Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Afterglow materials with organic room temperature phosphorescence (RTP) or thermally activated delayed fluorescence (TADF) exhibit significant potential in biological imaging due to their long lifetime. By utilizing time-resolved technology, interference from biological tissue fluorescence can be mitigated, enabling high signal-to- background ratio imaging. Despite the continued emergence of individual reports on RTP or TADF in recent years, comprehensive reviews addressing these two materials are rare. Therefore, this review aims to provide a comprehensive overview of several typical molecular designs for organic RTP and TADF materials. It also explores the primary methods through which triplet excitons resist quenching by water and oxygen. Furthermore, we analyze the principal challenges faced by afterglow materials and discuss key directions for future research with the hope of inspiring developments in afterglow imaging.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673301552240305064259
2024-03-11
2024-12-24
Loading full text...

Full text loading...

References

  1. WangX. LiangQ. LuoY. YeJ. YuY. ChenF. Engineering the next generation of theranostic biomaterials with synthetic biology.Bioact. Mater.20243251452910.1016/j.bioactmat.2023.10.01838026437
    [Google Scholar]
  2. YangM. GuoX. MouF. GuanJ. Lighting up micro-/nanorobots with fluorescence.Chem. Rev.202312373944397510.1021/acs.chemrev.2c0006236108155
    [Google Scholar]
  3. ZhouR. WangC. XuW. XieL. Biological applications of terahertz technology based on nanomaterials and nanostructures.Nanoscale20191183445345710.1039/C8NR08676A30758358
    [Google Scholar]
  4. WangK. ZhangH. GuZ. All-inorganic perovskite nanocrystal materials: New generation of scintillators for high quality X-ray imaging.Sci. Bull.201964171205120610.1016/j.scib.2019.07.00936659599
    [Google Scholar]
  5. SunK. YuanL. ChenS. SunY. WeiD. Alendronate Pt(IV) prodrug amphiphile for enhanced chemotherapy targeting and bone destruction inhibition in osteosarcoma.Adv. Healthc Mater.202321e230274610.1002/adhm.202302746
    [Google Scholar]
  6. WeiD. SunY. ZhuH. FuQ. Stimuli-responsive polymer-based nanosystems for cancer theranostics.ACS Nano20231723232232326110.1021/acsnano.3c0601938041800
    [Google Scholar]
  7. LuL. ZhangQ. WangZ. GaoL. ShenJ. Peptide- modified nanoparticles for tumor targeting and molecular imaging.Curr. Med. Chem.202128316411643610.2174/092986732766620102212213133092502
    [Google Scholar]
  8. QuartuccioN. AsselinM.C. The validation path of hypoxia PET imaging: Focus on brain tumours.Curr. Med. Chem.201825263074309510.2174/092986732466617111612370229149829
    [Google Scholar]
  9. CaiS. ShiH. LiJ. GuL. NiY. ChengZ. WangS. XiongW. LiL. AnZ. HuangW. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions.Adv. Mater.20172935170124410.1002/adma.20170124428714219
    [Google Scholar]
  10. FateminiaS.M.A. MaoZ. XuS. YangZ. ChiZ. LiuB. Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications.Angew. Chem. Int. Ed.20175640121601216410.1002/anie.20170594528771963
    [Google Scholar]
  11. WangX.F. XiaoH. ChenP.Z. YangQ.Z. ChenB. TungC.H. ChenY.Z. WuL.Z. Pure organic room temperature phosphorescence from excited dimers in self-assembled nanoparticles under visible and near-infrared irradiation in water.J. Am. Chem. Soc.2019141125045505010.1021/jacs.9b0085930827093
    [Google Scholar]
  12. ZhangJ. ChenW. ChenR. LiuX.K. XiongY. KershawS.V. RogachA.L. AdachiC. ZhangX. LeeC.S. Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers.Chem. Commun.20165279117441174710.1039/C6CC05130H27722240
    [Google Scholar]
  13. ZhangJ. ChenW. KalytchukS. LiK.F. ChenR. AdachiC. ChenZ. RogachA.L. ZhuG. YuP.K.N. ZhangW. CheahK.W. ZhangX. LeeC.S. Self-assembly of electron donor–acceptor-based carbazole derivatives: Novel fluorescent organic nanoprobes for both one-and two-photon cellular imaging.ACS Appl. Mater. Interfaces2016818113551136510.1021/acsami.6b0325927097920
    [Google Scholar]
  14. ZhuZ. TianD. GaoP. WangK. LiY. ShuX. ZhuJ. ZhaoQ. Cell-penetrating peptides transport noncovalently linked thermally activated delayed fluorescence nanoparticles for time-resolved luminescence imaging.J. Am. Chem. Soc.201814050174841749110.1021/jacs.8b0843830525541
    [Google Scholar]
  15. LiT. YangD. ZhaiL. WangS. ZhaoB. FuN. WangL. TaoY. HuangW. Thermally activated delayed fluorescence organic dots (tadf odots) for time-resolved and confocal fluorescence imaging in living cells and in vivo.Adv. Sci.201744160016610.1002/advs.20160016628435770
    [Google Scholar]
  16. NykM. KumarR. OhulchanskyyT.Y. BergeyE.J. PrasadP.N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors.Nano Lett.20088113834383810.1021/nl802223f18928324
    [Google Scholar]
  17. WangZ. LiuJ.J. YinS.Y. LiM.Y. HouY.J. WangD. MoJ.T. ChenG. Ultralong near infrared room temperature phosphorescence in Cu(I) metal-organic framework based-on D–π–A–π–D linkers.Adv. Funct. Mater.20233316221298510.1002/adfm.202212985
    [Google Scholar]
  18. ZhenX. TaoY. AnZ. ChenP. XuC. ChenR. HuangW. PuK. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging.Adv. Mater.20172933160666510.1002/adma.20160666528657119
    [Google Scholar]
  19. NiF. ZhuZ. TongX. ZengW. AnK. WeiD. GongS. ZhaoQ. ZhouX. YangC. Hydrophilic, red-emitting, and thermally activated delayed fluorescence emitter for time-resolved luminescence imaging by mitochondrion-induced aggregation in living cells.Adv. Sci.201965180172910.1002/advs.20180172930886801
    [Google Scholar]
  20. LiX. BaryshnikovG. DingL. BaoX. LiX. LuJ. LiuM. ShenS. LuoM. ZhangM. ÅgrenH. WangX. ZhuL. Dual-phase thermally activated delayed fluorescence luminogens: A material for time-resolved imaging independent of probe pretreatment and probe concentration.Angew. Chem. Int. Ed.202059197548755410.1002/anie.20200018532073698
    [Google Scholar]
  21. ZhaoW. HeZ. TangB.Z. Room-temperature phosphorescence from organic aggregates.Nat. Rev. Mater.202051286988510.1038/s41578‑020‑0223‑z
    [Google Scholar]
  22. GuL. WuH. MaH. YeW. JiaW. WangH. ChenH. ZhangN. WangD. QianC. AnZ. HuangW. ZhaoY. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer.Nat. Commun.202011194410.1038/s41467‑020‑14792‑132071308
    [Google Scholar]
  23. DengZ. ZhangJ. ZhouJ. ShenW. ZuoY. WangJ. YangS. LiuJ. ChenY. ChenC-C. JiaG. AlamP. LamJ.W.Y. TangB.Z. Dynamic transition between monomer and excimer phosphorescence in organic near-infrared phosphorescent crystals.Adv Mater.20244e2311384
    [Google Scholar]
  24. DaiW. ZhangY. WuX. GuoS. MaJ. ShiJ. TongB. CaiZ. XieH. DongY. Red-emissive organic room-temperature phosphorescence material for time-resolved luminescence bioimaging.CCS Chem.2022482550255910.31635/ccschem.021.202101120
    [Google Scholar]
  25. DaiX. LiuZ. GeY. WeiP. Ultralong aqueous organic room-temperature phosphorescent probes for in vivo time-resolved bioimaging.Trends Analyt. Chem.202316811733910.1016/j.trac.2023.117339
    [Google Scholar]
  26. YangJ. ZhangY. WuX. DaiW. ChenD. ShiJ. TongB. PengQ. XieH. CaiZ. DongY. ZhangX. Rational design of pyrrole derivatives with aggregation-induced phosphorescence characteristics for time-resolved and two-photon luminescence imaging.Nat. Commun.2021121488310.1038/s41467‑021‑25174‑634385449
    [Google Scholar]
  27. GarainS. GarainB.C. EswaramoorthyM. PatiS.K. GeorgeS.J. Light-harvesting supramolecular phosphors: Highly efficient room temperature phosphorescence in solution and hydrogels.Angew. Chem. Int. Ed.20216036197201972410.1002/anie.20210729534189815
    [Google Scholar]
  28. LiP. GuoY. JiaY. GuanH. WangC. WuZ. SunS. QuZ. ZhouP. ZhaoG. Achieving metal-free phosphorescence in dilute solutions for imaging hypoxia in cells and tumors.Mater. Chem. Front.20215197170717510.1039/D1QM00733E
    [Google Scholar]
  29. LvA. YeW. JiangX. GanN. ShiH. YaoW. MaH. AnZ. HuangW. Room-temperature phosphorescence from metal-free organic materials in solution: origin and molecular design.J. Phys. Chem. Lett.20191051037104210.1021/acs.jpclett.9b0022130773889
    [Google Scholar]
  30. WangX.F. GuoW.J. XiaoH. YangQ.Z. ChenB. ChenY.Z. TungC.H. WuL.Z. Pure Organic Room Temperature Phosphorescence from Unique Micelle-Assisted Assembly of Nanocrystals in Water Pure organic room temperature phosphorescence from unique micelle-assisted assembly of nanocrystals in water.Adv. Funct. Mater.20203013190728210.1002/adfm.201907282
    [Google Scholar]
  31. GaoH. GaoZ. JiaoD. ZhangJ. LiX. TangQ. ShiY. DingD. Boosting room temperature phosphorescence performance by alkyl modification for intravital orthotopic lung tumor imaging.Small20211722200544910.1002/smll.20200544933599120
    [Google Scholar]
  32. FanY. LiuS. WuM. XiaoL. FanY. HanM. ChangK. ZhangY. ZhenX. LiQ. LiZ. Mobile phone flashlight-excited red afterglow bioimaging.Adv. Mater.20223418220128010.1002/adma.20220128035261081
    [Google Scholar]
  33. WangC. LiuY.H. LiuY. Near-infrared phosphorescent switch of diarylethene phenylpyridinium derivative and cucurbit[8]uril for cell imaging.Small20221821220182110.1002/smll.20220182135460176
    [Google Scholar]
  34. MaX.K. ZhouX. WuJ. ShenF.F. LiuY. Two-photon excited near-infrared phosphorescence based on secondary supramolecular confinement.Adv. Sci.2022918220118210.1002/advs.20220118235466559
    [Google Scholar]
  35. XiaoF. GaoH. LeiY. DaiW. LiuM. ZhengX. CaiZ. HuangX. WuH. DingD. Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging.Nat. Commun.202213118610.1038/s41467‑021‑27914‑035013474
    [Google Scholar]
  36. UoyamaH. GoushiK. ShizuK. NomuraH. AdachiC. Highly efficient organic light-emitting diodes from delayed fluorescence.Nature2012492742823423810.1038/nature1168723235877
    [Google Scholar]
  37. ZhangQ. LiB. HuangS. NomuraH. TanakaH. AdachiC. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence.Nat. Photonics20148432633210.1038/nphoton.2014.12
    [Google Scholar]
  38. NiF. ZhuZ. TongX. XieM. ZhaoQ. ZhongC. ZouY. YangC. Organic emitter integrating aggregation-induced delayed fluorescence and room-temperature phosphorescence characteristics, and its application in time-resolved luminescence imaging.Chem. Sci.20189286150615510.1039/C8SC01485J30090303
    [Google Scholar]
  39. WuY. JiaoL. SongF. ChenM. LiuD. YangW. SunY. HongG. LiuL. PengX. Achieving long-lived thermally activated delayed fluorescence in the atmospheric aqueous environment by nano-encapsulation.Chem. Commun.20195596145221452510.1039/C9CC07704A31737871
    [Google Scholar]
  40. XiongX. SongF. WangJ. ZhangY. XueY. SunL. JiangN. GaoP. TianL. PengX. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.J. Am. Chem. Soc.2014136279590959710.1021/ja502292p24936960
    [Google Scholar]
  41. JinJ. JiangH. YangQ. TangL. TaoY. LiY. ChenR. ZhengC. FanQ. ZhangK.Y. ZhaoQ. HuangW. Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow.Nat. Commun.202011184210.1038/s41467‑020‑14669‑332051404
    [Google Scholar]
  42. XiaoY.F. ChenJ.X. LiS. TaoW.W. TianS. WangK. CuiX. HuangZ. ZhangX.H. LeeC.S. Manipulating exciton dynamics of thermally activated delayed fluorescence materials for tuning two-photon nanotheranostics.Chem. Sci.202011388889510.1039/C9SC05817F34123067
    [Google Scholar]
  43. HeT. RenC. LiZ. XiaoS. LiJ. LinX. YeC. ZhangJ. GuoL. HuW. ChenR. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging.Appl. Phys. Lett.20181122121110210.1063/1.5034375
    [Google Scholar]
  44. FangF. ZhuL. LiM. SongY. SunM. ZhaoD. ZhangJ. Thermally activated delayed fluorescence material: An emerging class of metal-free luminophores for biomedical applications.Adv. Sci.2021824210297010.1002/advs.20210297034705318
    [Google Scholar]
  45. LiX. ShenS. ZhangC. LiuM. LuJ. ZhuL. Small- molecule based thermally activated delayed fluorescence materials with dual-emission characteristics.Sci. China Chem.202164453454610.1007/s11426‑020‑9908‑5
    [Google Scholar]
  46. YangZ. MaoZ. XieZ. ZhangY. LiuS. ZhaoJ. XuJ. ChiZ. AldredM.P. Recent advances in organic thermally activated delayed fluorescence materials.Chem. Soc. Rev.2017463915101610.1039/C6CS00368K28117864
    [Google Scholar]
  47. ZhiJ. ZhouQ. ShiH. AnZ. HuangW. Organic Room Temperature Phosphorescence Materials for Biomedical Applications Organic room temperature phosphorescence materials for biomedical applications.Chem. Asian J.202015794795710.1002/asia.20190165832031734
    [Google Scholar]
  48. ZhangY. LiH. YangM. DaiW. ShiJ. TongB. CaiZ. WangZ. DongY. YuX. Organic room-temperature phosphorescence materials for bioimaging.Chem. Commun. (Camb.)202359365329534210.1039/D3CC00923H37039234
    [Google Scholar]
  49. ZhouW.L. LinW. ChenY. LiuY. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging.Chem. Sci.202213277976798910.1039/D2SC01770A35919429
    [Google Scholar]
  50. SunH. ZhuL. Achieving purely organic room temperature phosphorescence in aqueous solution.Aggregate202341e25310.1002/agt2.253
    [Google Scholar]
  51. FanY. LiQ. LiZ. Afterglow bio-applications by utilizing triplet excited states of organic materials.Sci. China Chem.202366112930294010.1007/s11426‑023‑1790‑0
    [Google Scholar]
  52. ZhouQ. YangC. ZhaoY. Dynamic organic room-temperature phosphorescent systems.Chem2023992446248010.1016/j.chempr.2023.05.023
    [Google Scholar]
  53. XuS. WuL.L. WangX. HuH.Y. Progress and challenges: Responsive long-lived organic luminescent probes for biosensing and bioimaging.Trends Analyt. Chem.202316911735610.1016/j.trac.2023.117356
    [Google Scholar]
  54. ScypinskiS. LoveL.J.C. Cyclodextrin-induced room-temperature phosphorescence of nitrogen heterocycles and bridged biphenyls.Anal. Chem.198456333133610.1021/ac00267a007
    [Google Scholar]
  55. EvansD.F. Photomagnetism of triplet states of organic molecules.Nature1955176448677777810.1038/176777a0
    [Google Scholar]
  56. ZhangY. LiJ. ZhaoJ. LiX. WangZ. HuangY. ZhangH. LiuQ. LeiY. DingD. pi-pi interaction-induced organic long-wavelength room-temperature phosphorescence for in vivo atherosclerotic plaque imaging.Angew. Chem. Int. Ed. Engl.2023e20231389010.1002/anie.202313890
    [Google Scholar]
  57. DouX. ZhuT. WangZ. SunW. LaiY. SuiK. TanY. ZhangY. YuanW.Z. Color-tunable, excitation-dependent, and time-dependent afterglows from pure organic amorphous polymers.Adv. Mater.20203247200476810.1002/adma.20200476833089564
    [Google Scholar]
  58. RenC. WangZ. OuH. WangT. ZhaoZ. WeiY. YuanH. TanY. YuanW.Z. Multi-responsive afterglows from aqueous processable amorphous polysaccharide films.Small Methods202482e230024310.1002/smtd.202300243
    [Google Scholar]
  59. YouY. HuangK. LiuX. PanX. ZhiJ. HeQ. ShiH. AnZ. MaX. HuangW. Hydrophilic ultralong organic nanophosphors.Small2020168190673310.1002/smll.20190673332003926
    [Google Scholar]
  60. YanZ.A. LinX. SunS. MaX. TianH. Activating room-temperature phosphorescence of organic luminophores via external heavy-atom effect and rigidity of ionic polymer matrix.Angew. Chem. Int. Ed.20216036197351973910.1002/anie.20210802534240799
    [Google Scholar]
  61. GarainS. KuilaS. GarainB.C. KatariaM. BorahA. PatiS.K. GeorgeS.J. Arylene diimide phosphors: Aggregation modulated twin room temperature phosphorescence from pyromellitic diimides.Angew. Chem. Int. Ed.20216022123231232710.1002/anie.20210153833660368
    [Google Scholar]
  62. ZhangY. ChenX. XuJ. ZhangQ. GaoL. WangZ. QuL. WangK. LiY. CaiZ. ZhaoY. YangC. Cross-linked polyphosphazene nanospheres boosting long-lived organic room-temperature phosphorescence.J. Am. Chem. Soc.2022144136107611710.1021/jacs.2c0207635316063
    [Google Scholar]
  63. YangZ. MaoZ. ZhangX. OuD. MuY. ZhangY. ZhaoC. LiuS. ChiZ. XuJ. WuY.C. LuP.Y. LienA. BryceM.R. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence.Angew. Chem. Int. Ed.20165562181218510.1002/anie.20150922426836346
    [Google Scholar]
  64. MaH. ShiW. RenJ. LiW. PengQ. ShuaiZ. Electrostatic interaction-induced room-temperature phosphorescence in pure organic molecules from QM/MM calculations.J. Phys. Chem. Lett.20167152893289810.1021/acs.jpclett.6b0115627414718
    [Google Scholar]
  65. HeG. Torres DelgadoW. SchatzD.J. MertenC. MohammadpourA. MayrL. FergusonM.J. McDonaldR. BrownA. ShankarK. RivardE. Coaxing solid-state phosphorescence from tellurophenes.Angew. Chem. Int. Ed.201453184587459110.1002/anie.20130737324668889
    [Google Scholar]
  66. ZhangX. ChengY. YouJ. ZhangJ. YinC. ZhangJ. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance.Nat. Commun.2022131111710.1038/s41467‑022‑28759‑x35236853
    [Google Scholar]
  67. NicolA. KwokR.T.K. ChenC. ZhaoW. ChenM. QuJ. TangB.Z. Ultrafast delivery of aggregation-induced emission nanoparticles and pure organic phosphorescent nanocrystals by saponin encapsulation.J. Am. Chem. Soc.201713941147921479910.1021/jacs.7b0871028960975
    [Google Scholar]
  68. WangJ. HuangZ. MaX. TianH. Visible-light-excited room-temperature phosphorescence in water by cucurbit [8] uril-mediated supramolecular assembly.Angew. Chem. Int. Ed.202059259928993310.1002/anie.20191451331799773
    [Google Scholar]
  69. YuH.J. ZhouQ. DaiX. ShenF.F. ZhangY.M. XuX. LiuY. Photooxidation-driven purely organic room-temperature phosphorescent lysosome-targeted imaging.J. Am. Chem. Soc.202114334138871389410.1021/jacs.1c0674134410118
    [Google Scholar]
  70. HeZ. GaoH. ZhangS. ZhengS. WangY. ZhaoZ. DingD. YangB. ZhangY. YuanW.Z. Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications.Adv. Mater.20193118180722210.1002/adma.20180722230907466
    [Google Scholar]
  71. ShiH. SongL. MaH. SunC. HuangK. LvA. YeW. WangH. CaiS. YaoW. ZhangY. ZhengR. AnZ. HuangW. Highly efficient ultralong organic phosphorescence through intramolecular-space heavy-atom effect.J. Phys. Chem. Lett.201910359560010.1021/acs.jpclett.8b0371230672299
    [Google Scholar]
  72. ChenC. ChiZ. ChongK.C. BatsanovA.S. YangZ. MaoZ. YangZ. LiuB. Carbazole isomers induce ultralong organic phosphorescence.Nat. Mater.202120217518010.1038/s41563‑020‑0797‑232958877
    [Google Scholar]
  73. ZhaoW. CheungT.S. JiangN. HuangW. LamJ.W.Y. ZhangX. HeZ. TangB.Z. Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer.Nat. Commun.2019101159510.1038/s41467‑019‑09561‑830962451
    [Google Scholar]
  74. ZhangX. ChongK.C. XieZ. LiuB. Color-tunable dual-mode organic afterglow for white-light emission and information encryption based on carbazole doping.Angew. Chem. Int. Ed.20236245e20231033510.1002/anie.20231033537726259
    [Google Scholar]
  75. QianC. ZhangX. MaZ. FuX. LiZ. JinH. ChenM. JiangH. MaZ. Matrix-mediated color-tunable ultralong organic room temperature phosphorescence of 7H-Benzo[c]carbazole derivatives.CCS Chemistry20246379881110.31635/ccschem.023.202202561
    [Google Scholar]
  76. ZhangY. ChenJ. SunQ. ZhangH. XueS. YangW. In-situ grafting N-arylcarbazoles enables more ultra- long room temperature phosphorescence polymers.Chem. Eng. J.202345213938510.1016/j.cej.2022.139385
    [Google Scholar]
  77. GaoW. SuY. WangZ. ZhangY. ZhangD. JiaP. YangC. LiY. GangulyR. ZhaoY. Effect of Carbazolyl Groups on Photophysical Properties of Cyanuric Chloride Effect of carbazolyl groups on photophysical properties of cyanuric chloride.ACS Appl. Mater. Interfaces20191150471624716910.1021/acsami.9b1755431800214
    [Google Scholar]
  78. TianY. YangJ. LiuZ. GaoM. LiX. CheW. FangM. LiZ. Multistage stimulus-responsive room temperature phosphorescence based on host–guest doping systems.Angew. Chem. Int. Ed.20216037202592026310.1002/anie.20210763934236129
    [Google Scholar]
  79. BoltonO. LeeK. KimH.J. LinK.Y. KimJ. Activating efficient phosphorescence from purely organic materials by crystal design.Nat. Chem.20113320521010.1038/nchem.98421336325
    [Google Scholar]
  80. WangZ. LiA. ZhaoZ. ZhuT. ZhangQ. ZhangY. TanY. YuanW.Z. Accessing excitation and time-responsive afterglows from aqueous processable amorphous polymer films through doping and energy transfer.Adv. Mater.20223431220218210.1002/adma.20220218235684938
    [Google Scholar]
  81. WangY. GaoH. YangJ. FangM. DingD. TangB.Z. LiZ. High performance of simple organic phosphorescence host–guest materials and their application in time-resolved bioimaging.Adv. Mater.20213318200781110.1002/adma.20200781133772942
    [Google Scholar]
  82. TianS. MaH. WangX. LvA. ShiH. GengY. LiJ. LiangF. SuZ.M. AnZ. HuangW. Utilizing d–pπ bonds for ultralong organic phosphorescence.Angew. Chem. Int. Ed.201958206645664910.1002/anie.20190154630801896
    [Google Scholar]
  83. YangJ. ZhenX. WangB. GaoX. RenZ. WangJ. XieY. LiJ. PengQ. PuK. LiZ. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens.Nat. Commun.20189184010.1038/s41467‑018‑03236‑629483501
    [Google Scholar]
  84. LiJ.A. ZhangL. WuC. HuangZ. LiS. ZhangH. YangQ. MaoZ. LuoS. LiuC. ShiG. XuB. Switchable and highly robust ultralong room-temperature phosphorescence from polymer-based transparent films with three-dimensional covalent networks for erasable light printing.Angew. Chem. Int. Ed.2023627e20221728410.1002/anie.20221728436512442
    [Google Scholar]
  85. ZhouW.L. ChenY. YuQ. ZhangH. LiuZ.X. DaiX.Y. LiJ.J. LiuY. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging.Nat. Commun.2020111465510.1038/s41467‑020‑18520‑732938918
    [Google Scholar]
  86. LiD. LuF. WangJ. HuW. CaoX.M. MaX. TianH. Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host–guest and dual-emission strategy.J. Am. Chem. Soc.201814051916192310.1021/jacs.7b1280029300466
    [Google Scholar]
  87. ZhangZ.Y. LiuY. Ultralong room-temperature phosphorescence of a solid-state supramolecule between phenylmethylpyridinium and cucurbit[6]uril.Chem. Sci.201910337773777810.1039/C9SC02633A31588325
    [Google Scholar]
  88. MaX.K. ZhangW. LiuZ. ZhangH. ZhangB. LiuY. Supramolecular pins with ultralong efficient phosphorescence.Adv. Mater.20213314200747610.1002/adma.20200747633660350
    [Google Scholar]
  89. TaoY. TangL. WeiQ. JinJ. HuW. ChenR. YangQ. LiH. LiP. XingG. FanQ. ZhengC. HuangW. Near-infrared-excitable organic ultralong phosphorescence through multiphoton absorption.Research202020202020/290492810.34133/2020/290492833623903
    [Google Scholar]
  90. QiS. KimS. NguyenV.N. KimY. NiuG. KimG. KimS.J. ParkS. YoonJ. Highly efficient aggregation-induced red-emissive organic thermally activated delayed fluorescence materials with prolonged fluorescence lifetime for time-resolved luminescence bioimaging.ACS Appl. Mater. Interfaces20201246512935130110.1021/acsami.0c1593633156606
    [Google Scholar]
  91. D’AléoA. FelouatA. HeresanuV. RanguisA. ChaudansonD. KarapetyanA. GiorgiM. FagesF. Two-photon excited fluorescence of BF2 complexes of curcumin analogues: Toward NIR-to-NIR fluorescent organic nanoparticles.J. Mater. Chem. C Mater. Opt. Electron. Devices20142265208521510.1039/C4TC00543K
    [Google Scholar]
  92. KimD.H. D’AléoA. ChenX.K. SandanayakaA.D.S. YaoD. ZhaoL. KominoT. ZaborovaE. CanardG. TsuchiyaY. ChoiE. WuJ.W. FagesF. BrédasJ.L. RibierreJ.C. AdachiC. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter.Nat. Photonics20181229810410.1038/s41566‑017‑0087‑y
    [Google Scholar]
  93. RanC. XuX. RaymondS.B. FerraraB.J. NealK. BacskaiB.J. MedarovaZ. MooreA. Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits.J. Am. Chem. Soc.200913142152571526110.1021/ja904704319807070
    [Google Scholar]
  94. PaisleyN.R. HalldorsonS.V. TranM.V. GuptaR. KamalS. AlgarW.R. HudsonZ.M. Near-infrared-emitting boron-difluoride-curcuminoid-based polymers exhibiting thermally activated delayed fluorescence as biological imaging probes.Angew. Chem. Int. Ed.20216034186301863810.1002/anie.20210396534133838
    [Google Scholar]
  95. ChristophersonC.J. PaisleyN.R. XiaoZ. AlgarW.R. HudsonZ.M. Red-emissive cell-penetrating polymer dots exhibiting thermally activated delayed fluorescence for cellular imaging.J. Am. Chem. Soc.202114333133421334910.1021/jacs.1c0629034382775
    [Google Scholar]
  96. TrofymchukK. ValanciunaiteJ. AndreiukB. ReischA. CollotM. KlymchenkoA.S. BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells.J. Mater. Chem. B Mater. Biol. Med.20197345199521010.1039/C8TB02781A31364614
    [Google Scholar]
  97. WangZ. HongX. ZongS. TangC. CuiY. ZhengQ. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation.Sci. Rep.2015511260210.1038/srep1260226211417
    [Google Scholar]
  98. ZhangY. YeF. SunW. YuJ. WuI.C. RongY. ZhangY. ChiuD.T. Light-induced crosslinkable semiconducting polymer dots.Chem. Sci.2015632102210910.1039/C4SC03959A25709806
    [Google Scholar]
  99. WangD. ZhangT. WuB. YeC. WeiZ. CaoZ. WangG. Reversibly photoswitchable dual-color fluorescence and controlled release properties of polymeric nanoparticles.Macromolecules201952187130713610.1021/acs.macromol.9b01735
    [Google Scholar]
  100. ZhuL. WuW. ZhuM.Q. HanJ.J. HurstJ.K. LiA.D.Q. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging.J. Am. Chem. Soc.2007129123524352610.1021/ja068452k17335209
    [Google Scholar]
  101. YuM. ZhaoW. NiF. ZhaoQ. YangC. Photoswitchable thermally activated delayed fluorescence nanoparticles for “double-check” confocal and time-resolved luminescence bioimaging.Adv. Opt. Mater.2022109210243710.1002/adom.202102437
    [Google Scholar]
  102. LuoM. LiX. DingL. BaryshnikovG. ShenS. ZhuM. ZhouL. ZhangM. LuJ. ÅgrenH. WangX. ZhuL. Integrating time-resolved imaging information by single-luminophore dual thermally activated delayed fluorescence.Angew. Chem. Int. Ed.20205939170181702510.1002/anie.20200907732701183
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673301552240305064259
Loading
/content/journals/cmc/10.2174/0109298673301552240305064259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test