Skip to content
2000
  • E-ISSN:

Abstract

Ultrasound elastography is an innovation of ultrasound technology that has developed since the 1990s. It has been successfully applied for many organs, such as the thyroid, breast, liver, prostate, and muscle systems, providing qualitative and quantitative information about tissue stiffness for clinical diagnoses. For colorectal tumors, ultrasound elastography can distinguish colon adenoma from colon adenocarcinoma and predict the chemotherapeutic effects of colon cancer by monitoring the stiffness changes of cancer tissue. In Crohn’s disease, ultrasound elastography helps assess the stages of the course and guides further treatment strategies. Compared with colonoscopy, ultrasound elastography frees patients from the fears of uncomfortable procedures and enables operators to comprehensively observe the bowel wall and the surrounding structures. In this review, we introduced the principles and the pathological bases of ultrasound elastography and compared the diagnostic efficacies of colonoscopy with colonic ultrasound elastography. Meanwhile, we summarized the ultrasonography of colonic diseases and reviewed the clinical usefulness of ultrasound elastography in colonic diseases.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/1573405620666230330112422
2024-01-01
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e300323215222.html?itemId=/content/journals/cmim/10.2174/1573405620666230330112422&mimeType=html&fmt=ahah

References

  1. NajafiM. FarhoodB. MortezaeeK. Extracellular matrix (ECM) stiffness and degradation as cancer drivers.J. Cell. Biochem.201912032782279010.1002/jcb.2768130321449
    [Google Scholar]
  2. ZanotelliM.R. Reinhart-KingC.A. Mechanical forces in tumor angiogenesis.Adv. Exp. Med. Biol.201810929111210.1007/978‑3‑319‑95294‑9_630368750
    [Google Scholar]
  3. PiersmaB. HaywardM.K. WeaverV.M. Fibrosis and cancer: A strained relationship.Biochim. Biophys. Acta Rev. Cancer20201873218835610.1016/j.bbcan.2020.18835632147542
    [Google Scholar]
  4. DietrichC.F. CuiX-W. LiK-N. YiA-J. WangB. WeiQ. WuG-G. Ultrasound elastography.Endosc. Ultrasound202211425227410.4103/EUS‑D‑21‑0015135532576
    [Google Scholar]
  5. OzturkA. GrajoJ.R. DhyaniM. AnthonyB.W. SamirA.E. Principles of ultrasound elastography.Abdom. Radiol.201843477378510.1007/s00261‑018‑1475‑629487968
    [Google Scholar]
  6. OrmacheaJ. ParkerK.J. Elastography imaging: The 30 year perspective.Phys. Med. Biol.2020652433181486
    [Google Scholar]
  7. RübenthalerJ. Müller-PeltzerK. ReiserM. Rjosk-DendorferD. ClevertD.A. Sonoelastography in daily clinical routine.Radiologe201757535636528213851
    [Google Scholar]
  8. CaraianiC. PetrescB. DongY. DietrichC.F. Contraindications and adverse effects in abdominal imaging.Med. Ultrason.201921445646310.11152/mu‑214531765455
    [Google Scholar]
  9. LeeB.E. ChungJ. ChaE.S. LeeJ.E. KimJ.H. Role of shear-wave elastography (SWE) in complex cystic and solid breast lesions in comparison with conventional ultrasound.Eur. J. Radiol.20158471236124110.1016/j.ejrad.2015.04.00525937525
    [Google Scholar]
  10. YiL. QiongW. YanW. YoubenF. BingH. Correlation between ultrasound elastography and histologic characteristics of papillary thyroid carcinoma.Sci. Rep.2017714504210.1038/srep4504228327620
    [Google Scholar]
  11. ShiinaT. NightingaleK.R. PalmeriM.L. HallT.J. BamberJ.C. BarrR.G. CasteraL. ChoiB.I. ChouY.H. CosgroveD. DietrichC.F. DingH. AmyD. FarrokhA. FerraioliG. FiliceC. Friedrich-RustM. NakashimaK. SchaferF. SporeaI. SuzukiS. WilsonS. KudoM. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology.Ultrasound Med. Biol.20154151126114710.1016/j.ultrasmedbio.2015.03.00925805059
    [Google Scholar]
  12. SigristR.M.S. LiauJ. KaffasA.E. ChammasM.C. WillmannJ.K. Ultrasound elastography: Review of techniques and clinical applications.Theranostics2017751303132910.7150/thno.1865028435467
    [Google Scholar]
  13. IdreesA. ShahzadR. FatimaI. ShahidA. Strain elastography for differentiation between benign and malignant thyroid nodules.J. Coll. Physicians Surg. Pak.202030436937210.29271/jcpsp.2020.04.36932513354
    [Google Scholar]
  14. TylochD.J. TylochJ.F. AdamowiczJ. JuszczakK. OstrowskiA. WarsińskiP. WilamowskiJ. LudwikowskaJ. DrewaT. Elastography in prostate gland imaging and prostate cancer detection.Med. Ultrason.201820451552310.11152/mu‑165530534661
    [Google Scholar]
  15. LiD.D. XuH.X. GuoL.H. BoX.W. LiX.L. WuR. XuJ.M. ZhangY.F. ZhangK. Combination of two-dimensional shear wave elastography with ultrasound breast imaging reporting and data system in the diagnosis of breast lesions: A new method to increase the diagnostic performance.Eur. Radiol.20162693290330010.1007/s00330‑015‑4163‑826714967
    [Google Scholar]
  16. KimJ.E. LeeJ.Y. BaeK.S. HanJ.K. ChoiB.I. Acoustic radiation force impulse elastography for focal hepatic tumors: usefulness for differentiating hemangiomas from malignant tumors.Korean J. Radiol.201314574375310.3348/kjr.2013.14.5.74324043967
    [Google Scholar]
  17. Ricci-VitianiL. LombardiD.G. PilozziE. BiffoniM. TodaroM. PeschleC. De MariaR. Identification and expansion of human colon-cancer-initiating cells.Nature2007445712311111510.1038/nature0538417122771
    [Google Scholar]
  18. AhmedM. Colon cancer: A Clinician’s perspective in 2019.Gastroenterol. Res.202013111010.14740/gr123932095167
    [Google Scholar]
  19. SeguinJ. MignetN. Latorre OssaH. TanterM. GennissonJ.L. Evaluation of antivascular combretastatin A4 P efficacy using supersonic shear imaging technique of ectopic colon carcinoma CT26.Ultrasound Med. Biol.201743102352236110.1016/j.ultrasmedbio.2017.05.01328666550
    [Google Scholar]
  20. CongY. FanZ. DaiY. ZhangZ. YanK. Application value of shear wave elastography in the evaluation of tumor downstaging for locally advanced rectal cancer after neoadjuvant chemoradiotherapy.J. Ultrasound Med.2021401818910.1002/jum.1537832648968
    [Google Scholar]
  21. WaageJ.E.R. LehS. RøslerC. PfefferF. BachS.P. HavreR.F. HaldorsenI.S. ØdegaardS. BaatrupG. Endorectal ultrasonography, strain elastography and MRI differentiation of rectal adenomas and adenocarcinomas.Colorectal Dis.201517212413110.1111/codi.1284525407010
    [Google Scholar]
  22. WaageJ.E.R. HavreR.F. ØdegaardS. LehS. EideG.E. BaatrupG. Endorectal elastography in the evaluation of rectal tumours.Colorectal Dis.201113101130113710.1111/j.1463‑1318.2010.02440.x21040360
    [Google Scholar]
  23. TaljanovicM.S. GimberL.H. BeckerG.W. LattL.D. KlauserA.S. MelvilleD.M. GaoL. WitteR.S. Shear-wave elastography: Basic physics and musculoskeletal applications.Radiographics201737385587010.1148/rg.201716011628493799
    [Google Scholar]
  24. GennissonJ.L. DeffieuxT. FinkM. TanterM. Ultrasound elastography: Principles and techniques.Diagn. Interv. Imaging201394548749510.1016/j.diii.2013.01.02223619292
    [Google Scholar]
  25. OphirJ. CéspedesI. PonnekantiH. YazdiY. LiX. Elastography: A quantitative method for imaging the elasticity of biological tissues.Ultrason. Imaging199113211113410.1177/0161734691013002011858217
    [Google Scholar]
  26. RouvièreO. MelodelimaC. Hoang DinhA. BratanF. PagnouxG. SanzaloneT. CrouzetS. ColombelM. Mège-LechevallierF. SouchonR. Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: A preliminary study.Eur. Radiol.20172751858186610.1007/s00330‑016‑4534‑927553936
    [Google Scholar]
  27. MazumderD. KarG. VasuR.M. RoyD. KanhirodanR. Orthotropic elastic moduli of biological tissues from ultrasound-assisted diffusing-wave spectroscopy.J. Opt. Soc. Am. A Opt. Image Sci. Vis.201734111945195610.1364/JOSAA.34.00194529091642
    [Google Scholar]
  28. MazumderD. UmeshS. VasuR.M. RoyD. KanhirodanR. AsokanS. Quantitative vibro-acoustography of tissue-like objects by measurement of resonant modes.Phys. Med. Biol.201762110712610.1088/1361‑6560/62/1/10727973345
    [Google Scholar]
  29. Shigao Chen FatemiM. KinnickR. GreenleafJ.F. Comparison of stress field forming methods for vibro-acoustography.IEEE Trans. Ultrason. Ferroelectr. Freq. Control200451331332110.1109/TUFFC.2004.132078715128218
    [Google Scholar]
  30. UrbanM.W. AlizadA. AquinoW. GreenleafJ.F. FatemiM. A review of vibro-acoustography and its applications in medicine.Curr. Med. Imaging Rev.20117435035910.2174/15734051179803864822423235
    [Google Scholar]
  31. CosgroveD. PiscagliaF. BamberJ. BojungaJ. CorreasJ.M. GiljaO. KlauserA. SporeaI. CalliadaF. CantisaniV. D’OnofrioM. DrakonakiE. FinkM. Friedrich-RustM. FromageauJ. HavreR. JenssenC. OhlingerR. SăftoiuA. SchaeferF. DietrichC. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications.Ultraschall Med.201334323825310.1055/s‑0033‑133537523605169
    [Google Scholar]
  32. OğurelT. BuruldayV. Strain and shear wave elastography in diagnosis of retrobulbar neuritis.J. Neuroophthalmol.202040216917310.1097/WNO.000000000000079331022061
    [Google Scholar]
  33. JanssenJ. SchlörerE. GreinerL. EUS elastography of the pancreas: Feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions.Gastrointest. Endosc.200765797197810.1016/j.gie.2006.12.05717531630
    [Google Scholar]
  34. FarukT. IslamM.K. ArefinS. HaqM.Z. The journey of elastography: Background, current status, and future possibilities in breast cancer diagnosis.Clin. Breast Cancer201515531332410.1016/j.clbc.2015.01.00225858446
    [Google Scholar]
  35. MarastoniS. LigrestiG. LorenzonE. ColombattiA. MongiatM. Extracellular matrix: A matter of life and death.Connect. Tissue Res.2008493-420320610.1080/0300820080214319018661343
    [Google Scholar]
  36. SkhinasJ.N. CoxT.R. The interplay between extracellular matrix remodelling and kinase signalling in cancer progression and metastasis.Cell Adhes. Migr.201812652953710.1080/19336918.2017.140520829168660
    [Google Scholar]
  37. TheocharisA.D. SkandalisS.S. GialeliC. KaramanosN.K. Extracellular matrix structure.Adv. Drug Deliv. Rev.20169742710.1016/j.addr.2015.11.00126562801
    [Google Scholar]
  38. HalperJ. KjaerM. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.Adv. Exp. Med. Biol.2014802314710.1007/978‑94‑007‑7893‑1_324443019
    [Google Scholar]
  39. LuP. WeaverV.M. WerbZ. The extracellular matrix: A dynamic niche in cancer progression.J. Cell Biol.2012196439540610.1083/jcb.20110214722351925
    [Google Scholar]
  40. KaushikN. KimS. SuhY. LeeS.J. Proinvasive extracellular matrix remodeling for tumor progression.Arch. Pharm. Res.2019421404710.1007/s12272‑018‑1097‑030515725
    [Google Scholar]
  41. BrauchleE. KasperJ. DaumR. SchierbaumN. FalchC. KirschniakA. SchäfferT.E. Schenke-LaylandK. Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas.Matrix Biol.201868-6918019310.1016/j.matbio.2018.03.01629605717
    [Google Scholar]
  42. AlabiB.R. LaRangerR. ShayJ.W. Decellularized mice colons as models to study the contribution of the extracellular matrix to cell behavior and colon cancer progression.Acta Biomater.201910021322210.1016/j.actbio.2019.09.03331562987
    [Google Scholar]
  43. ZhaoG. CuiJ. QinQ. ZhangJ. LiuL. DengS. WuC. YangM. LiS. WangC. Mechanical stiffness of liver tissues in relation to integrin β1 expression may influence the development of hepatic cirrhosis and hepatocellular carcinoma.J. Surg. Oncol.2010102548248910.1002/jso.2161320872952
    [Google Scholar]
  44. CiascaG. PapiM. MinelliE. PalmieriV. De SpiritoM. Changes in cellular mechanical properties during onset or progression of colorectal cancer.World J. Gastroenterol.201622327203721410.3748/wjg.v22.i32.720327621568
    [Google Scholar]
  45. Fernández-SánchezM.E. BarbierS. WhiteheadJ. BéalleG. MichelA. Latorre-OssaH. ReyC. FouassierL. ClaperonA. BrulléL. GirardE. ServantN. Rio-FrioT. MarieH. LesieurS. HoussetC. GennissonJ.L. TanterM. MénagerC. FreS. RobineS. FargeE. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure.Nature20155237558929510.1038/nature1432925970250
    [Google Scholar]
  46. GoertzRS LuekeC WildnerD VitaliF NeurathMF StrobelD Acoustic radiation force impulse (ARFI) elastography of the bowel wall as a possible marker of inflammatory activity in patients with Crohn's disease.Clin Radiol.2018737e1e5
    [Google Scholar]
  47. YangJ. ZhaoJ. NakaguchiT. GregersenH. Biomechanical changes in oxazolone-induced colitis in BALB/C mice.J. Biomech.200942781181710.1016/j.jbiomech.2009.01.02819264309
    [Google Scholar]
  48. PickhardtP.J. KimD.H. MeniasC.O. GopalD.V. ArlukG.M. HeiseC.P. Evaluation of submucosal lesions of the large intestine: Part 1. Neoplasms.Radiographics20072761681169210.1148/rg.27607502718025511
    [Google Scholar]
  49. Martínez PérezM.J. Blanc GarcíaE. Merino BonillaJ.A. Bowel ultrasound: Examination techniques and normal and pathologic patterns.Radiología202062651752710.1016/j.rxeng.2020.09.00333127091
    [Google Scholar]
  50. JingJ.G. ZhuangH. PengY.L. LuoY. The diagnostic value of double contrast enhanced ultrasound in colorectal neoplasms.Sichuan Da Xue Xue Bao Yi Xue Ban201647580080428598102
    [Google Scholar]
  51. AtkinsonN.S.S. BryantR.V. DongY. MaaserC. KucharzikT. MaconiG. AsthanaA.K. BlaivasM. GoudieA. GiljaO.H. NuernbergD. Schreiber-DietrichD. DietrichC.F. How to perform gastrointestinal ultrasound: Anatomy and normal findings.World J. Gastroenterol.201723386931694110.3748/wjg.v23.i38.693129097866
    [Google Scholar]
  52. KuzmichS. HarveyC.J. KuzmichT. TanK.L. Ultrasound detection of colonic polyps: perspective.Br. J. Radiol.2012851019e1155e116410.1259/bjr/6059312422806624
    [Google Scholar]
  53. AlfredssonJ. WickM.J. Mechanism of fibrosis and stricture formation in Crohn’s disease.Scand. J. Immunol.2020926e1299010.1111/sji.1299033119150
    [Google Scholar]
  54. MarinA. TribusL. Fierbinteanu-BraticeviciC. The importance of intestinal ultrasound and elastographic techniques in inflammatory bowel diseases.Med. Ultrason.201820222823610.11152/mu‑134629730691
    [Google Scholar]
  55. StenczelN.D. PurcareaM.R. TribusL.C. OnigaG.H. The role of the intestinal ultrasound in Crohn’s disease diagnosis and monitoring.J. Med. Life202114331031510.25122/jml‑2021‑006734377195
    [Google Scholar]
  56. CappellM.S. Pathophysiology, clinical presentation, and management of colon cancer.Gastroenterol. Clin. North Am.200837112410.1016/j.gtc.2007.12.00218313537
    [Google Scholar]
  57. Martínez-AresD. Martín-Granizo BarrenecheaI. Souto-RuzoJ. Yáñez LópezJ. Pallarés PeralA. Vázquez-IglesiasJ.L. The value of abdominal ultrasound in the diagnosis of colon cancer.Rev. Esp. Enferm. Dig.2005971287788610.4321/S1130‑0108200500120000416454607
    [Google Scholar]
  58. BorR. FábiánA. SzepesZ. Role of ultrasound in colorectal diseases.World J. Gastroenterol.201622439477948710.3748/wjg.v22.i43.947727920469
    [Google Scholar]
  59. MorarasuS. HaroonM. Codrina MorarasuB. LalK. EguareE. Colon biopsies: Benefit or burden?J. Med. Life201912215615910.25122/jml‑2019‑000931406517
    [Google Scholar]
  60. OlivaS. CucchiaraS. CohenS.A. Recent advances in pediatric gastrointestinal endoscopy: An overview.Expert Rev. Gastroenterol. Hepatol.201711764365010.1080/17474124.2017.132198628427298
    [Google Scholar]
  61. ParkW. KimB. ParkS.J. CheonJ.H. KimT.I. KimW.H. HongS.P. Conventional endoscopic features are not sufficient to differentiate small, early colorectal cancer.World J. Gastroenterol.201420216586659310.3748/wjg.v20.i21.658624914381
    [Google Scholar]
  62. LeufkensA. van OijenM. VleggaarF. SiersemaP. Factors influencing the miss rate of polyps in a back-to-back colonoscopy study.Endoscopy201244547047510.1055/s‑0031‑129166622441756
    [Google Scholar]
  63. RexD.K. Maximizing detection of adenomas and cancers during colonoscopy.Am. J. Gastroenterol.2006101122866287710.1111/j.1572‑0241.2006.00905.x17227527
    [Google Scholar]
  64. RexD.K. CutlerC.S. LemmelG.T. RahmaniE.Y. ClarkD.W. HelperD.J. LehmanG.A. MarkD.G. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies.Gastroenterology19971121242810.1016/S0016‑5085(97)70214‑28978338
    [Google Scholar]
  65. BinefaG. Rodríguez-MorantaF. TeuleA. Medina-HayasM. Colorectal cancer: From prevention to personalized medicine.World J. Gastroenterol.201420226786680810.3748/wjg.v20.i22.678624944469
    [Google Scholar]
  66. GarraB.S. Elastography.Ultrasound Q.201127317718610.1097/RUQ.0b013e31822a213821873855
    [Google Scholar]
  67. VuorenmaaA.S. SiitamaE.M.K. MäkeläK.S. Inter‐operator and inter‐device reproducibility of shear wave elastography in healthy muscle tissues.J. Appl. Clin. Med. Phys.2022239e1371710.1002/acm2.1371735793227
    [Google Scholar]
  68. ZardiE.M. FranceschettiE. GiorgiC. LichinchiD. PalumboA. FranceschiF. Reliability and agreement of point and 2-d shear-wave elastography in assessing the sciatic nerve stiffness.Ultrasound Med. Biol.202046113162316710.1016/j.ultrasmedbio.2020.07.03332863064
    [Google Scholar]
  69. TurnaoğluH. HaberalK.M. ArslanS. Yavuz ÇolakM. Ulu ÖztürkF. UsluN. Interobserver and intermethod variability in data interpretation of breast strain elastography in suspicious breast lesions.Turk. J. Med. Sci.202151254755410.3906/sag‑2006‑25732950046
    [Google Scholar]
  70. SchellhaasB. StrobelD. WildnerD. GoertzR.S. NeurathM.F. PfeiferL. Two-dimensional shear-wave elastography.Eur. J. Gastroenterol. Hepatol.201729672372910.1097/MEG.000000000000084628118179
    [Google Scholar]
  71. ZhaoF. YangQ. MengC. JiangT. Comparison of the practicability of ultrasound and spiral computed tomography in the diagnosis of colon cancer.Medicine20209950e2338110.1097/MD.000000000002338133327262
    [Google Scholar]
  72. DebnathM.R. DebnathC.R. AhamedN.U. ShahjahanS.M. AhmedS.M. NaharJ. AkterT. Sonographic evaluation of colonic carcinoma in comparison to colonoscopy.Mymensingh Med. J.20172611628260747
    [Google Scholar]
  73. GoertzR.S. LuekeC. SchellhaasB. PfeiferL. WildnerD. NeurathM.F. StrobelD. Acoustic radiation force impulse (ARFI) shear wave elastography of the bowel wall in healthy volunteers and in ulcerative colitis.Acta Radiol. Open201984205846011984096910.1177/205846011984096931024741
    [Google Scholar]
  74. ZhaoJ.Y. GaoX. ZhuangH. WuY.T. LuoY. JingJ.G. ZhangY. Using shear wave elasticity in normal terminal ileum of a healthy southwest Chinese population: a pilot study of reference elasticity ranges.Quant. Imaging Med. Surg.20211162677268710.21037/qims‑20‑87734079733
    [Google Scholar]
  75. BamberJ. CosgroveD. DietrichC. FromageauJ. BojungaJ. CalliadaF. CantisaniV. CorreasJ.M. D’OnofrioM. DrakonakiE. FinkM. Friedrich-RustM. GiljaO. HavreR. JenssenC. KlauserA. OhlingerR. SaftoiuA. SchaeferF. SporeaI. PiscagliaF. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology.Ultraschall Med.201334216918410.1055/s‑0033‑133520523558397
    [Google Scholar]
  76. HavreR.F. LehS. GiljaO.H. ØdegaardS. WaageJ.E. BaatrupG. NesjeL.B. Strain assessment in surgically resected inflammatory and neoplastic bowel lesions.Ultraschall Med.201435214915823154869
    [Google Scholar]
  77. LiT. LuM. LiY. LiJ. HuZ. LiX. ChengX. JiangJ. TanB. Quantitative elastography of rectal lesions: The value ofshear wave elastography in identifying benign and malignant rectal lesions.Ultrasound Med. Biol.2019451859210.1016/j.ultrasmedbio.2018.09.00830342780
    [Google Scholar]
  78. FraquelliM. BranchiF. CribiùF.M. OrlandoS. CasazzaG. MagarottoA. MassironiS. BottiF. Contessini-AvesaniE. ConteD. BasiliscoG. CaprioliF. The role of ultrasound elasticity imaging in predicting ileal fibrosis in Crohnʼs Disease patients.Inflamm. Bowel Dis.201521112605261210.1097/MIB.000000000000053626230861
    [Google Scholar]
  79. DillmanJ.R. StidhamR.W. HigginsP.D.R. MoonsD.S. JohnsonL.A. RubinJ.M. US elastography-derived shear wave velocity helps distinguish acutely inflamed from fibrotic bowel in a Crohn disease animal model.Radiology2013267375776610.1148/radiol.1312177523401585
    [Google Scholar]
  80. NylundK. HauskenT. GiljaO.H. Ultrasound and inflammatory bowel disease.Ultrasound Q.201026131510.1097/RUQ.0b013e3181ce092920216190
    [Google Scholar]
  81. StidhamR.W. XuJ. JohnsonL.A. KimK. MoonsD.S. McKennaB.J. RubinJ.M. HigginsP.D.R. Ultrasound elasticity imaging for detecting intestinal fibrosis and inflammation in rats and humans with Crohn’s disease.Gastroenterology20111413819826.e110.1053/j.gastro.2011.07.02721784048
    [Google Scholar]
  82. BollegalaN. GrillerN. BannermanH. HabalM. NguyenG.C. Ultrasound vs endoscopy, surgery, or pathology for the diagnosis of small Bowel Crohn’s Disease and its complications.Inflamm. Bowel Dis.20192581313133810.1093/ibd/izy39230883639
    [Google Scholar]
/content/journals/cmim/10.2174/1573405620666230330112422
Loading
/content/journals/cmim/10.2174/1573405620666230330112422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test