Skip to content
2000
  • E-ISSN:

Abstract

Introduction:

Meniscal tears are among the most common indications for knee arthroscopy. Artificial polyurethane scaffolds have demonstrated efficacy in reducing pain and promoting the growth of normal meniscal tissue, with high absorption rates facilitating full tissue regeneration.

Aims:

This study aimed to evaluate the remodeling of polyurethane meniscal implants post-reconstruction using ultrasonography. This imaging technique not only assesses changes in implant properties, such as echogenicity, but also the shape changes during functional examination.

Methods:

The assessment of meniscal extrusion, comparing size at rest and under weight-bearing, is an indirect parameter that provides insight into the physical properties of the remodeling implant, with greater extrusion indicating reduced stiffness and inferior physical properties of the meniscus. Ultrasonography has the valuable advantage of allowing for assessment of the blood supply to the meniscus through Power Doppler imaging.

Results:

The presence of vessels within the meniscal implants serves as evidence of ongoing remodeling. The study included 35 patients (13 female, 22 male; mean age 41.6 years, range 18-66) who underwent arthroscopic meniscal reconstruction with polyurethane implants, with an average time from surgery of 2.8 years (range 0.3-4.5 years). Results showed complete (29.7%), significant (45.9%), or moderate (16.2%) remodeling into natural meniscal tissue in 91.8% of the implants.

Conclusion:

The mean values of extrusion in the supine position and during 90-degree flexion were significantly greater in the operated limb (2.603) compared to the contralateral limb (1.978; t(35) = 2.442; P < 0.05). No significant differences in extrusion were found between the limbs in a standing position, indicating favorable physical properties of the polyurethane meniscal implants. Further ultrasonography studies of meniscal scaffolds are deemed relevant.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/0115734056281005231030070341
2023-10-31
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e15734056281005.html?itemId=/content/journals/cmim/10.2174/0115734056281005231030070341&mimeType=html&fmt=ahah

References

  1. ŚmigielskiR. BeckerR. ZdanowiczU. CiszekB. Medial meniscus anatomy-from basic science to treatment.Knee Surg. Sports Traumatol. Arthrosc.201523181410.1007/s00167‑014‑3476‑525536949
    [Google Scholar]
  2. PopescuM.B. CarpM. TevanovI. NahoiC.A. StratilaM.A. HaramO.M. UliciA. Isolated meniscus tears in adolescent patients treated with platelet-rich plasma intra-articular injections: 3-month clinical outcome.BioMed Res. Int.202020201510.1155/2020/828246032596381
    [Google Scholar]
  3. BuchcicP. DomżalskiM. MasłońA. LebiedzińskiR. GrzegorzewskiA. Reliability of clinical evaluation of meniscus repair with the all-inside technique.Ortop. Traumatol. Rehabil.201315211010.5604/15093492.104594523652533
    [Google Scholar]
  4. ChiangC.W. ChangC.H. ChengC.Y. ChenA.C. ChanY.S. HsuK.Y. ChenW.J. Clinical results of all-inside meniscal repair using the FasT-Fix meniscal repair system.Chang Gung Med. J.201134329830521733360
    [Google Scholar]
  5. WarelukP. SzopińskiK.T. Value of modern sonography in the assessment of meniscal lesions.Eur. J. Radiol.20128192366236910.1016/j.ejrad.2011.09.01321982460
    [Google Scholar]
  6. PujolN. TardyN. BoisrenoultP. BeaufilsP. Long-term outcomes of all-inside meniscal repair.Knee Surg. Sports Traumatol. Arthrosc.201523121922410.1007/s00167‑013‑2553‑523740324
    [Google Scholar]
  7. GelberP.E. IsartA. ErquiciaJ.I. PelfortX. Tey-PonsM. MonllauJ.C. Partial meniscus substitution with a polyurethane scaffold does not improve outcome after an open-wedge high tibial osteotomy.Knee Surg. Sports Traumatol. Arthrosc.201523133433910.1007/s00167‑014‑3206‑z25069570
    [Google Scholar]
  8. SłynarskiK Conference abstract, Surgical treatment of the meniscus.Artroskop Chir Stawow200953-41414
    [Google Scholar]
  9. BulgheroniP. BulgheroniE. RegazzolaG. MazzolaC. Polyurethane scaffold for the treatment of partial meniscal tears. Clinical results with a minimum two-year follow-up.Joints20141416116625606528
    [Google Scholar]
  10. MyersK. GoodwillieA. SgaglioneN. Meniscal scaffolds.J. Knee Surg.201427643544210.1055/s‑0034‑138865625172967
    [Google Scholar]
  11. FoxA.J.S. WanivenhausF. BurgeA.J. WarrenR.F. RodeoS.A. The human meniscus: A review of anatomy, function, injury, and advances in treatment.Clin. Anat.201528226928710.1002/ca.2245625125315
    [Google Scholar]
  12. EfeT. GetgoodA. SchoferM.D. Fuchs-WinkelmannS. MannD. PalettaJ.R.J. HeyseT.J. The safety and short-term efficacy of a novel polyurethane meniscal scaffold for the treatment of segmental medial meniscus deficiency.Knee Surg. Sports Traumatol. Arthrosc.20122091822183010.1007/s00167‑011‑1779‑322089373
    [Google Scholar]
  13. VerdonkP. BeaufilsP. BellemansJ. DjianP. HeinrichsE.L. HuysseW. LaprellH. SieboldR. VerdonkR. ColombetP. CugatR. AlvarezP. NeyretP. PðsslerH. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: Two-year safety and clinical outcomes.Am. J. Sports Med.201240484485310.1177/036354651143303222328711
    [Google Scholar]
  14. LinkeR.D. UlmerM. ImhoffA.B. Replacement of the meniscus with a collagen implant (CMI).Eur. J. Trauma Emerg. Surg.200733443544010.1007/s00068‑007‑2188‑726814740
    [Google Scholar]
  15. BouyarmaneH. BeaufilsP. PujolN. BellemansJ. RobertsS. SpaldingT. ZaffagniniS. MarcacciM. VerdonkP. WomackM. VerdonkR. Polyurethane scaffold in lateral meniscus segmental defects: Clinical outcomes at 24months follow-up.Orthop. Traumatol. Surg. Res.2014100115315710.1016/j.otsr.2013.10.01124332925
    [Google Scholar]
  16. VerdonkR. VerdonkP. HuysseW. ForsythR. HeinrichsE.L. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions.Am. J. Sports Med.201139477478210.1177/036354651139804021383084
    [Google Scholar]
  17. LeroyA. BeaufilsP. FaivreB. SteltzlenC. BoisrenoultP. PujolN. Actifit ® polyurethane meniscal scaffold: MRI and functional outcomes after a minimum follow-up of 5 years.Orthop. Traumatol. Surg. Res.2017103460961410.1016/j.otsr.2017.02.01228373139
    [Google Scholar]
  18. FaivreB. BouyarmaneH. LonjonG. BoisrenoultP. PujolN. BeaufilsP. Actifit® scaffold implantation: Influence of preoperative meniscal extrusion on morphological and clinical outcomes.Orthop. Traumatol. Surg. Res.2015101670370810.1016/j.otsr.2015.06.01626363889
    [Google Scholar]
  19. BrindleT. NylandJ. JohnsonD.L. The meniscus: Review of basic principles with application to surgery and rehabilitation.J. Athl. Train.200136216016916558666
    [Google Scholar]
  20. ArnoczkyS.P. WarrenR.F. Microvasculature of the human meniscus.Am. J. Sports Med.1982102909510.1177/0363546582010002057081532
    [Google Scholar]
  21. ChoiC.J. ChoiY.J. LeeJ.J. ChoiC.H. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear.Arthroscopy201026121602160610.1016/j.arthro.2010.05.00420920838
    [Google Scholar]
  22. CostaC.R. MorrisonW.B. CarrinoJ.A. Medial meniscus extrusion on knee MRI: Is extent associated with severity of degeneration or type of tear?AJR Am. J. Roentgenol.20041831172310.2214/ajr.183.1.183001715208101
    [Google Scholar]
  23. Nogueira-BarbosaM.H. Gregio-JuniorE. LorenzatoM.M. GuermaziA. RoemerF.W. Chagas-NetoF.A. CremaM.D. Ultrasound assessment of medial meniscal extrusion: A validation study using MRI as reference standard.AJR Am. J. Roentgenol.2015204358458810.2214/AJR.14.1252225714289
    [Google Scholar]
  24. HaJ.K. JangH.W. JungJ.E. ChoS.I. KimJ.G. Clinical and radiologic outcomes after meniscus allograft transplantation at 1-year and 4-year follow-up.Arthroscopy201430111424142910.1016/j.arthro.2014.05.03225209166
    [Google Scholar]
  25. SungJ.H. HaJ.K. LeeD.W. SeoW.Y. KimJ.G. Meniscal extrusion and spontaneous osteonecrosis with root tear of medial meniscus: comparison with horizontal tear.Arthroscopy201329472673210.1016/j.arthro.2012.11.01623395469
    [Google Scholar]
  26. NoyesF.R. Barber-WestinS.D. A systematic review of the incidence and clinical significance of postoperative meniscus transplant extrusion.Knee Surg. Sports Traumatol. Arthrosc.201523129030210.1007/s00167‑014‑3329‑225246176
    [Google Scholar]
  27. CzyrnyZ. US and MR imaging of the postoperative knee.Eur. J. Radiol.2007621446710.1016/j.ejrad.2007.01.01817344010
    [Google Scholar]
  28. UnluE.N. ÜstünerE. ŞaylısoyS. YılmazÖ. ÖzcanH. Erdenİ. The role of ultrasound in the diagnosis of meniscal tears and degeneration compared to MRI and arthroscopy.Acta Medica Anatolia201423808710.15824/actamedica.32323
    [Google Scholar]
  29. JacobsonJ.A. Musculoskeletal ultrasound: Focused impact on MRI.AJR Am. J. Roentgenol.2009193361962710.2214/AJR.09.284119696273
    [Google Scholar]
  30. LesniakB.P. LovelandD. JoseJ. SelleyR. JacobsonJ.A. BediA. Use of ultrasonography as a diagnostic and therapeutic tool in sports medicine.Arthroscopy201430226027010.1016/j.arthro.2013.10.01124485118
    [Google Scholar]
  31. SladjanT. ZoranV. ZoranB. Correlation of clinical examination, ultrasound sonography, and magnetic resonance imaging findings with arthroscopic findings in relation to acute and chronic lateral meniscus injuries.J. Orthop. Sci.2014191717610.1007/s00776‑013‑0480‑424141393
    [Google Scholar]
  32. PobożyT. KielarM. A review of ultrasonographic methods for the assessment of the anterior cruciate ligament in patients with knee instability - diagnostics using a posterior approach.J. Ultrason.2016166628829527679732
    [Google Scholar]
  33. GrzelakP. PodgórskiM.T. StefańczykL. DomżalskiM. Ultrasonographic test for complete anterior cruciate ligament injury.Indian J. Orthop.201549214314910.4103/0019‑5413.15243226015601
    [Google Scholar]
  34. AcebesC. RomeroF.I. ContrerasM.A. MahilloI. Herrero-BeaumontG. Dynamic ultrasound assessment of medial meniscal subluxation in knee osteoarthritis.Rheumatology20135281443144710.1093/rheumatology/ket11023594469
    [Google Scholar]
  35. BarileA. ContiL. LanniG. CalvisiV. MasciocchiC. Evaluation of medial meniscus tears and meniscal stability: Weight-bearing MRI vs arthroscopy.Eur. J. Radiol.201382463363910.1016/j.ejrad.2012.10.01823199751
    [Google Scholar]
  36. ChibaD. MaedaS. SasakiE. OtaS. NakajiS. TsudaE. IshibashiY. Meniscal extrusion seen on ultrasonography affects the development of radiographic knee osteoarthritis: A 3-year prospective cohort study.Clin. Rheumatol.201736112557256410.1007/s10067‑017‑3803‑628920170
    [Google Scholar]
  37. RowlandG. MarD. McIffT. NelsonJ. Evaluation of meniscal extrusion with posterior root disruption and repair using ultrasound.Knee201623462763010.1016/j.knee.2016.04.00827180255
    [Google Scholar]
  38. KeserG. BayrakdarI.S. PekinerF.N. ÇelikÖ. OrhanK. A deep learning approach for masseter muscle segmentation on ultrasonography.J. Ultrason.2022229120420810.15557/JoU.2022.003436483782
    [Google Scholar]
/content/journals/cmim/10.2174/0115734056281005231030070341
Loading
/content/journals/cmim/10.2174/0115734056281005231030070341
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Actifit; Arthroscopic surgery; Knee injuries; Menisci; Tissue scaffolding; Ultrasonography
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test