Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The proteins CDK4 and CDK6, which are extremely homologous, control cell cycle entry. For the treatment of breast tumors that include hormone receptors, CDK4 and CDK6 inhibitors have been authorized. The link between CDK4 and liver hepatocellular carcinoma (LIHC), however, has not yet been established.

Objective

The study aimed to explore the link between CDK4 and LIHC and the effect of CDK4 inhibitors on LIHC.

Methods

In this study, we have evaluated CDK4's prognostic relevance in LIHC using data from The Cancer Genome Atlas (TCGA). The relationship between clinical-pathologic features and CDK4 expression has been evaluated using the Kruskal-Wallis test, the Wilcoxon signed-rank test, and logistic regression. We have analyzed CDK4 and factors related to the prognosis of HCC using the Kaplan-Meier technique and multivariate Cox regression. Gene set enrichment analysis (GSEA) identified CDK4-related critical pathways. To investigate the connections between CDK4 and cancer immune infiltrates, TCGA data were employed in single-sample gene set enrichment analysis (ssGSEA). For functional validation, CDK4 was chosen since it can be inhibited by recognized CDK4/6-inhibitors (, abemaciclib).

Results

Poorer overall and disease-specific outcomes were linked to high CDK4 expression in HCC patients. GSEA suggested that CDK4 and immune response are closely connected. The amount of Th2 cells infiltrating was positively correlated with CDK4 expression, while the amount of cytotoxic cells infiltrating was negatively correlated, according to ssGSEA. Both and , the anti-tumor efficacy of CDK4 inhibitor has been found to be superior to that of sorafenib.

Conclusion

This study suggests a relationship between CDK4 and immune infiltration and prognosis in HCC. Additionally, a CDK4 inhibitor may have anti-tumor properties against hepatocellular cancer.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673279399240102095116
2024-01-12
2024-12-24
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/2/CMC-32-2-08.html?itemId=/content/journals/cmc/10.2174/0109298673279399240102095116&mimeType=html&fmt=ahah

References

  1. ChakrabortyE. SarkarD. Emerging therapies for hepatocellular carcinoma (HCC).Cancers20221411279810.3390/cancers1411279835681776
    [Google Scholar]
  2. DonneR. LujambioA. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma.Hepatology20237751773179610.1002/hep.3274035989535
    [Google Scholar]
  3. CervelloM. BachvarovD. LampiasiN. CusimanoA. AzzolinaA. McCubreyJ.A. MontaltoG. Molecular mechanisms of sorafenib action in liver cancer cells.Cell Cycle201211152843285510.4161/cc.2119322801548
    [Google Scholar]
  4. DahiyaM. DurejaH. Sorafenib for hepatocellular carcinoma: Potential molecular targets and resistance mechanisms.J. Chemother.202234528630110.1080/1120009X.2021.195520234291704
    [Google Scholar]
  5. MahipalA. KommalapatiA. MehtaR. KimR.D. Molecular-targeted therapies in hepatocellular carcinoma.Hepatocellular Carcinoma: Translational Precision Medicine Approaches. HoshidaY. Cham, CH201922523810.1007/978‑3‑030‑21540‑8_11
    [Google Scholar]
  6. StotzM. GergerA. HaybaeckJ. KiesslichT. BullockM.D. PichlerM. Molecular targeted therapies in hepatocellular carcinoma: Past, present and future.Anticancer Res.201535115737574426503994
    [Google Scholar]
  7. VogelA. MeyerT. SapisochinG. SalemR. SaborowskiA. Hepatocellular carcinoma.Lancet2022400103601345136210.1016/S0140‑6736(22)01200‑436084663
    [Google Scholar]
  8. MbraveI. 150: Exploratory efficacy and safety results in patients with hepatocellular carcinoma without macrovascular invasion or extrahepatic spread treated with atezolizumab + bevacizumab or sorafenib.Gastroenterol. Hepatol.2021171415
    [Google Scholar]
  9. Plaz TorresM.C. LaiQ. PiscagliaF. CaturelliE. CabibboG. BiasiniE. PelizzaroF. MarraF. TrevisaniF. GianniniE.G. Treatment of hepatocellular carcinoma with immune checkpoint inhibitors and applicability of first-line atezolizumab/bevacizumab in a real-life setting.J. Clin. Med.20211015320110.3390/jcm1015320134361985
    [Google Scholar]
  10. MounikaP. GurupadayyaB. KumarH.Y. NamithaB. An overview of CDK enzyme inhibitors in cancer therapy.Curr. Cancer Drug Targets202323860361910.2174/156800962366623032014471336959160
    [Google Scholar]
  11. MughalM.J. BhadreshaK. KwokH.F. CDK inhibitors from past to present: A new wave of cancer therapy.Semin. Cancer Biol.20238810612210.1016/j.semcancer.2022.12.00636565895
    [Google Scholar]
  12. SherrC.J. RobertsJ.M. CDK inhibitors: Positive and negative regulators of G1-phase progression.Genes Dev.199913121501151210.1101/gad.13.12.150110385618
    [Google Scholar]
  13. FasslA. GengY. SicinskiP. CDK4 and CDK6 kinases: From basic science to cancer therapy.Science20223756577eabc149510.1126/science.abc149535025636
    [Google Scholar]
  14. RaheemF. OforiH. SimpsonL. ShahV. Abemaciclib: The first FDA-approved CDK4/6 inhibitor for the adjuvant treatment of HR+ HER2− early breast cancer.Ann. Pharmacother.202256111258126610.1177/1060028021107332235135362
    [Google Scholar]
  15. ShenS. DeanD.C. YuZ. DuanZ. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway.Hepatol. Res.201949101097110810.1111/hepr.1335331009153
    [Google Scholar]
  16. HuangR. LiuJ. LiH. ZhengL. JinH. ZhangY. MaW. SuJ. WangM. YangK. Identification of hub genes and their correlation with immune infiltration cells in hepatocellular carcinoma based on GEO and TCGA databases.Front. Genet.20211264735310.3389/fgene.2021.64735333995482
    [Google Scholar]
  17. LiuS. TangQ. HuangJ. ZhanM. ZhaoW. YangX. LiY. QiuL. ZhangF. LuL. HeX. Prognostic analysis of tumor mutation burden and immune infiltration in hepatocellular carcinoma based on TCGA data.Aging (Albany NY)2021138112571128010.18632/aging.20281133820866
    [Google Scholar]
  18. PavlovićN. HeindryckxF. Exploring the role of endoplasmic reticulum stress in hepatocellular carcinoma through mining of the human protein atlas.Biology202110764010.3390/biology1007064034356495
    [Google Scholar]
  19. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑825516281
    [Google Scholar]
  20. RudnickP.A. MarkeyS.P. RothJ. MirokhinY. YanX. TchekhovskoiD.V. EdwardsN.J. ThanguduR.R. KetchumK.A. KinsingerC.R. MesriM. RodriguezH. SteinS.E. A description of the clinical proteomic tumor analysis consortium (CPTAC) common data analysis pipeline.J. Proteome Res.20161531023103210.1021/acs.jproteome.5b0109126860878
    [Google Scholar]
  21. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  22. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.050658010216199517
    [Google Scholar]
  23. TilfordC.A. SiemersN.O. Gene set enrichment analysis.Methods Mol. Biol.20095639912110.1007/978‑1‑60761‑175‑2_619597782
    [Google Scholar]
  24. ZhuC. XiaoH. JiangX. TongR. GuanJ. Prognostic biomarker DDOST and its correlation with immune infiltrates in hepatocellular carcinoma.Front. Genet.20221281952010.3389/fgene.2021.81952035173766
    [Google Scholar]
  25. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  26. KohlM. WieseS. WarscheidB. Cytoscape: Software for visualization and analysis of biological networks.Methods Mol. Biol.201169629130310.1007/978‑1‑60761‑987‑1_1821063955
    [Google Scholar]
  27. ColomerC. MargalefP. VillanuevaA. VertA. PecharromanI. SoléL. González-FarréM. AlonsoJ. MontagutC. Martinez-IniestaM. BertranJ. BorràsE. IglesiasM. SabidóE. BigasA. BoultonS.J. EspinosaL. IKKα kinase regulates the DNA damage response and drives chemo-resistance in cancer.Mol. Cell2019754669682.e510.1016/j.molcel.2019.05.03631302002
    [Google Scholar]
  28. WimalagunasekaraS.S. WeeramanJ.W.J.K. TirimanneS. FernandoP.C. Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa).J. Genet. Eng. Biotechnol.20232116910.1186/s43141‑023‑00515‑837246172
    [Google Scholar]
  29. KarouliaZ. WuY. AhmedT.A. XinQ. BollardJ. KreplerC. WuX. ZhangC. BollagG. HerlynM. FaginJ.A. LujambioA. GavathiotisE. PoulikakosP.I. An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling.Cancer Cell201630350150310.1016/j.ccell.2016.08.00827622340
    [Google Scholar]
  30. LucianiA. SchumannA. BerquezM. ChenZ. NieriD. FailliM. DebaixH. FestaB.P. TokonamiN. RaimondiA. CremonesiA. CarrellaD. FornyP. KölkerS. Diomedi CamasseiF. DiazF. MoraesC.T. Di BernardoD. BaumgartnerM.R. DevuystO. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency.Nat. Commun.202011197010.1038/s41467‑020‑14729‑832080200
    [Google Scholar]
  31. Brill-KarnielyY. DrorD. Duanis-AssafT. GoldsteinY. SchwobO. MilloT. OrehovN. SternT. JaberM. LoyferN. Vosk-ArtziM. BenyaminiH. BielenbergD. KaplanT. BuganimY. RechesM. BennyO. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability.Sci. Adv.202063eaax286110.1126/sciadv.aax286131998832
    [Google Scholar]
  32. BaumannD. HägeleT. MochayediJ. DrebantJ. VentC. BlobnerS. NollJ.H. NickelI. SchumacherC. BoosS.L. DanielA.S. WendlerS. VolkmarM. StrobelO. OffringaR. Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.Nat. Commun.2020111217610.1038/s41467‑020‑15979‑232358491
    [Google Scholar]
  33. DominguezD. TsaiY.H. GomezN. JhaD.K. DavisI. WangZ. A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer.Cell Res.201626894696210.1038/cr.2016.8427364684
    [Google Scholar]
  34. LeeH.L. JangJ.W. LeeS.W. YooS.H. KwonJ.H. NamS.W. BaeS.H. ChoiJ.Y. HanN.I. YoonS.K. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization.Sci. Rep.201991326010.1038/s41598‑019‑40078‑830824840
    [Google Scholar]
  35. ZhouY. YuK. Th1, Th2, and Th17 cells and their corresponding cytokines are associated with anxiety, depression, and cognitive impairment in elderly gastric cancer patients.Front. Surg.2022999668010.3389/fsurg.2022.99668036386524
    [Google Scholar]
  36. ChenY. SunJ. LuoY. LiuJ. WangX. FengR. HuangJ. DuH. LiQ. TanJ. RenG. WangX. LiH. Pharmaceutical targeting Th2-mediated immunity enhances immunotherapy response in breast cancer.J. Transl. Med.202220161510.1186/s12967‑022‑03807‑836564797
    [Google Scholar]
  37. JacenikD. KaragiannidisI. BeswickE.J. Th2 cells inhibit growth of colon and pancreas cancers by promoting anti-tumorigenic responses from macrophages and eosinophils.Br. J. Cancer2023128238739710.1038/s41416‑022‑02056‑236376448
    [Google Scholar]
  38. DeyP. LiJ. ZhangJ. ChaurasiyaS. StromA. WangH. LiaoW.T. CavallaroF. DenzP. BernardV. YenE.Y. GenoveseG. GulhatiP. LiuJ. ChakravartiD. DengP. ZhangT. CarboneF. ChangQ. YingH. ShangX. SpringD.J. GhoshB. PutluriN. MaitraA. WangY.A. DePinhoR.A. Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the tumor microenvironment.Cancer Discov.202010460862510.1158/2159‑8290.CD‑19‑029732046984
    [Google Scholar]
  39. HarringtonL.E. HattonR.D. ManganP.R. TurnerH. MurphyT.L. MurphyK.M. WeaverC.T. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages.Nat. Immunol.20056111123113210.1038/ni125416200070
    [Google Scholar]
  40. GermicN. FrangezZ. YousefiS. SimonH.U. Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells.Cell Death Differ.201926470371410.1038/s41418‑019‑0295‑830737478
    [Google Scholar]
  41. OlsonB.M. McNeelD.G. CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells.Cancer Immunol. Immunother.201160678179210.1007/s00262‑011‑0987‑521350948
    [Google Scholar]
  42. AllanC.P. TurtleC.J. MainwaringP.N. PykeC. HartD.N.J. The immune response to breast cancer, and the case for DC immunotherapy.Cytotherapy20046215416310.1080/1465324041000524915203992
    [Google Scholar]
  43. FiggettW.A. VincentF.B. Saulep-EastonD. MackayF. Roles of ligands from the TNF superfamily in B cell development, function, and regulation.Semin. Immunol.201426319120210.1016/j.smim.2014.06.00124996229
    [Google Scholar]
  44. WangC. HeW. YuanY. ZhangY. LiK. ZouR. LiaoY. LiuW. YangZ. ZuoD. QiuJ. ZhengY. LiB. YuanY. Comparison of the prognostic value of inflammation-based scores in early recurrent hepatocellular carcinoma after hepatectomy.Liver Int.202040122923910.1111/liv.1428131652394
    [Google Scholar]
  45. YaoS.X. ZhangG.S. CaoH.X. SongG. LiZ.T. ZhangW.T. Correlation between microRNA-21 and expression of Th17 and Treg cells in microenvironment of rats with hepatocellular carcinoma.Asian Pac. J. Trop. Med.20158976276510.1016/j.apjtm.2015.07.02126433664
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673279399240102095116
Loading
/content/journals/cmc/10.2174/0109298673279399240102095116
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test