Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The emergence of nanomedicine offers renewed promise in the diagnosis and treatment of diseases. Due to their unique physical and chemical properties, iron oxide nanoparticles (IONPs) exhibit widespread application in the diagnosis and treatment of various ailments, particularly tumors. IONPs have magnetic resonance (MR) T/T imaging capabilities due to their different sizes. In addition, IONPs also have biocatalytic activity (nanozymes) and magnetocaloric effects. They are widely used in chemodynamic therapy (CDT), magnetic hyperthermia treatment (MHT), photodynamic therapy (PDT), and drug delivery. This review outlines the synthesis, modification, and biomedical applications of IONPs, emphasizing their role in enhancing diagnostic imaging (including single-mode and multimodal imaging) and their potential in cancer therapies (including chemotherapy, radiotherapy, CDT, and PDT). Furthermore, we briefly explore the challenges in the clinical application of IONPs, such as surface modification and protein adsorption, and put forward opinions on the clinical transformation of IONPs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673301359240705063544
2024-07-12
2024-12-24
Loading full text...

Full text loading...

References

  1. StefaniniM. SimonettiG. Interventional magnetic resonance imaging suite (IMRIS): How to build and how to use.Radiol. Med. 2022127101063106710.1007/s11547‑022‑01537‑x36018489
    [Google Scholar]
  2. DingZ. SunH. GeS. CaiY. YuanY. HaiZ. TaoT. HuJ. HuB. WangJ. LiangG. Furin-controlled Fe3O4 nanoparticle aggregation and 19F signal “Turn-On” for precise MR imaging of tumors.Adv. Funct. Mater.20192943190386010.1002/adfm.201903860
    [Google Scholar]
  3. LuY. LiangZ. FengJ. HuangL. GuoS. YiP. XiongW. ChenS. YangS. XuY. LiY. ChenX. ShenZ. Facile synthesis of weakly ferromagnetic organogadolinium macrochelates-based T1-weighted magnetic resonance imaging contrast agents.Adv. Sci.2023101220510910.1002/advs.20220510936377432
    [Google Scholar]
  4. SchörnerW. KaznerE. LaniadoM. SprungC. FelixR. Magnetic resonance tomography (MRT) of intracranial tumours: Initial experience with the use of the contrast medium gadolinium-DTPA.Neurosurg. Rev.19847430331210.1007/BF018929106531081
    [Google Scholar]
  5. DongL. XuY.J. SuiC. ZhaoY. MaoL.B. GebauerD. RosenbergR. AvaroJ. WuY.D. GaoH.L. PanZ. WenH.Q. YanX. LiF. LuY. CölfenH. YuS.H. Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as an MRI contrast agent.Nat. Commun.2022131508810.1038/s41467‑022‑32615‑336038532
    [Google Scholar]
  6. BergersG. BenjaminL.E. Tumorigenesis and the angiogenic switch.Nat. Rev. Cancer20033640141010.1038/nrc109312778130
    [Google Scholar]
  7. WangJ. JiaY. WangQ. LiangZ. HanG. WangZ. LeeJ. ZhaoM. LiF. BaiR. LingD. An ultrahigh- field-tailored T1-T2 dual-mode MRI contrast agent for high-performance vascular Imaging.Adv. Mater.2021332200491710.1002/adma.20200491733263204
    [Google Scholar]
  8. ZhouZ. LuZ.R. Gadolinium-based contrast agents for magnetic resonance cancer imaging.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20135111810.1002/wnan.119823047730
    [Google Scholar]
  9. AhnY.H. KangD.Y. ParkS.B. KimH.H. KimH.J. ParkG.Y. YoonS.H. ChoiY.H. LeeS.Y. KangH.R. Allergic-like hypersensitivity reactions to gadolinium-based contrast agents: An 8-year cohort study of 154539 patients.Radiology2022303232933610.1148/radiol.21054535191737
    [Google Scholar]
  10. BehzadiA.H. ZhaoY. FarooqZ. PrinceM.R. Immediate allergic reactions to gadolinium-based contrast agents: A systematic review and meta-analysis.Radiology2018286247148210.1148/radiol.201716274028846495
    [Google Scholar]
  11. WhiteG.W. GibbyW.A. TweedleM.F. Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy.Invest. Radiol.200641327227810.1097/01.rli.0000186569.32408.9516481910
    [Google Scholar]
  12. KandaT. FukusatoT. MatsudaM. ToyodaK. ObaH. KotokuJ. HaruyamaT. KitajimaK. FuruiS. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy.Radiology2015276122823210.1148/radiol.201514269025942417
    [Google Scholar]
  13. SheaJ.J. Modern magnetic materials principles and applications.IEEE.Electr.2005215758
    [Google Scholar]
  14. IsraelL.L. LelloucheE. KenettR.S. GreenO. MichaeliS. LelloucheJ.P. Ce3/4+ cation-functionalized maghemite nanoparticles towards siRNA-mediated gene silencing.J. Mater. Chem. B20142376215622510.1039/C4TB00634H32262139
    [Google Scholar]
  15. HuberD.L. Synthesis, properties, and applications of iron nanoparticles.Small20051548250110.1002/smll.20050000617193474
    [Google Scholar]
  16. XiaoY.D. PaudelR. LiuJ. MaC. ZhangZ.S. ZhouS.K. MRI contrast agents: Classification and application (Review).Int. J. Mol. Med.20163851319132610.3892/ijmm.2016.274427666161
    [Google Scholar]
  17. MohnF. KnoppT. BobergM. ThiebenF. SzwargulskiP. GraeserM. System matrix based reconstruction for pulsed sequences in magnetic particle imaging.IEEE Trans. Med. Imaging20224171862187310.1109/TMI.2022.314958335130154
    [Google Scholar]
  18. ShinT.H. KimP.K. KangS. CheongJ. KimS. LimY. ShinW. JungJ.Y. LahJ.D. ChoiB.W. CheonJ. High-resolutionT. High-resolution T1 MRI via renally clearable dextran nanoparticles with an iron oxide shell.Nat. Biomed. Eng.20215325226310.1038/s41551‑021‑00687‑z33686281
    [Google Scholar]
  19. WeisslederR. ElizondoG. WittenbergJ. LeeA.S. JosephsonL. BradyT.J. Ultrasmall superparamagnetic iron oxide: An intravenous contrast agent for assessing lymph nodes with MR imaging.Radiology1990175249449810.1148/radiology.175.2.23264752326475
    [Google Scholar]
  20. ZengL. WuD. ZouR. ChenT. ZhangJ. WuA. Paramagnetic and superparamagnetic inorganic nanoparticles for T1-weighted magnetic resonance imaging.Curr. Med. Chem.201825252970298610.2174/092986732466617031412461628292235
    [Google Scholar]
  21. SivalingamS. SanthanakrishnanM. ParthasarathyV. Synthesis, characterization and in-vitro toxicity assessment of superparamagnetic iron oxide nanoparticles for biomedical applications.Nano Biomed. Eng.202214320120710.5101/nbe.v14i3.p201‑207
    [Google Scholar]
  22. ChenD.H. ChenY.Y. Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic acid.J. Colloid Interface Sci.2001235191410.1006/jcis.2000.734011237438
    [Google Scholar]
  23. ChenD.H. ChenY.Y. Synthesis of strontium ferrite ultrafine particles using microemulsion processing.J. Colloid Interface Sci.20012361414610.1006/jcis.2000.738911254326
    [Google Scholar]
  24. ShenM. CaiH. WangX. CaoX. LiK. WangS.H. GuoR. ZhengL. ZhangG. ShiX. Facile one-pot preparation, surface functionalization, and toxicity assay of APTS-coated iron oxide nanoparticles.Nanotechnology2012231010560110.1088/0957‑4484/23/10/10560122349004
    [Google Scholar]
  25. ChenW. XuY. YangD. WangP. XuY. ZhuJ. CuiD. Preparation of liposomes coated superparamagnetic iron oxide nanoparticles for targeting and imaging brain glioma.Nano Biomed. Eng.2022141718010.5101/nbe.v14i1.p71‑80
    [Google Scholar]
  26. Ali DheyabM. AzizA.A. JameelM.S. Recent advances in inorganic nanomaterials synthesis using sonochemistry: A comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles.Molecules2021269245310.3390/molecules2609245333922347
    [Google Scholar]
  27. ZhuY.J. ChenF. Microwave-assisted preparation of inorganic nanostructures in liquid phase.Chem. Rev.2014114126462655510.1021/cr400366s24897552
    [Google Scholar]
  28. KustovL.M. KostyukhinE.M. KorneevaE.Y. KustovA.L. Microwave synthesis of nanosized iron-containing oxide particles and their physicochemical properties.Russ. Chem. Bull.202372358360110.1007/s11172‑023‑3823‑5
    [Google Scholar]
  29. ThunusL. LejeuneR. Overview of transition metal and lanthanide complexes as diagnostic tools.Coord. Chem. Rev.1999184112515510.1016/S0010‑8545(98)00206‑9
    [Google Scholar]
  30. BogdanovA.Jr WrightS. MarecosE. BogdanovaA. MartinC. PetherickP. WeisslederR. A long-circulating co-polymer in “passive targeting” to solid tumors.J. Drug Target.19974532133010.3109/106118697089958489169989
    [Google Scholar]
  31. PaulK.G. FrigoT.B. GromanJ.Y. GromanE.V. Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides.Bioconjug. Chem.200415239440110.1021/bc034194u15025537
    [Google Scholar]
  32. FrankJ.A. MillerB.R. ArbabA.S. ZywickeH.A. JordanE.K. LewisB.K. BryantL.H.Jr BulteJ.W.M. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents.Radiology2003228248048710.1148/radiol.228102063812819345
    [Google Scholar]
  33. KimI.Y. SeoS.J. MoonH.S. YooM.K. ParkI.Y. KimB.C. ChoC.S. Chitosan and its derivatives for tissue engineering applications.Biotechnol. Adv.200826112110.1016/j.biotechadv.2007.07.00917884325
    [Google Scholar]
  34. ChenH.J. ZhangZ.H. LuoL.J. YaoS.Z. Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin.Sens. Actuators B Chem.20121631768310.1016/j.snb.2012.01.010
    [Google Scholar]
  35. ShahN.B. VercellottiG.M. WhiteJ.G. FeganA. WagnerC.R. BischofJ.C. Blood-nanoparticle interactions and in vivo biodistribution: Impact of surface PEG and ligand properties.Mol. Pharm.2012982146215510.1021/mp200626j22668197
    [Google Scholar]
  36. PanY. LiJ. XiaX. WangJ. JiangQ. YangJ. DouH. LiangH. LiK. HouY. β-glucan-coupled superparamagnetic iron oxide nanoparticles induce trained immunity to protect mice against sepsis.Theranostics202212267568810.7150/thno.6487434976207
    [Google Scholar]
  37. MahmoudiM. SimchiA. ImaniM. MilaniA.S. StroeveP. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging.J. Phys. Chem. B200811246144701448110.1021/jp803016n18729404
    [Google Scholar]
  38. LeeH.Y. LeeS.H. XuC. XieJ. LeeJ.H. WuB. Leen KohA. WangX. SinclairR. WangS.X. NishimuraD.G. BiswalS. SunS. ChoS.H. ChenX. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent.Nanotechnology2008191616510110.1088/0957‑4484/19/16/16510121394237
    [Google Scholar]
  39. EasoS.L. MohananP.V. Dextran stabilized iron oxide nanoparticles: Synthesis, characterization and in vitro studies.Carbohydr. Polym.201392172673210.1016/j.carbpol.2012.09.09823218360
    [Google Scholar]
  40. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m19206243
    [Google Scholar]
  41. XiaoY. DuJ. Superparamagnetic nanoparticles for biomedical applications.J. Mater. Chem. B20208335436710.1039/C9TB01955C31868197
    [Google Scholar]
  42. ArrueboM. Fernández-PachecoR. IbarraM.R. SantamaríaJ. Magnetic nanoparticles for drug delivery.Nano Today200723223210.1016/S1748‑0132(07)70084‑1
    [Google Scholar]
  43. LiX. LiW. WangM. LiaoZ. Magnetic nanoparticles for cancer theranostics: Advances and prospects.J. Control. Release202133543744810.1016/j.jconrel.2021.05.04234081996
    [Google Scholar]
  44. LeeN. YooD. LingD. ChoM.H. HyeonT. CheonJ. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy.Chem. Rev.201511519106371068910.1021/acs.chemrev.5b0011226250431
    [Google Scholar]
  45. LeeN. HyeonT. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents.Chem. Soc. Rev.20124172575258910.1039/C1CS15248C22138852
    [Google Scholar]
  46. SunT. LiuY. ZhouC. ZhangL. KangX. XiaoS. DuM. XuZ. LiuY. LiuG. GongM. ZhangD. Fluorine-mediated synthesis of anisotropic iron oxide nanostructures for efficient T 2-weighted magnetic resonance imaging.Nanoscale202113167638764710.1039/D1NR00338K33928960
    [Google Scholar]
  47. BalachandranY.L. WangW. YangH. TongH. WangL. LiuF. ChenH. ZhongK. LiuY. JiangX. Heterogeneous iron oxide/dysprosium oxide nanoparticles target liver for precise magnetic resonance imaging of liver fibrosis.ACS Nano20221645647565910.1021/acsnano.1c1061835312295
    [Google Scholar]
  48. IancuS.D. AlbuC. ChiriacL. MoldovanR. StefancuA. MoisoiuV. ComanV. SzaboL. LeopoldN. BálintZ. Assessment of gold-coated iron oxide nanoparticles as negative T2 contrast agent in small animal MRI studies.Int. J. Nanomedicine2020154811482410.2147/IJN.S25318432753867
    [Google Scholar]
  49. WangK. XuX.G. MaY.L. ShengC.R. LiL.N. LuL.Y. WangJ. WangY.N. JiangY. Fe3O4@Angelica sinensis polysaccharide nanoparticles as an ultralow-toxicity contrast agent for magnetic resonance imaging.Rare Met.20214092486249310.1007/s12598‑020‑01620‑0
    [Google Scholar]
  50. KimB.H. LeeN. KimH. AnK. ParkY.I. ChoiY. ShinK. LeeY. KwonS.G. NaH.B. ParkJ.G. AhnT.Y. KimY.W. MoonW.K. ChoiS.H. HyeonT. Large-scale synthesis of uniform and extremely small- sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents.J. Am. Chem. Soc.201113332126241263110.1021/ja203340u21744804
    [Google Scholar]
  51. LeeN. KimH. ChoiS.H. ParkM. KimD. KimH.C. ChoiY. LinS. KimB.H. JungH.S. KimH. ParkK.S. MoonW.K. HyeonT. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets.Proc. Natl. Acad. Sci.201110872662266710.1073/pnas.101640910821282616
    [Google Scholar]
  52. ShenZ. ChenT. MaX. RenW. ZhouZ. ZhuG. ZhangA. LiuY. SongJ. LiZ. RuanH. FanW. LinL. MunasingheJ. ChenX. WuA. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy.ACS Nano20171111109921100410.1021/acsnano.7b0492429039917
    [Google Scholar]
  53. PengY.K. LiuC.L. ChenH.C. ChouS.W. TsengW.H. TsengY.J. KangC.C. HsiaoJ.K. ChouP.T. Antiferromagnetic iron nanocolloids: A new generation in vivo T1 MRI contrast agent.J. Am. Chem. Soc.201313549186211862810.1021/ja409490q24256331
    [Google Scholar]
  54. KawassakiR.K. RomanoM. Klimuk UchiyamaM. CardosoR.M. BaptistaM.S. FarskyS.H.P. ChaimK.T. GuimarãesR.R. ArakiK. Novel gadolinium-free ultrasmall nanostructured positive contrast for magnetic resonance angiography and imaging.Nano Lett.202323125497550510.1021/acs.nanolett.3c0066537300521
    [Google Scholar]
  55. ShiY. GaoY. ZouX. ChenL. LiY. Imaging of carotid artery inflammatory plaques with superparamagnetic nanoparticles and an external magnet collar.J. Mater. Chem. B20175479780610.1039/C6TB02849G32263848
    [Google Scholar]
  56. LuY. XuY.J. ZhangG. LingD. WangM. ZhouY. WuY.D. WuT. HackettM.J. Hyo KimB. ChangH. KimJ. HuX.T. DongL. LeeN. LiF. HeJ.C. ZhangL. WenH.Q. YangB. Hong ChoiS. HyeonT. ZouD.H. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates.Nat. Biomed. Eng.20171863764310.1038/s41551‑017‑0116‑731015599
    [Google Scholar]
  57. SherwoodJ. RichM. LovasK. WarramJ. BoldingM.S. BaoY. T1-Enhanced MRI-visible nanoclusters for imaging-guided drug delivery.Nanoscale2017932117851179210.1039/C7NR04181K28786462
    [Google Scholar]
  58. WangC. YanC. AnL. ZhaoH. SongS. YangS. Fe3O4 assembly for tumor accurate diagnosis by endogenous GSH responsive T 2/T 1 magnetic relaxation conversion.J. Mater. Chem. B Mater. Biol. Med.20219377734774010.1039/D1TB01018B34586149
    [Google Scholar]
  59. XieM. LiY. XuY. ZhangZ. JiB. JonesJ.B. WangZ. MaoH. Brain tumor imaging and delivery of sub-5 nm magnetic iron oxide nanoparticles in an orthotopic murine model of glioblastoma.ACS Appl. Nano Mater.2022579706971810.1021/acsanm.2c01930
    [Google Scholar]
  60. BardestaniA. EbrahimpourS. EsmaeiliA. EsmaeiliA. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles.J. Nanobiotechnol.202119132710.1186/s12951‑021‑01059‑034663344
    [Google Scholar]
  61. JeonM. HalbertM.V. StephenZ.R. ZhangM. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives.Adv. Mater.20213323190653910.1002/adma.20190653932495404
    [Google Scholar]
  62. WangZ. WangG. KangT. LiuS. WangL. ZouH. ChongY. LiuY. BiVO4/Fe3O4@polydopamine superparticles for tumor multimodal imaging and synergistic therapy.J. Nanobiotechnol.20211919010.1186/s12951‑021‑00802‑x33781296
    [Google Scholar]
  63. WangG. GaoW. ZhangX. MeiX. Au Nanocage Functionalized with ultra-small Fe3O4 nanoparticles for targeting T1-T2 dual MRI and CT imaging of tumor.Sci. Rep.2016612825810.1038/srep2825827312564
    [Google Scholar]
  64. ShuG. ChenM. SongJ. XuX. LuC. DuY. XuM. ZhaoZ. ZhuM. FanK. FanX. FangS. TangB. DaiY. DuY. JiJ. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer.Bioact. Mater.2021651423143510.1016/j.bioactmat.2020.10.02033210034
    [Google Scholar]
  65. García-SorianoD. Milán-RoisP. Lafuente-GómezN. NavíoC. GutiérrezL. CussóL. DescoM. CalleD. SomozaÁ. SalasG. Iron oxide-manganese oxide nanoparticles with tunable morphology and switchable MRI contrast mode triggered by intracellular conditions.J. Colloid Interface Sci.202261344746010.1016/j.jcis.2022.01.07035051720
    [Google Scholar]
  66. LuH. ChenA. ZhangX. WeiZ. CaoR. ZhuY. LuJ. WangZ. TianL. A pH-responsive T1-T2 dual-modal MRI contrast agent for cancer imaging.Nat. Commun.2022131794810.1038/s41467‑022‑35655‑x36572677
    [Google Scholar]
  67. LiangM. ZhouW. ZhangH. ZhengJ. LinJ. AnL. YangS. Tumor microenvironment responsive T 1-T 2 dual- mode contrast agent Fe3O4 @ZIF-8-Zn–Mn NPs for in vivo magnetic resonance imaging.J. Mater. Chem. B Mater. Biol. Med.202311194203421010.1039/D3TB00068K37114335
    [Google Scholar]
  68. ZhouH. GuoM. LiJ. QinF. WangY. LiuT. LiuJ. SabetZ.F. WangY. LiuY. HuoQ. ChenC. Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging signal of a tumor.J. Am. Chem. Soc.202114341846185310.1021/jacs.0c1024533397097
    [Google Scholar]
  69. TongW. HuiH. ShangW. ZhangY. TianF. MaQ. YangX. TianJ. ChenY. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles.Theranostics202111250652110.7150/thno.4981233391489
    [Google Scholar]
  70. XuL. LiZ. MaY. LeiL. YueR. CaoH. HuanS. SunW. SongG. Imaging carotid plaque burden in living mice via hybrid semiconducting polymer nanoparticles-based near-infrared-II fluorescence and magnetic resonance imaging.Research202360186
    [Google Scholar]
  71. YangL. DongS. GaiS. YangD. DingH. FengL. YangG. RehmanZ. YangP. Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes.Nano-Micro Lett.20241612810.1007/s40820‑023‑01224‑037989794
    [Google Scholar]
  72. WeiH. GaoL. FanK. LiuJ. HeJ. QuX. DongS. WangE. YanX. Nanozymes: A clear definition with fuzzy edges.Nano Today20214010126910.1016/j.nantod.2021.101269
    [Google Scholar]
  73. HuY. MignaniS. MajoralJ.P. ShenM. ShiX. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy.Chem. Soc. Rev.20184751874190010.1039/C7CS00657H29376542
    [Google Scholar]
  74. ZhaoS. YuX. QianY. ChenW. ShenJ. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics.Theranostics202010146278630910.7150/thno.4256432483453
    [Google Scholar]
  75. SahuA. KwonI. TaeG. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia.Biomaterials202022811957810.1016/j.biomaterials.2019.11957831678843
    [Google Scholar]
  76. LamT. PouliotP. AvtiP.K. LesageF. KakkarA.K. Superparamagnetic iron oxide based nanoprobes for imaging and theranostics.Adv. Colloid Interface Sci.2013199-2009511310.1016/j.cis.2013.06.00723891347
    [Google Scholar]
  77. LiaoC. SunQ. LiangB. ShenJ. ShuaiX. Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide.Eur. J. Radiol.201180369970520810233
    [Google Scholar]
  78. ChenH. WangL. YuQ. QianW. TiwariD. YiH. WangA.Y. HuangJ. YangL. MaoH. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer.Int. J. Nanomedicine201383781379424124366
    [Google Scholar]
  79. LinR. HuangJ. WangL. LiY. LipowskaM. WuH. YangJ. MaoH. Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging.Biomater. Sci.2018661517152510.1039/C8BM00225H29652061
    [Google Scholar]
  80. ChiangC.S. HuS.H. LiaoB.J. ChangY.C. ChenS.Y. Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds.Nanomedicine20141019910710.1016/j.nano.2013.07.00923891983
    [Google Scholar]
  81. SatpathyM. WangL. ZielinskiR. QianW. LipowskaM. CapalaJ. LeeG.Y. XuH. WangY.A. MaoH. YangL. Active targeting using HER-2-affibody-conjugated nanoparticles enabled sensitive and specific imaging of orthotopic HER-2 positive ovarian tumors.Small201410354455510.1002/smll.20130159324038985
    [Google Scholar]
  82. WangX. LuP. ZhuL. QinL. ZhuY. YanG. DuanS. GuoY. Anti-CD133 antibody-targeted therapeutic immunomagnetic albumin microbeads loaded with vincristine-assisted to enhance anti-glioblastoma treatment.Mol. Pharm.201916114582459310.1021/acs.molpharmaceut.9b0070431573817
    [Google Scholar]
  83. TseB.W.C. CowinG.J. SoekmadjiC. JovanovicL. VasireddyR.S. LingM.T. KhatriA. LiuT. ThierryB. RussellP.J. PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer.Nanomedicine201510337538610.2217/nnm.14.12225407827
    [Google Scholar]
  84. LioliosC. KoutsikouT.S. SalvanouE.A. KapirisF. MachairasE. StampolakiM. KolocourisA. EfthimiadouE.Κ. BouziotisP. Synthesis and in vitro proof-of- concept studies on bispecific iron oxide magnetic nanoparticles targeting PSMA and GRP receptors for PET/MR imaging of prostate cancer.Int. J. Pharm.202262412200810.1016/j.ijpharm.2022.12200835820513
    [Google Scholar]
  85. WangZ. QiaoR. TangN. LuZ. WangH. ZhangZ. XueX. HuangZ. ZhangS. ZhangG. LiY. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer.Biomaterials2017127253510.1016/j.biomaterials.2017.02.03728279919
    [Google Scholar]
  86. ShweikiD. ItinA. SofferD. KeshetE. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.Nature1992359639884384510.1038/359843a01279431
    [Google Scholar]
  87. ZhaoY. YaoQ. TanH. WuB. HuP. WuP. GuY. ZhangC. ChengD. ShiH. Design and preliminary assessment of 99mTc-labeled ultrasmall superparamagnetic iron oxide-conjugated bevacizumab for single photon emission computed tomography/magnetic resonance imaging of hepatocellular carcinoma.J. Radioanal. Nucl. Chem.201429931273128010.1007/s10967‑013‑2846‑7
    [Google Scholar]
  88. ZhangN. WangY. ZhangC. FanY. LiD. CaoX. XiaJ. ShiX. GuoR. LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors.Theranostics20201062791280210.7150/thno.4290632194835
    [Google Scholar]
  89. HuangJ. WangZ.J. ChenZ.H. HuangC.X. WangY. LiX. LvW.Y. QiG.Q. LiuH.L. Ultrasound-mediated multifunctional magnetic microbubbles for drug delivery of celastrol in VX2 liver transplant tumors.Drug Deliv. Transl. Res.202314255557037639148
    [Google Scholar]
  90. ObermeierB. DanemanR. RansohoffR.M. Development, maintenance and disruption of the blood-brain barrier.Nat. Med.201319121584159610.1038/nm.340724309662
    [Google Scholar]
  91. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood– brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.03019664713
    [Google Scholar]
  92. St-AmourI. ParéI. AlataW. CoulombeK. Ringuette-GouletC. Drouin-OuelletJ. VandalM. SouletD. BazinR. CalonF. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood- brain barrier.J. Cereb. Blood Flow Metab.201333121983199210.1038/jcbfm.2013.16024045402
    [Google Scholar]
  93. TerstappenG.C. MeyerA.H. BellR.D. ZhangW. Strategies for delivering therapeutics across the blood– brain barrier.Nat. Rev. Drug Discov.202120536238310.1038/s41573‑021‑00139‑y33649582
    [Google Scholar]
  94. ElfingerM. PfeiferC. UezguenS. GolasM.M. SanderB. MauckschC. StarkH. AnejaM.K. RudolphC. Self-assembly of ternary insulin-polyethylenimine (PEI)-DNA nanoparticles for enhanced gene delivery and expression in alveolar epithelial cells.Biomacromolecules200910102912292010.1021/bm900707j19736976
    [Google Scholar]
  95. TalukderJ. Role of transferrin: An iron-binding protein in health and diseases.Nutraceuticals.2nd ed GuptaR.C. LallR. SrivastavaA. Academic Press20211011102510.1016/B978‑0‑12‑821038‑3.00060‑4
    [Google Scholar]
  96. LiH. QianZ.M. Transferrin/transferrin receptor-mediated drug delivery.Med. Res. Rev.200222322525010.1002/med.1000811933019
    [Google Scholar]
  97. ChoiM. RyuJ. VuH.D. KimD. YounY.J. ParkM.H. HuynhP.T. HwangG.B. YounS.W. JeongY.H. Transferrin-conjugated melittin-loaded L-arginine- coated iron oxide nanoparticles for mitigating beta-amyloid pathology of the 5XFAD mouse brain.Int. J. Mol. Sci.202324191495410.3390/ijms24191495437834402
    [Google Scholar]
  98. SongG. ChengL. ChaoY. YangK. LiuZ. Emerging nanotechnology and advanced materials for cancer radiation therapy.Adv. Mater.20172932170099610.1002/adma.20170099628643452
    [Google Scholar]
  99. ZhuS. GuZ. ZhaoY. Harnessing tumor microenvironment for nanoparticle-mediated radiotherapy.Adv. Ther.201815180005010.1002/adtp.201800050
    [Google Scholar]
  100. ZhouR. WangH. YangY. ZhangC. DongX. DuJ. YanL. ZhangG. GuZ. ZhaoY. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement.Biomaterials2019189112210.1016/j.biomaterials.2018.10.01630384125
    [Google Scholar]
  101. KleinS. HarreißC. MenterC. HümmerJ. DistelL.V.R. MeyerK. HockR. KryschiC. NOBF4-functionalized Au-Fe3O4 nanoheterodimers for radiation therapy: synergy effect due to simultaneous reactive oxygen and nitrogen species formation.ACS Appl. Mater. Interfaces20181020170711708010.1021/acsami.8b0366029738226
    [Google Scholar]
  102. ZhangZ. LoH. ZhaoX. LiW. WuK. ZengF. LiS. SunH. Mild photothermal/radiation therapy potentiates ferroptosis effect for ablation of breast cancer via MRI/PA imaging guided all-in-one strategy.J. Nanobiotechnol.202321115010.1186/s12951‑023‑01910‑637158923
    [Google Scholar]
  103. KleinS. SommerA. DistelL.V.R. HazemannJ.L. KrönerW. NeuhuberW. MüllerP. ProuxO. KryschiC. Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy.J. Phys. Chem. B2014118236159616610.1021/jp502622424827589
    [Google Scholar]
  104. LiuH. LinW. HeL. ChenT. Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy.Biomaterials202022611954510.1016/j.biomaterials.2019.11954531648136
    [Google Scholar]
  105. ZhangR. ChenL. LiangQ. XiJ. ZhaoH. JinY. GaoX. YanX. GaoL. FanK. Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy.Nano Today20214110131710.1016/j.nantod.2021.101317
    [Google Scholar]
  106. GaoL. ZhuangJ. NieL. ZhangJ. ZhangY. GuN. WangT. FengJ. YangD. PerrettS. YanX. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.Nat. Nanotechnol.20072957758310.1038/nnano.2007.26018654371
    [Google Scholar]
  107. BrillasE. SirésI. OturanM.A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry.Chem. Rev.2009109126570663110.1021/cr900136g19839579
    [Google Scholar]
  108. BokareA.D. ChoiW. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes.J. Hazard. Mater.201427512113510.1016/j.jhazmat.2014.04.05424857896
    [Google Scholar]
  109. BiH. DaiY. YangP. XuJ. YangD. GaiS. HeF. LiuB. ZhongC. AnG. LinJ. Glutathione mediated size-tunable UCNPs-Pt(IV)-ZnFe2O4 nanocomposite for multiple bioimaging guided synergetic therapy.Small20181413170380910.1002/smll.20170380929394469
    [Google Scholar]
  110. YuJ. ZhaoF. GaoW. YangX. JuY. ZhaoL. GuoW. XieJ. LiangX. TaoX. LiJ. YingY. LiW. ZhengJ. QiaoL. XiongS. MouX. CheS. HouY. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@Fe3O4 nanoparticles.ACS Nano2019139100021001410.1021/acsnano.9b0174031433945
    [Google Scholar]
  111. LiW.P. SuC.H. ChangY.C. LinY.J. YehC.S. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome.ACS Nano20161022017202710.1021/acsnano.5b0617526720714
    [Google Scholar]
  112. MijangosF. VaronaF. VillotaN. Changes in solution color during phenol oxidation by Fenton reagent.Environ. Sci. Technol.200640175538554310.1021/es060866q16999137
    [Google Scholar]
  113. WangX. XuJ. YangD. SunC. SunQ. HeF. GaiS. ZhongC. LiC. YangP.J.C.E.J. Fe3O4@MIL- 100(Fe)-UCNPs heterojunction photosensitizer: Rational design and application in near infrared light mediated hypoxic tumor therapy.Chem. Eng. J.201835411411152
    [Google Scholar]
  114. ChenJ. WangX. LiuY. LiuH. GaoF. LanC. YangB. ZhangS. GaoY. pH-responsive catalytic mesocrystals for chemodynamic therapy via ultrasound-assisted Fenton reaction.Chem. Eng. J.201936939440210.1016/j.cej.2019.03.061
    [Google Scholar]
  115. ShenZ. LiuT. LiY. LauJ. YangZ. FanW. ZhouZ. ShiC. KeC. BregadzeV.I. MandalS.K. LiuY. LiZ. XueT. ZhuG. MunasingheJ. NiuG. WuA. ChenX. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors.ACS Nano20181211113551136510.1021/acsnano.8b0620130375848
    [Google Scholar]
  116. YinT. ZhangQ. WuH. GaoG. ShapterJ.G. ShenY. HeQ. HuangP. QiW. CuiD. In vivo high-efficiency targeted photodynamic therapy of ultra-small Fe3O4@polymer-NPO/PEG-Glc@Ce6 nanoprobes based on small size effect.NPG Asia Mater.201795e383e38310.1038/am.2017.68
    [Google Scholar]
  117. LiangX. ChenM. BhattaraiP. HameedS. TangY. DaiZ. Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles.ACS Nano20211512201642018010.1021/acsnano.1c0810834898184
    [Google Scholar]
  118. ZhangZ. LiuZ. HuangY. NguyenW. WangY. ChengL. ZhouH. WenY. XiongL. ChenW. Magnetic resonance and fluorescence imaging superparamagnetic nanoparticles induce apoptosis and ferroptosis through photodynamic therapy to treat colorectal cancer.Mat. Tod. Phys.20233610115010.1016/j.mtphys.2023.101150
    [Google Scholar]
  119. GuanQ. GuoR. HuangS. ZhangF. LiuJ. WangZ. YangX. ShuaiX. CaoZ. Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy.J. Control. Release202032039240310.1016/j.jconrel.2020.01.04832004587
    [Google Scholar]
  120. ChenQ. MaX. XieL. ChenW. XuZ. SongE. ZhuX. SongY. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment.Nanoscale20211394855487010.1039/D0NR08757B33624647
    [Google Scholar]
  121. WangW. HaoC. SunM. XuL. XuC. KuangH. Fe3O4@Au supraparticles for multimodal in vivo imaging.Adv. Funct. Mater.20182822180031010.1002/adfm.201800310
    [Google Scholar]
  122. DongS. ChenY. YuL. LinK. WangX. Magnetic hyperthermia–synergistic H2O2 self-sufficient catalytic suppression of osteosarcoma with enhanced bone-regeneration bioactivity by 3D-printing composite scaffolds.Adv. Funct. Mater.2020304190707110.1002/adfm.201907071
    [Google Scholar]
  123. MaX. WangY. LiuX.L. MaH. LiG. LiY. GaoF. PengM. FanH.M. LiangX.J. Fe3O4–Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment.Nanoscale Horiz.2019461450145910.1039/C9NH00233B
    [Google Scholar]
  124. ZhangJ. ZhouK. LinJ. YaoX. JuD. ZengX. PangZ. YangW. Ferroptosis-enhanced chemotherapy for triple-negative breast cancer with magnetic composite nanoparticles.Biomaterials202330312239510.1016/j.biomaterials.2023.12239537988899
    [Google Scholar]
  125. ZhangF. LuG. WenX. LiF. JiX. LiQ. WuM. ChengQ. YuY. TangJ. MeiL. Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy.J. Control. Release202032613113910.1016/j.jconrel.2020.06.01532580043
    [Google Scholar]
  126. ZhangF. LiF. LuG.H. NieW. ZhangL. LvY. BaoW. GaoX. WeiW. PuK. XieH.Y. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer.ACS Nano20191355662567310.1021/acsnano.9b0089231046234
    [Google Scholar]
  127. LiuT. WangY. LuL. LiuY. SPIONs mediated magnetic actuation promotes nerve regeneration by inducing and maintaining repair-supportive phenotypes in Schwann cells.J. Nanobiotechnol.202220115910.1186/s12951‑022‑01337‑535351151
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673301359240705063544
Loading
/content/journals/cmc/10.2174/0109298673301359240705063544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test