  16. YamamotoN. SatomiJ. YamamotoY. IzumiY. NagahiroS. KajiR. Usefulness of 3-Tesla magnetic resonance arterial spin-labeled imaging for diagnosis of cranial dural arteriovenous fistula.J. Neurol. Sci.201737242843210.1016/j.jns.2016.11.01127842984
    [Google Scholar]
  17. LiuM. SunY. LiX. ChenZ. Hypoperfusion in nucleus accumbens in chronic migraine using 3D pseudo-continuous arterial spin labeling imaging MRI.J. Headache Pain20222317210.1186/s10194‑022‑01444‑635761188
    [Google Scholar]
  18. ChenZ. ChenX. LiuM. LiuM. MaL. YuS. Evaluation of gray matter perfusion in episodic migraine using voxel-wise comparison of 3D pseudo-continuous arterial spin labeling.J. Headache Pain20181913610.1186/s10194‑018‑0866‑y29796865
    [Google Scholar]
  19. JärnumH. SteffensenE.G. KnutssonL. FründE.T. SimonsenC.W. Lundbye-ChristensenS. ShankaranarayananA. AlsopD.C. JensenF.T. LarssonE.M. Perfusion MRI of brain tumours: A comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging.Neuroradiology201052430731710.1007/s00234‑009‑0616‑619841916
    [Google Scholar]
  20. LiuM. ChenZ. MaL. Test–retest reliability of perfusion of the precentral cortex and precentral subcortical white matter on three-dimensional pseudo-continuous arterial spin labeling.J. Int. Med. Res.20184693788379510.1177/030006051877971629926756
    [Google Scholar]
  21. OlesenJ. LarsenB. LauritzenM. Focal hyperemia followed by spreading oligemia and impaired activation of rcbf in classic migraine.Ann. Neurol.19819434435210.1002/ana.4100904066784664
    [Google Scholar]
  22. SakaiF. MeyerJ.S. Regional cerebral hemodynamics during migraine and cluster headaches measured by the 133Xe inhalation method.Headache197818312213210.1111/j.1526‑4610.1978.hed1803122.x669942
    [Google Scholar]
  23. AfridiS.K. GiffinN.J. KaubeH. FristonK.J. WardN.S. FrackowiakR.S.J. GoadsbyP.J. A positron emission tomographic study in spontaneous migraine.Arch. Neurol.20056281270127510.1001/archneur.62.8.127016087768
    [Google Scholar]
  24. ZebedinD. SorantinE. RiccabonaM. Perfusion CT in childhood stroke—Initial observations and review of the literature.Eur. J. Radiol.20138271059106610.1016/j.ejrad.2011.11.04422209434
    [Google Scholar]
  25. JezzardP. ChappellM.A. OkellT.W. Arterial spin labeling for the measurement of cerebral perfusion and angiography.J. Cereb. Blood Flow Metab.201838460362610.1177/0271678X1774324029168667
    [Google Scholar]
  26. BorogovacA. AsllaniI. Arterial Spin Labeling (ASL) fMRI: Advantages, theoretical constrains, and experimental challenges in neurosciences.Int. J. Biomed. Imaging2012201211310.1155/2012/81845622966219
    [Google Scholar]
  27. CornoS. GianiL. LaganàM.M. BaglioF. MarianiC. PantoniL. LovatiC. The brain effect of the migraine attack: an ASL MRI study of the cerebral perfusion during a migraine attack.Neurol. Sci.201839S1737410.1007/s10072‑018‑3346‑x29904850
    [Google Scholar]
  28. UetaniH. KitajimaM. SugaharaT. KikuchiH. MutoY. HiraharaT. TateishiM. KurokiY. YamashitaY. Perfusion abnormality on three-dimensional arterial spin labeling with a 3T MR system in pediatric and adolescent patients with migraine.J. Neurol. Sci.2018395414610.1016/j.jns.2018.09.02430290298
    [Google Scholar]
  29. PeyronR. LaurentB. Garcia-LarreaL. Functional imaging of brain responses to pain. A review and meta-analysis.Neurophysiol. Clin.2000305263288
    [Google Scholar]
  30. Cobb-PitstickK.M. MunjalN. SafierR. CummingsD.D. ZuccoliG. Time course of cerebral perfusion changes in children with migraine with aura mimicking stroke.AJNR Am. J. Neuroradiol.20183991751175510.3174/ajnr.A569329903927
    [Google Scholar]
  31. KimJ.H. KimJ.B. SuhS. SeoW.K. OhK. KohS.B. Thickening of the somatosensory cortex in migraine without aura.Cephalalgia201434141125113310.1177/033310241453115524728304
    [Google Scholar]
  32. HougaardA. AminF.M. ArngrimN. VlachouM. LarsenV.A. LarssonH.B.W. AshinaM. Sensory migraine aura is not associated with structural grey matter abnormalities.Neuroimage Clin.20161132232710.1016/j.nicl.2016.02.00727298761
    [Google Scholar]
  33. DattaR. DetreJ.A. AguirreG.K. CucchiaraB. Absence of changes in cortical thickness in patients with migraine.Cephalalgia201131141452145810.1177/033310241142102521911412
    [Google Scholar]
  34. ShimizuS. ZhangY. LaxamanaJ. MillerB.L. KramerJ.H. WeinerM.W. SchuffN. Concordance and discordance between brain perfusion and atrophy in frontotemporal dementia.Brain Imaging Behav.201041465410.1007/s11682‑009‑9084‑120503113
    [Google Scholar]
  35. Lope-PiedrafitaS. Diffusion Tensor Imaging (DTI).Methods Mol. Biol.2018171810311610.1007/978‑1‑4939‑7531‑0_729341005
    [Google Scholar]
  36. MaA.Y. VitorinoR.C. HojjatS.P. MulhollandA.D. ZhangL. LeeL. CarrollT.J. CantrellC.G. FigleyC.R. AvivR.I. The relationship between white matter fiber damage and gray matter perfusion in large-scale functionally defined networks in multiple sclerosis.Mult. Scler.201723141884189210.1177/135245851769114928178867
    [Google Scholar]
  37. PaganiE. BizziA. Di SalleF. De StefanoN. FilippiM. Basic concepts of advanced MRI techniques.Neurol. Sci.200829S329029510.1007/s10072‑008‑1001‑718941716
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056219963231124043007
Loading
/content/journals/cmir/10.2174/0115734056219963231124043007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test