Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer is the second leading cause of death. Notwithstanding endeavors to comprehend tumor causes and therapeutic modalities, no noteworthy advancements in cancer therapy have been identified. Nanomedicine has drawn interest for its diagnostic potential because of its ability to deliver therapeutic agents specifically to tumors with little adverse effects. Nanomedicines have become prevalent in the treatment of cancer. Here, we present four strategic suggestions for improvement in the functionality and use of nanomedicine. (1) Smart drug selection is a prerequisite for both medicinal and commercial achievement. Allocating resources to the advancement of modular (pro)drugs and nanocarrier design ought to consider the role of opportunistic decisions depending on drug availability. (2) Stimuli-responsive nanomedicine for cancer therapy is being designed to release medications at particular locations precisely. (3) The cornerstone of clinical cancer treatment is combination therapy. Nanomedicines should be included more frequently in multimodal combination therapy regimens since they complement pharmacological and physical co-treatments. (4) Regulation by the immune system is transforming cancer therapy. Nanomedicines can improve the effectiveness of the immune system and control the behavior of anticancer immunity. These four approaches, both separately and particularly in combination, will accelerate and promote the creation of effective cancer nanomedicine treatments.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673300897240602130258
2024-06-10
2024-12-24
Loading full text...

Full text loading...

References

  1. MaX. LiX. ShiJ. YaoM. ZhangX. HouR. ShaoN. LuoQ. GaoY. DuS. LiangX. WangF. Host–guest polypyrrole nanocomplex for three-stimuli-responsive drug delivery and imaging-guided chemo-photothermal synergetic therapy of refractory thyroid cancer.Adv. Healthc. Mater.2019817190066110.1002/adhm.20190066131389191
    [Google Scholar]
  2. GiriP.M. BanerjeeA. LayekB. A recent review on cancer nanomedicine.Cancers (Basel)2023158225610.3390/cancers1508225637190185
    [Google Scholar]
  3. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.38718654426
    [Google Scholar]
  4. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  5. BjörnmalmM. ThurechtK.J. MichaelM. ScottA.M. CarusoF. Bridging bio–nano science and cancer nanomedicine.ACS Nano201711109594961310.1021/acsnano.7b0485528926225
    [Google Scholar]
  6. van der MeelR. LammersT. HenninkW.E. Cancer nanomedicines: Oversold or underappreciated?Expert Opin. Drug Deliv.20171411510.1080/17425247.2017.126234627852113
    [Google Scholar]
  7. AnchordoquyT.J. BarenholzY. BoraschiD. ChornyM. DecuzziP. DobrovolskaiaM.A. FarhangraziZ.S. FarrellD. GabizonA. GhandehariH. GodinB. La-BeckN.M. LjubimovaJ. MoghimiS.M. PagliaroL. ParkJ.H. PeerD. RuoslahtiE. SerkovaN.J. SimbergD. Mechanisms and barriers in cancer nanomedicine: Addressing challenges, looking for solutions.ACS Nano2017111121810.1021/acsnano.6b0824428068099
    [Google Scholar]
  8. van der MeelR. SulheimE. ShiY. KiesslingF. MulderW.J.M. LammersT. Smart cancer nanomedicine.Nat. Nanotechnol.201914111007101710.1038/s41565‑019‑0567‑y31695150
    [Google Scholar]
  9. TorchilinV.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.Nat. Rev. Drug Discov.2014131181382710.1038/nrd433325287120
    [Google Scholar]
  10. LaVanD.A. McGuireT. LangerR. Small-scale systems for in vivo drug delivery.Nat. Biotechnol.200321101184119110.1038/nbt87614520404
    [Google Scholar]
  11. PetrosR.A. DeSimoneJ.M. Strategies in the design of nanoparticles for therapeutic applications.Nat. Rev. Drug Discov.20109861562710.1038/nrd259120616808
    [Google Scholar]
  12. ElsabahyM. HeoG.S. LimS.M. SunG. WooleyK.L. Polymeric nanostructures for imaging and therapy.Chem. Rev.201511519109671101110.1021/acs.chemrev.5b0013526463640
    [Google Scholar]
  13. ElsabahyM. WooleyK.L. Data mining as a guide for the construction of cross-linked nanoparticles with low immunotoxicity via control of polymer chemistry and supramolecular assembly.Acc. Chem. Res.20154861620163010.1021/acs.accounts.5b0006626011318
    [Google Scholar]
  14. SamarajeewaS. ShresthaR. ElsabahyM. KarwaA. LiA. ZentayR.P. KostelcJ.G. DorshowR.B. WooleyK.L. In vitro efficacy of paclitaxel-loaded dual-responsive shell cross-linked polymer nanoparticles having orthogonally degradable disulfide cross-linked corona and polyester core domains.Mol. Pharm.20131031092109910.1021/mp300589723421959
    [Google Scholar]
  15. YuG. YangZ. FuX. YungB.C. YangJ. MaoZ. ShaoL. HuaB. LiuY. ZhangF. FanQ. WangS. JacobsonO. JinA. GaoC. TangX. HuangF. ChenX. Polyrotaxane-based supramolecular theranostics.Nat. Commun.20189176610.1038/s41467‑018‑03119‑w29472567
    [Google Scholar]
  16. MukherjeeB. PatraB. LayekB. MukherjeeA. Sustained release of acyclovir from nano-liposomes and nano-niosomes: An in vitro study.Int. J. Nanomedicine20072221322517722549
    [Google Scholar]
  17. MoosavianS.A. BianconiV. PirroM. SahebkarA. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy.Semin. Cancer Biol.20216933734810.1016/j.semcancer.2019.09.02531585213
    [Google Scholar]
  18. YangS. ShimM.K. SongS. ChoH. ChoiJ. JeonS.I. KimW.J. UmW. ParkJ.H. YoonH.Y. KimK. Liposome-mediated PD-L1 multivalent binding promotes the lysosomal degradation of PD-L1 for T cell-mediated antitumor immunity.Biomaterials202229012184110.1016/j.biomaterials.2022.12184136206664
    [Google Scholar]
  19. LayekB. GidwaniB. TiwariS. JoshiV. JainV. VyasA. Recent advances in lipid-based nanodrug delivery systems in cancer therapy.Curr. Pharm. Des.202026273218323310.2174/138161282666620062213340732568015
    [Google Scholar]
  20. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  21. Taléns-ViscontiR. Díez-SalesO. de Julián-OrtizJ.V. NácherA. Nanoliposomes in cancer therapy: Marketed products and current clinical trials.Int. J. Mol. Sci.2022238424910.3390/ijms2308424935457065
    [Google Scholar]
  22. GabizonA. CataneR. UzielyB. KaufmanB. SafraT. CohenR. MartinF. HuangA. BarenholzY. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes.Cancer Res.19945449879928313389
    [Google Scholar]
  23. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.60162633613290
    [Google Scholar]
  24. LayekB. MandalS. Natural polysaccharides for controlled delivery of oral therapeutics: A recent update.Carbohydr. Polym.202023011561710.1016/j.carbpol.2019.11561731887888
    [Google Scholar]
  25. PagelsR.F. Prud’hommeR.K. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics.J. Control. Release201521951953510.1016/j.jconrel.2015.09.00126359125
    [Google Scholar]
  26. MarkwalterC. E. PagelsR. F. WilsonB. K. RistrophK. D. Prud'hommeR. K. Flash nanoprecipitation for the encapsulation of hydrophobic and hydrophilic compounds in polymeric nanoparticles.J. Vis. Exp201914358757
    [Google Scholar]
  27. SánchezA. MejíaS.P. OrozcoJ. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections.Molecules20202516376010.3390/molecules2516376032824757
    [Google Scholar]
  28. LiyanageP.Y. HettiarachchiS.D. ZhouY. OuhtitA. SevenE.S. OztanC.Y. CelikE. LeblancR.M. Nanoparticle-mediated targeted drug delivery for breast cancer treatment.Biochim. Biophys. Acta Rev. Cancer20191871241943310.1016/j.bbcan.2019.04.00631034927
    [Google Scholar]
  29. Al-NemrawiN.K. AltawabeyehR.M. DarweeshR.S. Preparation and characterization of Docetaxel-PLGA nanoparticles coated with folic acid-chitosan conjugate for cancer treatment.J. Pharm. Sci.2022111248549410.1016/j.xphs.2021.10.03434728172
    [Google Scholar]
  30. WangJ. LiS. HanY. GuanJ. ChungS. WangC. LiD. Poly(Ethylene Glycol)-polylactide micelles for cancer therapy.Front. Pharmacol.2018920210.3389/fphar.2018.0020229662450
    [Google Scholar]
  31. DirisalaA. OsadaK. ChenQ. TockaryT.A. MachitaniK. OsawaS. LiuX. IshiiT. MiyataK. ObaM. UchidaS. ItakaK. KataokaK. Optimized rod length of polyplex micelles for maximizing transfection efficiency and their performance in systemic gene therapy against stroma-rich pancreatic tumors.Biomaterials201435205359536810.1016/j.biomaterials.2014.03.03724720877
    [Google Scholar]
  32. ChenP. YangW. HongT. MiyazakiT. DirisalaA. KataokaK. CabralH. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor- targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC.Biomaterials202228812174810.1016/j.biomaterials.2022.12174836038419
    [Google Scholar]
  33. AbdelbakyS.B. IbrahimM.T. SamyH. MohamedM. MohamedH. MustafaM. AbdelazizM.M. ForrestM.L. KhalilI.A. Cancer immunotherapy from biology to nanomedicine.J. Control. Release202133641043210.1016/j.jconrel.2021.06.02534171445
    [Google Scholar]
  34. HareJ.I. LammersT. AshfordM.B. PuriS. StormG. BarryS.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective.Adv. Drug Deliv. Rev.2017108253810.1016/j.addr.2016.04.02527137110
    [Google Scholar]
  35. SzebeniJ. SimbergD. González-FernándezÁ. BarenholzY. DobrovolskaiaM.A. Roadmap and strategy for overcoming infusion reactions to nanomedicines.Nat. Nanotechnol.201813121100110810.1038/s41565‑018‑0273‑130348955
    [Google Scholar]
  36. QiR. WangY. BrunoP.M. XiaoH. YuY. LiT. LaufferS. WeiW. ChenQ. KangX. SongH. YangX. HuangX. DetappeA. MatulonisU. PepinD. HemannM.T. BirrerM.J. GhoroghchianP.P. Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer.Nat. Commun.201781216610.1038/s41467‑017‑02390‑729255160
    [Google Scholar]
  37. AshtonS. SongY.H. NolanJ. CadoganE. MurrayJ. OdedraR. FosterJ. HallP.A. LowS. TaylorP. EllstonR. PolanskaU.M. WilsonJ. HowesC. SmithA. GoodwinR.J.A. SwalesJ.G. StrittmatterN. TakátsZ. NilssonA. AndrenP. TruemanD. WalkerM. ReimerC.L. TroianoG. ParsonsD. De WittD. AshfordM. HrkachJ. ZaleS. JewsburyP.J. BarryS.T. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo.Sci. Transl. Med.20168325325ra1710.1126/scitranslmed.aad235526865565
    [Google Scholar]
  38. SahinU. TüreciÖ. Personalized vaccines for cancer immunotherapy.Science201835963821355136010.1126/science.aar711229567706
    [Google Scholar]
  39. PardiN. HoganM.J. PorterF.W. WeissmanD. mRNA vaccines - a new era in vaccinology.Nat. Rev. Drug Discov.201817426127910.1038/nrd.2017.24329326426
    [Google Scholar]
  40. KranzL.M. DikenM. HaasH. KreiterS. LoquaiC. ReuterK.C. MengM. FritzD. VascottoF. HefeshaH. GrunwitzC. VormehrM. HüsemannY. SelmiA. KuhnA.N. BuckJ. DerhovanessianE. RaeR. AttigS. DiekmannJ. JabulowskyR.A. HeeschS. HasselJ. LangguthP. GrabbeS. HuberC. TüreciÖ. SahinU. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy.Nature2016534760739640110.1038/nature1830027281205
    [Google Scholar]
  41. KreiterS. VormehrM. van de RoemerN. DikenM. LöwerM. DiekmannJ. BoegelS. SchrörsB. VascottoF. CastleJ.C. TadmorA.D. SchoenbergerS.P. HuberC. TüreciÖ. SahinU. Mutant MHC class II epitopes drive therapeutic immune responses to cancer.Nature2015520754969269610.1038/nature1442625901682
    [Google Scholar]
  42. OberliM.A. ReichmuthA.M. DorkinJ.R. MitchellM.J. FentonO.S. JaklenecA. AndersonD.G. LangerR. BlankschteinD. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy.Nano Lett.20171731326133510.1021/acs.nanolett.6b0332928273716
    [Google Scholar]
  43. SahinU. DerhovanessianE. MillerM. KlokeB.P. SimonP. LöwerM. BukurV. TadmorA.D. LuxemburgerU. SchrörsB. OmokokoT. VormehrM. AlbrechtC. ParuzynskiA. KuhnA.N. BuckJ. HeeschS. SchreebK.H. MüllerF. OrtseiferI. VoglerI. GodehardtE. AttigS. RaeR. BreitkreuzA. TolliverC. SuchanM. MarticG. HohbergerA. SornP. DiekmannJ. CieslaJ. WaksmannO. BrückA.K. WittM. ZillgenM. RothermelA. KasemannB. LangerD. BolteS. DikenM. KreiterS. NemecekR. GebhardtC. GrabbeS. HöllerC. UtikalJ. HuberC. LoquaiC. TüreciÖ. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer.Nature2017547766222222610.1038/nature2300328678784
    [Google Scholar]
  44. HrkachJ. Von HoffD. AliM.M. AndrianovaE. AuerJ. CampbellT. De WittD. FigaM. FigueiredoM. HorhotaA. LowS. McDonnellK. PeekeE. RetnarajanB. SabnisA. SchnipperE. SongJ.J. SongY.H. SummaJ. TompsettD. TroianoG. Van Geen HovenT. WrightJ. LoRussoP. KantoffP.W. BanderN.H. SweeneyC. FarokhzadO.C. LangerR. ZaleS. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile.Sci. Transl. Med.20124128128ra3910.1126/scitranslmed.300365122491949
    [Google Scholar]
  45. YaariZ. da SilvaD. ZingerA. GoldmanE. KajalA. TshuvaR. BarakE. DahanN. HershkovitzD. GoldfederM. RoitmanJ.S. SchroederA. Theranostic barcoded nanoparticles for personalized cancer medicine.Nat. Commun.2016711332510.1038/ncomms1332527830705
    [Google Scholar]
  46. NingS. SuoM. HuangQ. GaoS. QiaoK. LyuM. HuangQ. ZhangT. TangB.Z. Biomimetic fusion liposomes boosting antitumor immunity and promote memory T cell differentiation to inhibit postoperative recurrence of breast cancer.Nano Today20245410210610.1016/j.nantod.2023.102106
    [Google Scholar]
  47. PanY. SuoM. HuangQ. LyuM. JiangY. WangS. TangW. NingS. ZhangT. Near-infrared laser-activated aggregation-induced emission nanoparticles boost tumor carbonyl stress and immunotherapy of breast cancer.Aggregate202452e43210.1002/agt2.432
    [Google Scholar]
  48. NingS. ZhangX. SuoM. LyuM. PanY. JiangY. YangH. Yip LamJ.W. ZhangT. PanL. TangB.Z. Platelet-derived exosomes hybrid liposomes facilitate uninterrupted singlet oxygen generation to enhance breast cancer immunotherapy.Cell Rep. Phys. Sci.20234710150510.1016/j.xcrp.2023.101505
    [Google Scholar]
  49. LuY. AimettiA.A. LangerR. GuZ. Bioresponsive materials.Nat. Rev. Mater.2016211607510.1038/natrevmats.2016.75
    [Google Scholar]
  50. XieA. HanifS. OuyangJ. TangZ. KongN. KimN.Y. QiB. PatelD. ShiB. TaoW. Stimuli-responsive prodrug-based cancer nanomedicine.EBioMedicine20205610282110.1016/j.ebiom.2020.10282132505922
    [Google Scholar]
  51. WangJ. ZhangX. CenY. LinX. WuQ. Antitumor gemcitabine conjugated micelles from amphiphilic comb- like random copolymers.Colloids Surf. B Biointerfaces201614670771510.1016/j.colsurfb.2016.07.02727434158
    [Google Scholar]
  52. LiJ. LiY. WangY. KeW. ChenW. WangW. GeZ. Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy.Nano Lett.201717116983699010.1021/acs.nanolett.7b0353128977746
    [Google Scholar]
  53. DuanZ. CaiH. ZhangH. ChenK. LiN. XuZ. GongQ. LuoK. PEGylated multistimuli-responsive dendritic prodrug-based nanoscale system for enhanced anticancer activity.ACS Appl. Mater. Interfaces20181042357703578310.1021/acsami.8b1223230246536
    [Google Scholar]
  54. PengM. QinS. JiaH. ZhengD. RongL. ZhangX. Self-delivery of a peptide-based prodrug for tumor-targeting therapy.Nano Res.20169366367310.1007/s12274‑015‑0945‑1
    [Google Scholar]
  55. BaiY. LiuC.P. SongX. ZhuoL. BuH. TianW. Photo-and pH-dual-responsive β-Cyclodextrin-based supramolecular prodrug complex self-assemblies for programmed drug delivery.Chem. Asian J.201813243903391110.1002/asia.20180136630311448
    [Google Scholar]
  56. WangY. DuJ. WangY. JinQ. JiJ. Pillar[5]arene based supramolecular prodrug micelles with pH induced aggregate behavior for intracellular drug delivery.Chem. Commun. (Camb.)201551142999300210.1039/C4CC09274K25598131
    [Google Scholar]
  57. CaronJ. MaksimenkoA. WackS. LepeltierE. BourgauxC. MorvanE. LeblancK. CouvreurP. DesmaëleD. Improving the antitumor activity of squalenoyl- paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene.Adv. Healthcare Mater.20132117218510.1002/adhm.20120009923213041
    [Google Scholar]
  58. YueZ. WangH. LiY. QinY. XuL. BowersD.J. GangodaM. LiX. YangH.B. ZhengY.R. Coordination-driven self-assembly of a Pt(IV) prodrug-conjugated supramolecular hexagon.Chem. Commun. (Camb.)201854773173410.1039/C7CC07622C29303526
    [Google Scholar]
  59. FangT. YeZ. WuJ. WangH. Reprogramming axial ligands facilitates the self-assembly of a platinum (IV) prodrug: Overcoming drug resistance and safer in vivo delivery of cisplatin.Chem. Commun. (Camb.)201854669167917010.1039/C8CC03763A30062328
    [Google Scholar]
  60. YangB. WangK. ZhangD. SunB. JiB. WeiL. LiZ. WangM. ZhangX. ZhangH. KanQ. LuoC. WangY. HeZ. SunJ. Light-activatable dual-source ROS-responsive prodrug nanoplatform for synergistic chemo-photodynamic therapy.Biomater. Sci.20186112965297510.1039/C8BM00899J30255178
    [Google Scholar]
  61. LuoC. SunJ. SunB. HeZ. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy.Trends Pharmacol. Sci.2014351155656610.1016/j.tips.2014.09.00825441774
    [Google Scholar]
  62. LvY. XuC. ZhaoX. LinC. YangX. XinX. ZhangL. QinC. HanX. YangL. HeW. YinL. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells.ACS Nano20181221519153610.1021/acsnano.7b0805129350904
    [Google Scholar]
  63. XueX. QuH. LiY. Stimuli-responsive crosslinked nanomedicine for cancer treatment.Exploration2022262021013410.1002/EXP.2021013437324805
    [Google Scholar]
  64. DaviesC.L. LundstrømL.M. FrengenJ. EikenesL. BrulandØ.S. KaalhusO. HjelstuenM.H.B. BrekkenC. Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts.Cancer Res.200464254755310.1158/0008‑5472.CAN‑03‑057614744768
    [Google Scholar]
  65. LammersT. SubrV. PeschkeP. KühnleinR. HenninkW.E. UlbrichK. KiesslingF. HeilmannM. DebusJ. HuberP.E. StormG. Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy.Br. J. Cancer200899690091010.1038/sj.bjc.660456119238631
    [Google Scholar]
  66. MillerM.A. ChandraR. CuccareseM.F. PfirschkeC. EngblomC. StapletonS. AdhikaryU. KohlerR.H. MohanJ.F. PittetM.J. WeisslederR. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts.Sci. Transl. Med.20179392eaal022510.1126/scitranslmed.aal022528566423
    [Google Scholar]
  67. MinY. RocheK.C. TianS. EblanM.J. McKinnonK.P. CasterJ.M. ChaiS. HerringL.E. ZhangL. ZhangT. DeSimoneJ.M. TepperJ.E. VincentB.G. SerodyJ.S. WangA.Z. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy.Nat. Nanotechnol.201712987788210.1038/nnano.2017.11328650437
    [Google Scholar]
  68. SnipstadS. SulheimE. de Lange DaviesC. MoonenC. StormG. KiesslingF. SchmidR. LammersT. Sonopermeation to improve drug delivery to tumors: From fundamental understanding to clinical translation.Expert Opin. Drug Deliv.201815121249126110.1080/17425247.2018.154727930415585
    [Google Scholar]
  69. CarpentierA. CanneyM. VignotA. ReinaV. BeccariaK. HorodyckidC. KarachiC. LeclercqD. LafonC. ChapelonJ.Y. CapelleL. CornuP. SansonM. Hoang-XuanK. DelattreJ.Y. IdbaihA. Clinical trial of blood-brain barrier disruption by pulsed ultrasound.Sci. Transl. Med.20168343343re210.1126/scitranslmed.aaf608627306666
    [Google Scholar]
  70. MainprizeT. LipsmanN. HuangY. MengY. BethuneA. IronsideS. HeynC. AlkinsR. TrudeauM. SahgalA. PerryJ. HynynenK. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: A clinical safety and feasibility study.Sci. Rep.20199132110.1038/s41598‑018‑36340‑030674905
    [Google Scholar]
  71. TakW.Y. LinS.M. WangY. ZhengJ. VecchioneA. ParkS.Y. ChenM.H. WongS. XuR. PengC.Y. ChiouY.Y. HuangG.T. CaiJ. AbdullahB.J.J. LeeJ.S. LeeJ.Y. ChoiJ.Y. Gopez-CervantesJ. ShermanM. FinnR.S. OmataM. O’NealM. MakrisL. BorysN. PoonR. LencioniR. Phase III HEAT study adding lyso-thermosensitive liposomal doxorubicin to radiofrequency ablation in patients with unresectable hepatocellular carcinoma lesions.Clin. Cancer Res.2018241738310.1158/1078‑0432.CCR‑16‑243329018051
    [Google Scholar]
  72. de MaarJ.S. SuelmannB.B.M. BraatM.N.G.J.A. van DiestP.J. VaessenH.H.B. WitkampA.J. LinnS.C. MoonenC.T.W. van der WallE. DeckersR. Phase I feasibility study of magnetic resonance guided high intensity focused ultrasound-induced hyperthermia, lyso-thermosensitive liposomal doxorubicin and cyclophosphamide in de novo stage IV breast cancer patients: Study protocol of the i-GO study.BMJ Open20201011e04016210.1136/bmjopen‑2020‑04016233243800
    [Google Scholar]
  73. Wang-GillamA. LiC.P. BodokyG. DeanA. ShanY.S. JamesonG. MacarullaT. LeeK.H. CunninghamD. BlancJ.F. HubnerR.A. ChiuC.F. SchwartsmannG. SivekeJ.T. BraitehF. MoyoV. BelangerB. DhindsaN. BayeverE. Von HoffD.D. ChenL.T. AdooC. AndersonT. AsselahJ. AzambujaA. BamptonC. BarriosC.H. Bekaii-SaabT. BohuslavM. ChangD. ChenJ-S. ChenY-C. ChoiH.J. ChungI.J. ChungV. CsosziT. CubilloA. DeMarcoL. de WitM. DragovichT. EdenfieldW. FeinL.E. FrankeF. FuchsM. Gonzales-CruzV. GozzaA. FernandoR.H. IaffaioliR. JakesovaJ. KahanZ. KarimiM. KimJ.S. KorbenfeldE. LangI. LeeF-C. LeeK-D. LiptonL. MaW.W. MangelL. MenaR. PalmerD. PantS. ParkJ.O. PiacentiniP. PelzerU. PlazasJ.G. PrasadC. RauK-M. RaoulJ-L. RichardsD. RossP. SchlittlerL. SmakalM. StahalovaV. SternbergC. SeufferleinT. TebbuttN. VinholesJ.J. WadlowR. WenczlM. WongM. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial.Lancet20163871001854555710.1016/S0140‑6736(15)00986‑126615328
    [Google Scholar]
  74. SchmidP. AdamsS. RugoH.S. SchneeweissA. BarriosC.H. IwataH. DiérasV. HeggR. ImS.A. Shaw WrightG. HenschelV. MolineroL. ChuiS.Y. FunkeR. HusainA. WinerE.P. LoiS. EmensL.A. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer.N. Engl. J. Med.2018379222108212110.1056/NEJMoa180961530345906
    [Google Scholar]
  75. ChauhanV.P. MartinJ.D. LiuH. LacorreD.A. JainS.R. KozinS.V. StylianopoulosT. MousaA.S. HanX. AdstamongkonkulP. PopovićZ. HuangP. BawendiM.G. BoucherY. JainR.K. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels.Nat. Commun.201341251610.1038/ncomms351624084631
    [Google Scholar]
  76. Diop-FrimpongB. ChauhanV.P. KraneS. BoucherY. JainR.K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors.Proc. Natl. Acad. Sci. USA201110872909291410.1073/pnas.101889210821282607
    [Google Scholar]
  77. MurphyJ.E. WoJ.Y. RyanD.P. ClarkJ.W. JiangW. YeapB.Y. DrapekL.C. LyL. BagliniC.V. BlaszkowskyL.S. FerroneC.R. ParikhA.R. WeekesC.D. NippR.D. KwakE.L. AllenJ.N. CorcoranR.B. TingD.T. FarisJ.E. ZhuA.X. GoyalL. BergerD.L. QadanM. LillemoeK.D. TaleleN. JainR.K. DeLaneyT.F. DudaD.G. BoucherY. Fernández-Del CastilloC. HongT.S. Total neoadjuvant therapy with folfirinox in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer.JAMA Oncol.2019571020102710.1001/jamaoncol.2019.089231145418
    [Google Scholar]
  78. LancetJ.E. UyG.L. CortesJ.E. NewellL.F. LinT.L. RitchieE.K. StuartR.K. StricklandS.A. HoggeD. SolomonS.R. StoneR.M. BixbyD.L. KolitzJ.E. SchillerG.J. WieduwiltM.J. RyanD.H. HoeringA. BanerjeeK. ChiarellaM. LouieA.C. MedeirosB.C. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia.J. Clin. Oncol.201836262684269210.1200/JCO.2017.77.611230024784
    [Google Scholar]
  79. RibasA. WolchokJ.D. Cancer immunotherapy using checkpoint blockade.Science201835963821350135510.1126/science.aar406029567705
    [Google Scholar]
  80. JuneC.H. O’ConnorR.S. KawalekarO.U. GhassemiS. MiloneM.C. CAR T cell immunotherapy for human cancer.Science201835963821361136510.1126/science.aar671129567707
    [Google Scholar]
  81. BinnewiesM. RobertsE.W. KerstenK. ChanV. FearonD.F. MeradM. CoussensL.M. GabrilovichD.I. Ostrand-RosenbergS. HedrickC.C. VonderheideR.H. PittetM.J. JainR.K. ZouW. HowcroftT.K. WoodhouseE.C. WeinbergR.A. KrummelM.F. Understanding the tumor immune microenvironment (TIME) for effective therapy.Nat. Med.201824554155010.1038/s41591‑018‑0014‑x29686425
    [Google Scholar]
  82. RileyR.S. JuneC.H. LangerR. MitchellM.J. Delivery technologies for cancer immunotherapy.Nat. Rev. Drug Discov.201918317519610.1038/s41573‑018‑0006‑z30622344
    [Google Scholar]
  83. SunQ. BarzM. De GeestB.G. DikenM. HenninkW.E. KiesslingF. LammersT. ShiY. Nanomedicine and macroscale materials in immuno-oncology.Chem. Soc. Rev.201948135138110.1039/C8CS00473K30465669
    [Google Scholar]
  84. MulderW.J.M. OchandoJ. JoostenL.A.B. FayadZ.A. NeteaM.G. Therapeutic targeting of trained immunity.Nat. Rev. Drug Discov.201918755356610.1038/s41573‑019‑0025‑430967658
    [Google Scholar]
  85. JiangW. von RoemelingC. A. ChenY. QieY. LiuX. ChenJ. KimB. Y. S. Designing nanomedicine for immuno-oncology.Nature Biomed. Eng.201712002910.1038/s41551‑017‑0029
    [Google Scholar]
  86. FriedmanC.F. Proverbs-SinghT.A. PostowM.A. Treatment of the immune-related adverse effects of immune checkpoint inhibitors.JAMA Oncol.20162101346135310.1001/jamaoncol.2016.105127367787
    [Google Scholar]
  87. BordenE.C. Interferons α and β in cancer: Therapeutic opportunities from new insights.Nat. Rev. Drug Discov.201918321923410.1038/s41573‑018‑0011‑230679806
    [Google Scholar]
  88. NeteaM.G. LatzE. MillsK.H.G. O’NeillL.A.J. Innate immune memory: A paradigm shift in understanding host defense.Nat. Immunol.201516767567910.1038/ni.317826086132
    [Google Scholar]
  89. NeteaM.G. JoostenL.A.B. LatzE. MillsK.H.G. NatoliG. StunnenbergH.G. O’NeillL.A.J. XavierR.J. Trained immunity: A program of innate immune memory in health and disease.Science20163526284aaf109810.1126/science.aaf109827102489
    [Google Scholar]
  90. PrendergastG.C. MalachowskiW.P. DuHadawayJ.B. MullerA.J. Discovery of IDO1 inhibitors: From bench to bedside.Cancer Res.201777246795681110.1158/0008‑5472.CAN‑17‑228529247038
    [Google Scholar]
  91. LuJ. LiuX. LiaoY.P. SalazarF. SunB. JiangW. ChangC.H. JiangJ. WangX. WuA.M. MengH. NelA.E. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression.Nat. Commun.201781181110.1038/s41467‑017‑01651‑929180759
    [Google Scholar]
  92. ShaeD. BeckerK.W. ChristovP. YunD.S. Lytton- JeanA.K.R. SevimliS. AscanoM. KelleyM. JohnsonD.B. BalkoJ.M. WilsonJ.T. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy.Nat. Nanotechnol.201914326927810.1038/s41565‑018‑0342‑530664751
    [Google Scholar]
  93. PfirschkeC. EngblomC. RickeltS. Cortez-RetamozoV. GarrisC. PucciF. YamazakiT. Poirier-ColameV. NewtonA. RedouaneY. LinY.J. WojtkiewiczG. IwamotoY. Mino-KenudsonM. HuynhT.G. HynesR.O. FreemanG.J. KroemerG. ZitvogelL. WeisslederR. PittetM.J. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy.Immunity201644234335410.1016/j.immuni.2015.11.02426872698
    [Google Scholar]
  94. HwangW.L. PikeL.R.G. RoyceT.J. MahalB.A. LoefflerJ.S. Safety of combining radiotherapy with immune-checkpoint inhibition.Nat. Rev. Clin. Oncol.201815847749410.1038/s41571‑018‑0046‑729872177
    [Google Scholar]
  95. NgwaW. IraborO.C. SchoenfeldJ.D. HesserJ. DemariaS. FormentiS.C. Using immunotherapy to boost the abscopal effect.Nat. Rev. Cancer201818531332210.1038/nrc.2018.629449659
    [Google Scholar]
  96. LoPachinR. M. Acrylamide neurotoxicity: Neurological, morhological and molecular endpoints in animal models.Adv Exp Med Biol2005561212137
    [Google Scholar]
  97. HanT.H. ZhaoB. Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates.Drug Metab. Dispos.201442111914192010.1124/dmd.114.05858625048520
    [Google Scholar]
  98. ChengA.L. KangY.K. ChenZ. TsaoC.J. QinS. KimJ.S. LuoR. FengJ. YeS. YangT.S. XuJ. SunY. LiangH. LiuJ. WangJ. TakW.Y. PanH. BurockK. ZouJ. VoliotisD. GuanZ. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial.Lancet Oncol.2009101253410.1016/S1470‑2045(08)70285‑719095497
    [Google Scholar]
  99. HouM. GaoY.E. ShiX. BaiS. MaX. LiB. XiaoB. XueP. KangY. XuZ. Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy.Acta Biomater.20187722823910.1016/j.actbio.2018.07.01430006314
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673300897240602130258
Loading
/content/journals/cmc/10.2174/0109298673300897240602130258
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test