Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Skin cancer, a common malignancy worldwide, has increased incidence and mortality. Thus, it is a public health issue and a significant illness burden, which increases treatment costs. Chemotherapy and surgery are used to treat skin cancer. However, conventional skin cancer treatments have several limitations, demanding the development of innovative, safe, and effective methods. To overcome these limitations of conventional topical dosage forms, many nanocarriers have been developed and tested for the targeted delivery of anticancer drugs.

Objective

The main objective of the present review was to discuss the utility of various vesicular nanocarrier systems to deliver anticancer drugs following topical administration to treat skin cancer.

Methods

For this review article, we scoured the scholarly literature using Science Direct, Google Scholar, and PubMed.

Discussion

The vesicular drug delivery system has been intensively explored and developed as an alternative to conventional skin cancer drug delivery systems, especially for melanoma. They improve the penetration of anticancer drugs the skin, reaching the cancer area with enough and killing cancer cells. Vesicles minimize skin irritation and drug degradation. This improves therapy efficacy and reduces systemic toxicity.

Conclusion

Utilizing the vesicular drug delivery system shows promise in treating skin cancer. Therefore, further research and inquiries are necessary to explore the therapeutic potential of these substances in treating skin cancer, intending to develop a personalized, efficient, and secure therapy approach for patients with this condition.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673297695240328074724
2024-04-08
2024-12-24
Loading full text...

Full text loading...

References

  1. WongR. GeyerS. WeningerW. GuimberteauJ.C. WongJ.K. The dynamic anatomy and patterning of skin.Exp. Dermatol.2016252929810.1111/exd.1283226284579
    [Google Scholar]
  2. PazyarN. YaghoobiR. RafieeE. MehrabianA. FeilyA. Skin wound healing and phytomedicine: A review.Skin Pharmacol. Physiol.201427630331010.1159/00035747724993834
    [Google Scholar]
  3. LinaresM.A. ZakariaA. NizranP. Skin cancer.Prim. Care201542464565910.1016/j.pop.2015.07.00626612377
    [Google Scholar]
  4. TangL. ParkS.E. Sun exposure, tanning beds, and herbs that cure: An examination of skin cancer on pinterest.Health Commun.201732101192120010.1080/10410236.2016.121422327588747
    [Google Scholar]
  5. JandaM. OlsenC. MarV. CustA. Early detection of skin cancer in Australia – Current approaches and new opportunities.Public Health Res. Pract.2022321321220410.17061/phrp321220435290997
    [Google Scholar]
  6. LosquadroW.D. Anatomy of the skin and the pathogenesis of nonmelanoma skin cancer.Facial Plast. Surg. Clin. North Am.201725328328910.1016/j.fsc.2017.03.00128676156
    [Google Scholar]
  7. GordonR. Skin cancer: An overview of epidemiology and risk factors.Semin. Oncol. Nurs.201329316016910.1016/j.soncn.2013.06.00223958214
    [Google Scholar]
  8. LeeP.K. Common skin cancers.Minn. Med.2004873444715080294
    [Google Scholar]
  9. LeiterU. KeimU. GarbeC. Epidemiology of skin cancer: Update 2019.Adv. Exp. Med. Biol.2020126812313910.1007/978‑3‑030‑46227‑7_632918216
    [Google Scholar]
  10. ShalhoutS.Z. EmerickK.S. KaufmanH.L. MillerD.M. Immunotherapy for non-melanoma skin cancer.Curr. Oncol. Rep.2021231112510.1007/s11912‑021‑01120‑z34448958
    [Google Scholar]
  11. ShalhoutS.Z. KaufmanH.L. EmerickK.S. MillerD.M. Immunotherapy for nonmelanoma skin cancer: Facts and hopes.Clin. Cancer Res.202228112211222010.1158/1078‑0432.CCR‑21‑297135121622
    [Google Scholar]
  12. KimD.P. KusK.J.B. RuizE. Basal cell carcinoma review.Hematol. Oncol. Clin. North Am.2019331132410.1016/j.hoc.2018.09.00430497670
    [Google Scholar]
  13. MarzukaA.G. BookS.E. Basal cell carcinoma: Pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management.Yale J. Biol. Med.201588216717926029015
    [Google Scholar]
  14. ClarkC.M. FurnissM. WigganM.J.M. Basal cell carcinoma: An evidence-based treatment update.Am. J. Clin. Dermatol.201415319721610.1007/s40257‑014‑0070‑z24733429
    [Google Scholar]
  15. PragerR. KhachemouneA. Basal cell carcinoma.Dermatol. Nurs.200618658458517286161
    [Google Scholar]
  16. WaldmanA. SchmultsC. Cutaneous squamous cell carcinoma.Hematol. Oncol. Clin. North Am.201933111210.1016/j.hoc.2018.08.00130497667
    [Google Scholar]
  17. QueS.K.T. ZwaldF.O. SchmultsC.D. Cutaneous squamous cell carcinoma.J. Am. Acad. Dermatol.201878223724710.1016/j.jaad.2017.08.05929332704
    [Google Scholar]
  18. RitoW.A.M. RudnickaL. Bowen’s disease in dermoscopy.Acta Dermatovenerol. Croat.201826215716129989873
    [Google Scholar]
  19. WebbJ.L. BurnsR.E. BrownH.M. LeRoyB.E. KosarekC.E. Squamous cell carcinoma.Compend. Contin. Educ. Vet.2009313E919412903
    [Google Scholar]
  20. KalliniJ.R. HamedN. KhachemouneA. Squamous cell carcinoma of the skin: Epidemiology, classification, management, and novel trends.Int. J. Dermatol.201554213014010.1111/ijd.1255325428226
    [Google Scholar]
  21. ChangM.S. AzinM. DemehriS. Cutaneous squamous cell carcinoma: The frontier of cancer immunoprevention.Annu. Rev. Pathol.202217110111910.1146/annurev‑pathol‑042320‑12005635073167
    [Google Scholar]
  22. CleavengerJ. JohnsonS.M. Non melanoma skin cancer review.J. Ark. Med. Soc.20141101123023424783362
    [Google Scholar]
  23. GreenA.C. McBrideP. Squamous cell carcinoma of the skin (non-metastatic).Clin. Evid.20142014170925137222
    [Google Scholar]
  24. OstrowskiS.M. FisherD.E. Biology of melanoma.Hematol. Oncol. Clin. North Am.2021351295610.1016/j.hoc.2020.08.01033759772
    [Google Scholar]
  25. LoJ.A. FisherD.E. The melanoma revolution: From UV carcinogenesis to a new era in therapeutics.Science2014346621294594910.1126/science.125373525414302
    [Google Scholar]
  26. LaBergeG.S. DuvallE. GrasmickZ. HaedickeK. GalanA. LeverettJ. BaswanS. YimS. PawelekJ. Recent advances in studies of skin color and skin cancer.Yale J. Biol. Med.2020931698032226338
    [Google Scholar]
  27. UongA. ZonL.I. Melanocytes in development and cancer.J. Cell. Physiol.20102221384110.1002/jcp.2193519795394
    [Google Scholar]
  28. AhmedB. QadirM.I. GhafoorS. Malignant melanoma: Skin cancer-diagnosis, prevention, and treatment.Crit. Rev. Eukaryot. Gene Expr.202030429129710.1615/CritRevEukaryotGeneExpr.202002845432894659
    [Google Scholar]
  29. AbbasO. MillerD.D. BhawanJ. Cutaneous malignant melanoma: Update on diagnostic and prognostic biomarkers.Am. J. Dermatopathol.201436536337910.1097/DAD.0b013e31828a2ec524803061
    [Google Scholar]
  30. DaudaM.M. ShehuS.M. Malignant melanoma: A review.Niger. Postgrad. Med. J.200512212513010.4103/1117‑1936.17526615997263
    [Google Scholar]
  31. BabinoG. LallasA. LongoC. MoscarellaE. AlfanoR. ArgenzianoG. Dermoscopy of melanoma and non-melanoma skin cancer.G. Ital. Dermatol. Venereol.2015150550751926184795
    [Google Scholar]
  32. PavithraP.S. MehtaA. VermaR.S. Essential oils: From prevention to treatment of skin cancer.Drug Discov. Today201924264465510.1016/j.drudis.2018.11.02030508640
    [Google Scholar]
  33. VillaniA. PotestioL. FabbrociniG. TronconeG. MalapelleU. ScalvenziM. The treatment of advanced melanoma: Therapeutic update.Int. J. Mol. Sci.20222312638810.3390/ijms2312638835742834
    [Google Scholar]
  34. TsaoH. SoberA.J. Melanoma treatment update.Dermatol. Clin.200523232333310.1016/j.det.2004.09.00515837158
    [Google Scholar]
  35. AtallahE. FlahertyL. Treatment of metastatic malignant melanoma.Curr. Treat. Options Oncol.20056318519310.1007/s11864‑005‑0002‑515869730
    [Google Scholar]
  36. LensM.B. EisenT.G. Systemic chemotherapy in the treatment of malignant melanoma.Expert Opin. Pharmacother.20034122205221110.1517/14656566.4.12.220514640919
    [Google Scholar]
  37. KoppelR.A. BohE.E. Cutaneous reactions to chemotherapeutic agents.Am. J. Med. Sci.2001321532733510.1097/00000441‑200105000‑0000511370796
    [Google Scholar]
  38. SusserW.S. Whitaker-WorthD.L. Grant-KelsJ.M. Mucocutaneous reactions to chemotherapy.J. Am. Acad. Dermatol.199940336739810.1016/S0190‑9622(99)70488‑310071309
    [Google Scholar]
  39. ZhuT. ZhuT. RouttE. CioconD. Mohs micrographic surgery for genital skin cancer: A review of cases and reconstructive techniques.J. Drugs Dermatol.202120331131910.36849/JDD.565633683082
    [Google Scholar]
  40. GoldaN. HruzaG. Mohs micrographic surgery.Dermatol. Clin.2023411394710.1016/j.det.2022.07.00636410982
    [Google Scholar]
  41. CouncilM.L. Common skin cancers in older adults: Approach to diagnosis and management.Clin. Geriatr. Med.201329236137210.1016/j.cger.2013.01.01123571033
    [Google Scholar]
  42. CheraghiN. CognettaA. GoldbergD. Radiation therapy in dermatology: Non-melanoma skin cancer.J. Drugs Dermatol.201716546446928628682
    [Google Scholar]
  43. RongY. ZuoL. ShangL. BazanJ.G. Radiotherapy treatment for nonmelanoma skin cancer.Expert Rev. Anticancer Ther.201515776577610.1586/14737140.2015.104286525955383
    [Google Scholar]
  44. PashazadehA. BoeseA. FriebeM. Radiation therapy techniques in the treatment of skin cancer: An overview of the current status and outlook.J. Dermatolog. Treat.201930883183910.1080/09546634.2019.157331030703334
    [Google Scholar]
  45. YosefofE. KurmanN. YanivD. The role of radiation therapy in the treatment of non-melanoma skin cancer.Cancers2023159240810.3390/cancers1509240837173875
    [Google Scholar]
  46. WernickeA.G. PolceS. ParasharB. Role of radiation in the era of effective systemic therapy for melanoma.Surg. Clin. North Am.2020100118919910.1016/j.suc.2019.09.01031753112
    [Google Scholar]
  47. ChampeauM. VignoudS. MortierL. MordonS. Photodynamic therapy for skin cancer: How to enhance drug penetration?J. Photochem. Photobiol. B201919711154410.1016/j.jphotobiol.2019.11154431295716
    [Google Scholar]
  48. MarrelliM. MenichiniG. ProvenzanoE. ConfortiF. Applications of natural compounds in the photodynamic therapy of skin cancer.Curr. Med. Chem.201421121371139010.2174/09298673211214031909432423531223
    [Google Scholar]
  49. PaulsonK.G. LahmanM.C. ChapuisA.G. BrownellI. Immunotherapy for skin cancer.Int. Immunol.201931746547510.1093/intimm/dxz01230753483
    [Google Scholar]
  50. ChitwoodK. EtzkornJ. CohenG. Topical and intralesional treatment of nonmelanoma skin cancer: Efficacy and cost comparisons.Dermatol. Surg.20133991306131610.1111/dsu.1230023915332
    [Google Scholar]
  51. ZhouQ. ZhangX.S. Adjuvant interferon therapy for malignant melanoma: The debate.Chin. J. Cancer2010291190791310.5732/cjc.010.1016920979689
    [Google Scholar]
  52. TrinhV.A. ZobniwC. HwuW.J. The efficacy and safety of adjuvant interferon-alfa therapy in the evolving treatment landscape for resected high-risk melanoma.Expert Opin. Drug Saf.201716893394010.1080/14740338.2017.134330128627943
    [Google Scholar]
  53. AgarwalaS.S. An update on pegylated IFN-α2b for the adjuvant treatment of melanoma.Expert Rev. Anticancer Ther.201212111449145910.1586/era.12.12023249109
    [Google Scholar]
  54. RotteA. BhandaruM. ZhouY. McElweeK.J. Immunotherapy of melanoma: Present options and future promises.Cancer Metastasis Rev.201534111512810.1007/s10555‑014‑9542‑025589384
    [Google Scholar]
  55. BuchbinderE.I. DesaiA. CTLA-4 and PD-1 pathways.Am. J. Clin. Oncol.20163919810610.1097/COC.000000000000023926558876
    [Google Scholar]
  56. RubattoM. SciamarrelliN. BorrielloS. PalaV. MastorinoL. TonellaL. RiberoS. QuaglinoP. Classic and new strategies for the treatment of advanced melanoma and non-melanoma skin cancer.Front. Med.2023995928910.3389/fmed.2022.95928936844955
    [Google Scholar]
  57. MohanB. DhimanD. Virender Mehak Priyanka SunQ. JanM. SinghG. RaghavN. Metal-organic frameworks (MOFs) structural properties and electrochemical detection capability for cancer biomarkers.Microchem. J.202319310895610.1016/j.microc.2023.108956
    [Google Scholar]
  58. MohanB. KumarS. KumarV. JiaoT. SharmaH.K. ChenQ. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers.Trends Analyt. Chem.202215711673510.1016/j.trac.2022.116735
    [Google Scholar]
  59. MohanB. KumarS. XiH. MaS. TaoZ. XingT. YouH. ZhangY. RenP. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection.Biosens. Bioelectron.202219711373810.1016/j.bios.2021.11373834740120
    [Google Scholar]
  60. KhanN.H. MirM. QianL. BalochM. Ali KhanM.F. RehmanA. NgowiE.E. WuD.D. JiX.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures.J. Adv. Res.20223622324710.1016/j.jare.2021.06.01435127174
    [Google Scholar]
  61. MishraH. MishraP.K. EkielskiA. JaggiM. IqbalZ. TalegaonkarS. Melanoma treatment: From conventional to nanotechnology.J. Cancer Res. Clin. Oncol.2018144122283230210.1007/s00432‑018‑2726‑130094536
    [Google Scholar]
  62. LopesJ. RodriguesC.M.P. GasparM.M. ReisC.P. Melanoma management: From epidemiology to treatment and latest advances.Cancers20221419465210.3390/cancers1419465236230575
    [Google Scholar]
  63. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  64. Borgheti-CardosoL.N. ViegasJ.S.R. SilvestriniA.V.P. CaronA.L. PraçaF.G. KraviczM. BentleyM.V.L.B. Nanotechnology approaches in the current therapy of skin cancer.Adv. Drug Deliv. Rev.202015310913610.1016/j.addr.2020.02.00532113956
    [Google Scholar]
  65. KrishnanV. MitragotriS. Nanoparticles for topical drug delivery: Potential for skin cancer treatment.Adv. Drug Deliv. Rev.20201538710810.1016/j.addr.2020.05.01132497707
    [Google Scholar]
  66. AdnanM. AkhterM.H. AfzalO. AltamimiA.S.A. AhmadI. AlossaimiM.A. JaremkoM. EmwasA.H. HaiderT. HaiderM.F. Exploring nanocarriers as treatment modalities for skin cancer.Molecules20232815590510.3390/molecules2815590537570875
    [Google Scholar]
  67. KumariS. ChoudharyP.K. ShuklaR. SahebkarA. KesharwaniP. Recent advances in nanotechnology based combination drug therapy for skin cancer.J. Biomater. Sci. Polym. Ed.202233111435146810.1080/09205063.2022.205439935294334
    [Google Scholar]
  68. SinghA. Nimisha. Novel nanolipoidal systems for the management of skin cancer.Recent Pat. Drug Deliv. Formul.202014210812510.2174/187221131466620081711570032807069
    [Google Scholar]
  69. BagasariyaD. CharankumarK. ShahS. FamtaP. KhatriD.K. Singh RaghuvanshiR. Bala SinghS. SrivastavaS. Biomimetic nanotherapeutics: Employing nanoghosts to fight melanoma.Eur. J. Pharm. Biopharm.202217715717410.1016/j.ejpb.2022.06.01435787429
    [Google Scholar]
  70. ShiA. WuJ. TianX. Construction of biomimetic-responsive nanocarriers and their applications in tumor targeting.Anticancer. Agents Med. Chem.202222122255227310.2174/187152062266622010610531534994336
    [Google Scholar]
  71. LiA. ZhaoY. LiY. JiangL. GuY. LiuJ. Cell-derived biomimetic nanocarriers for targeted cancer therapy: Cell membranes and extracellular vesicles.Drug Deliv.20212811237125510.1080/10717544.2021.193875734142930
    [Google Scholar]
  72. CabralH. KinohH. KataokaK. Tumor-targeted nanomedicine for immunotherapy.Acc. Chem. Res.202053122765277610.1021/acs.accounts.0c0051833161717
    [Google Scholar]
  73. van der MeelR. SulheimE. ShiY. KiesslingF. MulderW.J.M. LammersT. Smart cancer nanomedicine.Nat. Nanotechnol.201914111007101710.1038/s41565‑019‑0567‑y31695150
    [Google Scholar]
  74. CadeteA. AlonsoM.J. Targeting cancer with hyaluronic acid-based nanocarriers: Recent advances and translational perspectives.Nanomedicine201611172341235710.2217/nnm‑2016‑011727526874
    [Google Scholar]
  75. PathaniaD. MillardM. NeamatiN. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism.Adv. Drug Deliv. Rev.200961141250127510.1016/j.addr.2009.05.01019716393
    [Google Scholar]
  76. VermaS. UtrejaP. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy.Asian J. Pharm. Sci.201914211712910.1016/j.ajps.2018.05.00732104444
    [Google Scholar]
  77. LaiF. CaddeoC. MancaM.L. ManconiM. SinicoC. FaddaA.M. What’s new in the field of phospholipid vesicular nanocarriers for skin drug delivery.Int. J. Pharm.202058311939810.1016/j.ijpharm.2020.11939832376441
    [Google Scholar]
  78. AlbalawiW. AlharbiS. AlanaziF. AlahmadiH. AlghamdiM. SolimanG.M. SafwatM.A. Elegant, flexible vesicular nanocarriers for the efficient skin delivery of topically applied drugs.Curr. Nanosci.202319449350810.2174/1573413718666211230111538
    [Google Scholar]
  79. CaritaA.C. EloyJ.O. ChorilliM. LeeR.J. LeonardiG.R. Recent advances and perspectives in liposomes for cutaneous drug delivery.Curr. Med. Chem.201825560663510.2174/092986732466617100912015428990515
    [Google Scholar]
  80. PierreM.B.R. dos CostaS.M.I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications.Arch. Dermatol. Res.2011303960762110.1007/s00403‑011‑1166‑421805180
    [Google Scholar]
  81. NounouM. El-KhordaguiL. KhalafallahN. KhalilS. Liposomal formulation for dermal and transdermal drug delivery: Past, present and future.Recent Pat. Drug Deliv. Formul.20082191810.2174/18722110878333137519075893
    [Google Scholar]
  82. GuimarãesD. PauloC.A. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.12057133812967
    [Google Scholar]
  83. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  84. LeeH. Molecular simulations of PEGylated biomolecules, liposomes, and nanoparticles for drug delivery applications.Pharmaceutics202012653310.3390/pharmaceutics1206053332531886
    [Google Scholar]
  85. GajbhiyeK.R. PawarA. MahadikK.R. GajbhiyeV. PEGylated nanocarriers: A promising tool for targeted delivery to the brain.Colloids Surf. B Biointerf.202018711077010.1016/j.colsurfb.2019.11077031926790
    [Google Scholar]
  86. MohamedM. Abu LilaA.S. ShimizuT. AlaaeldinE. HusseinA. SarhanH.A. SzebeniJ. IshidaT. PEGylated liposomes: Immunological responses.Sci. Technol. Adv. Mater.201920171072410.1080/14686996.2019.162717431275462
    [Google Scholar]
  87. FangJ.Y. HwangT.L. HuangY.L. Liposomes as vehicles for enhancing drug delivery via skin routes.Curr. Nanosci.200621557010.2174/157341306775473791
    [Google Scholar]
  88. SchmidM.H. KortingH.C. Therapeutic progress with topical liposome drugs for skin disease.Adv. Drug Deliv. Rev.199618333534210.1016/0169‑409X(95)00019‑4
    [Google Scholar]
  89. De LeeuwJ. De VijlderH.C. BjerringP. NeumannH.A.M. Liposomes in dermatology today.J. Eur. Acad. Dermatol. Venereol.200923550551610.1111/j.1468‑3083.2009.03100.x19175703
    [Google Scholar]
  90. AhmedK.S. ShanX. MaoJ. QiuL. ChenJ. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect.Mater. Sci. Eng. C2019991448145810.1016/j.msec.2019.02.09530889679
    [Google Scholar]
  91. ChenY. WuQ. ZhangZ. YuanL. LiuX. ZhouL. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics.Molecules20121755972598710.3390/molecules1705597222609787
    [Google Scholar]
  92. JoseA. LabalaS. NinaveK.M. GadeS.K. VenugantiV.V.K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes.AAPS PharmSciTech201819116617510.1208/s12249‑017‑0833‑y28639178
    [Google Scholar]
  93. PetrilliR. EloyJ.O. SaggioroF.P. ChescaD.L. de SouzaM.C. DiasM.V.S. daSilvaL.L.P. LeeR.J. LopezR.F.V. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection.J. Control. Release201828315116210.1016/j.jconrel.2018.05.03829864476
    [Google Scholar]
  94. ZouL. DingW. ZhangY. ChengS. LiF. RuanR. WeiP. QiuB. Peptide-modified vemurafenib-loaded liposomes for targeted inhibition of melanoma via the skin.Biomaterials201818211210.1016/j.biomaterials.2018.08.01330096444
    [Google Scholar]
  95. NiY. ZhaoW. ChengW. DengC. YingZ. LiL. WangX. SunC. TuJ. JiangL. Lipopeptide liposomes-loaded hydrogel for multistage transdermal chemotherapy of melanoma.J. Control. Release202235124525410.1016/j.jconrel.2022.09.01436108811
    [Google Scholar]
  96. ShahS. FamtaP. FernandesV. BagasariyaD. CharankumarK. KhatriK.D. SinghB.S. SrivastavaS. Quality by design steered development of Niclosamide loaded liposomal thermogel for melanoma: In vitro and ex vivo evaluation.Eur. J. Pharm. Biopharm.202218011913610.1016/j.ejpb.2022.09.02436198344
    [Google Scholar]
  97. ChenZ. ZhangT. WuB. ZhangX. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes.Int. J. Nanomedicine201611991100227042054
    [Google Scholar]
  98. AkramM.W. JamshaidH. RehmanF.U. ZaeemM. KhanJ. ZebA. Transfersomes: A revolutionary nanosystem for efficient transdermal drug delivery.AAPS PharmSciTech2021231710.1208/s12249‑021‑02166‑934853906
    [Google Scholar]
  99. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics1209085532916782
    [Google Scholar]
  100. OyarzúnP. Gallardo-ToledoE. MoralesJ. ArriagadaF. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders.Nanomedicine202116272465248910.2217/nnm‑2021‑033534706575
    [Google Scholar]
  101. GuptaR. KumarA. Transfersomes: The ultra-deformable carrier system for non-invasive delivery of drug.Curr. Drug Deliv.202118440842010.2174/156720181766620080410541632753015
    [Google Scholar]
  102. RaiS. PandeyV. RaiG. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art.Nano Rev. Exp.201781132570810.1080/20022727.2017.132570830410704
    [Google Scholar]
  103. HussainA. SinghS. SharmaD. WebsterT. ShafaatK. FarukA. Elastic liposomes as novel carriers: Recent advances in drug delivery.Int. J. Nanomedicine2017125087510810.2147/IJN.S13826728761343
    [Google Scholar]
  104. GargV. SinghH. BimbrawhS. SinghS.K. GulatiM. VaidyaY. KaurP. Ethosomes and transfersomes: Principles, perspectives and practices.Curr. Drug Deliv.201714561363327199229
    [Google Scholar]
  105. LiY. TaiZ. MaJ. MiaoF. XinR. ShenC. ShenM. ZhuQ. ChenZ. Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma.J. Nanobiotechnology202321113910.1186/s12951‑023‑01877‑437118807
    [Google Scholar]
  106. KazmiI. Al-AbbasiF.A. NadeemM.S. AltaybH.N. AlshehriS. ImamS.S. Formulation, optimization and evaluation of luteolin-loaded topical nanoparticulate delivery system for the skin cancer.Pharmaceutics20211311174910.3390/pharmaceutics1311174934834164
    [Google Scholar]
  107. KhanM.A. PanditJ. SultanaY. SultanaS. AliA. AqilM. ChauhanM. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: In vitro characterization and in vivo study.Drug Deliv.201522679580210.3109/10717544.2014.90214624735246
    [Google Scholar]
  108. ChenM. ShamimM.A. ShahidA. YeungS. AndresenB.T. WangJ. NekkantiV. MeyskensF.L.Jr KellyK.M. HuangY. Topical delivery of carvedilol loaded nano-transfersomes for skin cancer chemoprevention.Pharmaceutics20201212115110.3390/pharmaceutics1212115133260886
    [Google Scholar]
  109. JangdeyM.S. GuptaA. SarafS. SarafS. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: In vitro evaluation.Artif. Cells Nanomed. Biotechnol.20174571452146210.1080/21691401.2016.124785028050929
    [Google Scholar]
  110. JainS. JainN. PUB040 formulation and evaluation of embelin loaded transfersome for effective treatment of skin cancer.J. Thorac. Oncol.20171211S237810.1016/j.jtho.2017.09.1903
    [Google Scholar]
  111. GayathriH. SangeethaS. Design and development of tofacitinib citrate loaded transferosomal gel for skin cancer by box-behnken design-doe approach.Int. J. Health Sci.2022631193140
    [Google Scholar]
  112. JiangT. WangT. LiT. MaY. ShenS. HeB. MoR. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma.ACS Nano201812109693970110.1021/acsnano.8b0380030183253
    [Google Scholar]
  113. NainwalN. JawlaS. SinghR. SaharanV.A. Transdermal applications of ethosomes – A detailed review.J. Liposome Res.201929210311310.1080/08982104.2018.151716030156120
    [Google Scholar]
  114. JafariA. DaneshamouzS. GhasemiyehP. SamaniM.S. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization.J. Liposome Res.2023331345210.1080/08982104.2022.208574235695714
    [Google Scholar]
  115. AkhtarN. VarmaA. PathakK. Ethosomes as vesicles for effective transdermal delivery: From bench to clinical implementation.Curr. Clin. Pharmacol.201611316819010.2174/157488471166616081323135227526697
    [Google Scholar]
  116. SantosP.A.C. SilvaA.L. GuerraC. PeixotoD. SilvaP.M. ZeinaliM. MeloM.F. CastroR. VeigaF. Ethosomes as nanocarriers for the development of skin delivery formulations.Pharm. Res.202138694797010.1007/s11095‑021‑03053‑534036520
    [Google Scholar]
  117. AbdulbaqiI.M. DarwisY. KhanN.A. AssiR.A. KhanA.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials.Int. J. Nanomedicine2016112279230410.2147/IJN.S10501627307730
    [Google Scholar]
  118. RamtekeS. BarupalA.K. GuptaV. Preparation and characterization of ethosomes for topical delivery of aceclofenac.Indian J. Pharm. Sci.201072558258610.4103/0250‑474X.7852421694989
    [Google Scholar]
  119. IizharS.A. SyedI.A. SatarR. AnsariS.A. In vitro assessment of pharmaceutical potential of ethosomes entrapped with terbinafine hydrochloride.J. Adv. Res.20167345346110.1016/j.jare.2016.03.00327222750
    [Google Scholar]
  120. EmanetM. CiofaniG. Ethosomes as promising transdermal delivery systems of natural-derived active compounds.Adv. NanoBiomed. Res.2023310230002010.1002/anbr.202300020
    [Google Scholar]
  121. MoolakkadathT. AqilM. AhadA. ImamS.S. PraveenA. SultanaY. MujeebM. IqbalZ. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice.Int. J. Pharm.2019560789110.1016/j.ijpharm.2019.01.06730742987
    [Google Scholar]
  122. MousaI.A. HammadyT.M. GadS. ZaitoneS.A. El-SherbinyM. SayedO.M. Formulation and characterization of metformin-loaded ethosomes for topical application to experimentally induced skin cancer in mice.Pharmaceuticals202215665710.3390/ph1506065735745575
    [Google Scholar]
  123. PeramM.R. JalalpureS. KumbarV. PatilS. JoshiS. BhatK. DiwanP. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: In vitro evaluation.J. Liposome Res.201929329131110.1080/08982104.2018.155629230526186
    [Google Scholar]
  124. SoniK. MujtabaA. AkhterM.H. ZafarA. KohliK. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy.J. Microencapsul.20203729110810.1080/02652048.2019.170111431810417
    [Google Scholar]
  125. NairR.S. BillaN. MooiL.Y. MorrisA.P. Characterization and ex vivo evaluation of curcumin nanoethosomes for melanoma treatment.Pharm. Dev. Technol.2022271728210.1080/10837450.2021.202356834957920
    [Google Scholar]
  126. Aguayo FríasE.T. Maza VegaD. CalienniM.N. LilloC. VazquezD.S. AlonsoS.V. MontanariJ. Enhanced skin delivery of vismodegib-loaded rigid liposomes combined with ethosomes.OpenNano20231410018610.1016/j.onano.2023.100186
    [Google Scholar]
  127. GamalA. SaeedH. El-ElaF.I.A. SalemH.F. Improving the antitumor activity and bioavailability of sonidegib for the treatment of skin cancer.Pharmaceutics20211310156010.3390/pharmaceutics1310156034683853
    [Google Scholar]
  128. IsmailT.A. ShehataT.M. MohamedD.I. ElsewedyH.S. SolimanW.E. Quality by design for development, optimization and characterization of brucine ethosomal gel for skin cancer delivery.Molecules20212611345410.3390/molecules2611345434200144
    [Google Scholar]
  129. MunirM. ZamanM. WaqarM.A. HameedH. RiazT. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route.J. Liposome Res.202334120321810.1080/08982104.2023.222135437338000
    [Google Scholar]
  130. VermaS. UtrejaP. Exploring therapeutic potential of invasomes, transfersomes, transethosomes, oleic acid vesicles, and cubosomes adopting topical/transdermal route.Micro Nanosyst.202214132010.2174/1876402913666210406163452
    [Google Scholar]
  131. RajA. DuaK. NairR.S. ChandranS.C. AlexA.T. Transethosome: An ultra-deformable ethanolic vesicle for enhanced transdermal drug delivery.Chem. Phys. Lipids202325510531510.1016/j.chemphyslip.2023.10531537356610
    [Google Scholar]
  132. NayakB.S. MohantyB. MishraB. RoyH. NandiS. Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system.Chem. Biol. Drug Des.2023102365366710.1111/cbdd.1425437062593
    [Google Scholar]
  133. AliJ. RazaR. AmeenS. ArshadA. KarimF. AkramW.M.W. ShakirL. Transethosomes: A breakthrough system for transdermal and topical drug delivery: Transethosomes for transdermal and topical drug delivery.Pak. Biomed. J.202257354357
    [Google Scholar]
  134. ChowdaryP. PadmakumarA. RenganA.K. Exploring the potential of transethosomes in therapeutic delivery: A comprehensive review.MedComm. Biomater. Appl.202324e5910.1002/mba2.59
    [Google Scholar]
  135. MohammedB.S. Al GawhariF.J. Transethosomes a novel transdermal drug delivery system for antifungal drugs.Int. J. Drug Deliv. Technol202111238243
    [Google Scholar]
  136. AbdellatifA.A.H. AldosariB.N. Al-SubaiyelA. AlhaddadA. SammanW.A. ElerakyN.E. ElnaggarM.G. BarakatH. TawfeekH.M. Transethosomal gel for the topical delivery of celecoxib: Formulation and estimation of skin cancer progression.Pharmaceutics20221512210.3390/pharmaceutics1501002236678651
    [Google Scholar]
  137. MoolakkadathT. AqilM. AhadA. ImamS.S. IqbalB. SultanaY. MujeebM. IqbalZ. Development of transethosomes formulation for dermal fisetin delivery: Box-behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies.Artif. Cells Nanomed. Biotechnol.201846S2755765
    [Google Scholar]
  138. El-KayalM. NasrM. ElkheshenS. MortadaN. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: A comprehensive experimental study with preclinical investigation.Eur. J. Pharm. Sci.201913710497210.1016/j.ejps.2019.10497231252049
    [Google Scholar]
  139. RadyM. GomaaI. AfifiN. Abdel-KaderM. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model.Int. J. Pharm.2018548148049010.1016/j.ijpharm.2018.06.05729959090
    [Google Scholar]
  140. AdnanM. AfzalO. AltamimiS.A.A. AlamriM.A. HaiderT. HaiderF.M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment.Int. J. Pharm.202363112250610.1016/j.ijpharm.2022.12250636535455
    [Google Scholar]
  141. KaurP. GargV. BawaP. SharmaR. SinghS.K. KumarB. GulatiM. PandeyN.K. NarangR. WadhwaS. MohantaS. JyotiJ. SomS. Formulation, systematic optimization, in vitro, ex vivo, and stability assessment of transethosome-based gel of curcumin.Asian J. Pharm. Clin. Res.20181114414710.22159/ajpcr.2018.v11s2.28563
    [Google Scholar]
  142. Bin JardanY.A. AhadA. RaishM. JenoobiA.F.I. Preparation and characterization of transethosome formulation for the enhanced delivery of sinapic acid.Pharmaceutics20231510239110.3390/pharmaceutics1510239137896151
    [Google Scholar]
  143. HamishehkarH. RahimpourY. KouhsoltaniM. Niosomes as a propitious carrier for topical drug delivery.Expert Opin. Drug Deliv.201310226127210.1517/17425247.2013.74631023252629
    [Google Scholar]
  144. ChoiM.J. MaibachH.I. Liposomes and niosomes as topical drug delivery systems.Skin Pharmacol. Physiol.200518520921910.1159/00008666616015019
    [Google Scholar]
  145. BhardwajP. TripathiP. GuptaR. PandeyS. Niosomes: A review on niosomal research in the last decade.J. Drug Deliv. Sci. Technol.20205610158110.1016/j.jddst.2020.101581
    [Google Scholar]
  146. YeoP.L. LimC.L. ChyeS.M. LingK.A.P. KohR.Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications.Asian Biomed.201811430131410.1515/abm‑2018‑0002
    [Google Scholar]
  147. JothyM.A. ShanmuganathanS. An overview on niosome as carrier in dermal drug delivery.J. Pharm. Sci. Res2015711923934
    [Google Scholar]
  148. Cerqueira-CoutinhoC. dos SantosE.P. MansurC.R.E. Niosomes as nano-delivery systems in the pharmaceutical field.Crit. Rev. Ther. Drug Carrier Syst.201633219521210.1615/CritRevTherDrugCarrierSyst.201601616727651102
    [Google Scholar]
  149. KhanR. IrchhaiyaR. Niosomes: A potential tool for novel drug delivery.J. Pharm. Investig.201646319520410.1007/s40005‑016‑0249‑9
    [Google Scholar]
  150. MoghtaderiM. SedaghatniaK. BourbourM. FatemizadehM. MoghaddamS.Z. HejabiF. HeidariF. QuaziS. FarF.B. Niosomes: A novel targeted drug delivery system for cancer.Med. Oncol.2022391224010.1007/s12032‑022‑01836‑336175809
    [Google Scholar]
  151. YasaminehS. YasaminehP. KalajahiG.H. GholizadehO. YekanipourZ. AfkhamiH. EslamiM. KheirkhahH.A. TaghizadehM. YazdaniY. DadashpourM. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system.Int. J. Pharm.202262412187810.1016/j.ijpharm.2022.12187835636629
    [Google Scholar]
  152. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics1102005530700021
    [Google Scholar]
  153. BhattacharyaS. PrajapatiB.G. Formulation, design and development of niosome based topical gel for skin cancer.Med. Clin. Res201722123
    [Google Scholar]
  154. FahmyS.A. RamzyA. SawyA.M. NabilM. GadM.Z. El-ShazlyM. Aboul-SoudM.A.M. AzzazyH.M.E.S. Ozonated olive oil: Enhanced cutaneous delivery via niosomal nanovesicles for melanoma treatment.Antioxidants2022117131810.3390/antiox1107131835883809
    [Google Scholar]
  155. SrivastavaS. SharmaD. An approach to treat conundrum of skin cancer: Bioactive loaded niosomes.Curr. Drug Ther.202318434234910.2174/1574885518666230209150126
    [Google Scholar]
  156. ChermahiniS.H. NajafiR.B. Niosome encapsulated fluorouracil as drug delivery system to basal-cell skin cancer.J. Nanosci. Nanomed2019314
    [Google Scholar]
  157. ShahH.S. GotechaA. JethaD. RajputA. BariyaA. PanchalS. ButaniS. Gamma oryzanol niosomal gel for skin cancer: Formulation and optimization using quality by design (QbD) approach.AAPS Open202171910.1186/s41120‑021‑00041‑2
    [Google Scholar]
  158. ObeidM.A. OgahC.A. OgahC.O. AjalaO.S. AldeaM.R. GrayA.I. IgoliJ.I. FerroV.A. Formulation and evaluation of nanosized hippadine-loaded niosome: Extraction and isolation, physicochemical properties, and in vitro cytotoxicity against human ovarian and skin cancer cell lines.J. Drug Deliv. Sci. Technol.20238710476610.1016/j.jddst.2023.104766
    [Google Scholar]
  159. BragagniM. ScozzafavaA. MastrolorenzoA. SupuranC.T. MuraP. Development and ex vivo evaluation of 5-aminolevulinic acid-loaded niosomal formulations for topical photodynamic therapy.Int. J. Pharm.2015494125826310.1016/j.ijpharm.2015.08.03626283280
    [Google Scholar]
  160. LuB. HuangY. ChenZ. YeJ. XuH. ChenW. LongX. Niosomal nanocarriers for enhanced skin delivery of quercetin with functions of anti-tyrosinase and antioxidant.Molecules20192412232210.3390/molecules2412232231238562
    [Google Scholar]
  161. AnsariM.D. SaifiZ. PanditJ. KhanI. SolankiP. SultanaY. AqilM. Spanlastics a novel nanovesicular carrier: Its potential application and emerging trends in therapeutic delivery.AAPS PharmSciTech202223411210.1208/s12249‑022‑02217‑935411425
    [Google Scholar]
  162. KakkarS. KaurI.P. Spanlastics-A novel nanovesicular carrier system for ocular delivery.Int. J. Pharm.20114131-220221010.1016/j.ijpharm.2011.04.02721540093
    [Google Scholar]
  163. SainiH. RapoluY. RazdanK. NirmalaS.V.R. Delivery system with potential applications via multifarious routes of administration.J. Drug Target.2023211014010.1080/1061186X.2023.2274805
    [Google Scholar]
  164. MuzammilS. MazharA. YeniD.K. AndleebR. AshrafA. ShehzadM.I. ZafarN. MazharM. Nanospanlastic as a promising nanovesicle for drug delivery.Systems of Nanovesicular Drug Delivery.Academic Press202233735210.1016/B978‑0‑323‑91864‑0.00007‑3
    [Google Scholar]
  165. AlhammidS.N.A. KassabH.J. HusseinL.S. HaissM.A. AlkufiH.K. Spanlastics nanovesicles: An emerging and innovative approach for drug delivery.Maaen J. Med. Sci.2023239
    [Google Scholar]
  166. El MaghrabyG.M.M. WilliamsA.C. BarryB.W. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes.Int. J. Pharm.20042761-214316110.1016/j.ijpharm.2004.02.02415113622
    [Google Scholar]
  167. El ZaafaranyG.M. AwadG.A.S. HolayelS.M. MortadaN.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery.Int. J. Pharm.20103971-216417210.1016/j.ijpharm.2010.06.03420599487
    [Google Scholar]
  168. HadiH.A. HusseinA.H. Comparison study between tween 20 and tween 80 as an edge activator for preparation of transdermal ondansteron hcl transfersomal nano particles.J. Popul. Ther. Clin. Pharmacol.2023301164180
    [Google Scholar]
  169. ChoiM.J. MaibachH.I. Elastic vesicles as topical/transdermal drug delivery systems.Int. J. Cosmet. Sci.200527421122110.1111/j.1467‑2494.2005.00264.x18492190
    [Google Scholar]
  170. WilliamsA.C. BarryB.W. Penetration enhancers.Adv. Drug Deliv. Rev.20126412813710.1016/j.addr.2012.09.03215019749
    [Google Scholar]
  171. IsmailS. GarhyD. IbrahimH.K. Optimization of topical curcumin spanlastics for melanoma treatment.Pharm. Dev. Technol.202328542543910.1080/10837450.2023.220492637078715
    [Google Scholar]
  172. Al-mahallawiA.M. FaresA.R. Abd-ElsalamW.H. Enhanced permeation of methotrexate via loading into ultra- permeable niosomal vesicles: Fabrication, statistical optimization, ex vivo studies, and in vivo skin deposition and tolerability.AAPS PharmSciTech201920517110.1208/s12249‑019‑1380‑531004239
    [Google Scholar]
  173. van ZylL. du PreezJ. GerberM. du PlessisJ. ViljoenJ. Essential fatty acids as transdermal penetration enhancers.J. Pharm. Sci.2016105118819310.1016/j.xphs.2015.11.03226852854
    [Google Scholar]
  174. ArundhasreeR. RR. RA. KumarA.R. KumarS.S. NairS.C. Ufasomes: Unsaturated fatty acid based vesicular drug delivery system.Int. J. Appl. Pharm.2021132768310.22159/ijap.2021v13i2.39526
    [Google Scholar]
  175. KaurL. KaurM. SinghG. SinghL. KaurA. DhawanR.K. Recent advancements in biomimetic drug delivery system of single-chain fatty acids as ufasomes and ufosomes: A comprehensive review.Curr. Nanosci.202319336237110.2174/1573413718666220919113148
    [Google Scholar]
  176. LakshmiV.S. ManoharR.D. MathanS. DharanS.S. Ufasomes: A potential vesicular carrier system.J. Pharm. Sci. Res2020121013321335
    [Google Scholar]
  177. PatelD.M. PatelC.N. JaniR.H. Ufasomes: A vesicular drug delivery.Sys Rev Pharm.2011227210.4103/0975‑8453.86290
    [Google Scholar]
  178. SharmaA. AroraS. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate.ISRN Pharm.201220121810.5402/2012/87365322745918
    [Google Scholar]
  179. WangW.M. WuC. JinH.Z. Exosomes in chronic inflammatory skin diseases and skin tumors.Exp. Dermatol.201928321321810.1111/exd.1385730537027
    [Google Scholar]
  180. KhanA.Q. AkhtarS. PrabhuK.S. ZarifL. KhanR. AlamM. BuddenkotteJ. AhmadA. SteinhoffM. UddinS. Exosomes: Emerging diagnostic and therapeutic targets in cutaneous diseases.Int. J. Mol. Sci.20202123926410.3390/ijms2123926433291683
    [Google Scholar]
  181. Karami FathM. AzargoonjahromiA. JafariN. MehdiM. AlaviF. DaraeiM. MohammadkhaniN. MuellerA.L. BrockmuellerA. ShakibaeiM. PayandehZ. Exosome application in tumorigenesis: Diagnosis and treatment of melanoma.Med. Oncol.20223921910.1007/s12032‑021‑01621‑834982284
    [Google Scholar]
  182. SzwedowiczU. ŁapińskaZ. NarynieckaG.A. ChoromańskaA. Exosomes and other extracellular vesicles with high therapeutic potential: Their applications in oncology, neurology, and dermatology.Molecules2022274130310.3390/molecules2704130335209095
    [Google Scholar]
  183. BrezginS. ParodiA. KostyushevaA. PonomarevaN. LukashevA. SokolovaD. PokrovskyV.S. SlatinskayaO. MaksimovG. ZamyatninA.A.Jr ChulanovV. KostyushevD. Technological aspects of manufacturing and analytical control of biological nanoparticles.Biotechnol. Adv.20236410812210.1016/j.biotechadv.2023.10812236813011
    [Google Scholar]
  184. JiangL. GuY. DuY. TangX. WuX. LiuJ. Engineering exosomes endowed with targeted delivery of triptolide for malignant melanoma therapy.ACS Appl. Mater. Interfaces20211336424114242810.1021/acsami.1c1032534464081
    [Google Scholar]
  185. LeeR. KoH.J. KimK. SohnY. MinS.Y. KimJ.A. NaD. YeonJ.H. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin.J. Extracell. Vesicles202091170348010.1080/20013078.2019.170348032002169
    [Google Scholar]
  186. KurzrockR. LiL. MehtaK. AggarwalB.B. Liposomal curcumin for treatment of cancer.U.S. Patent US10182997B22019
  187. JianpingT. Paclitaxel ethosome gel and preparation method thereof.CN Patent 102579323A2013
  188. NianpingF. YanyanY. JihuiZ. HaitingW. XiaoqinS. Podophyllotoxin ethosomes and preparation methods thereof.CN Patent 102144972A2011
  189. AlcantarN. WilliamsE.C. ToomeyR. Niosome-hydrogel drug delivery system.U.S. Patent 20100068264A12010
  190. BinT. ZhiweiS. HorngS. Liposomal formulations of rapamycin and rapamycin derivatives for treating cancer.WO Patent 2017044135A12017
/content/journals/cmc/10.2174/0109298673297695240328074724
Loading
/content/journals/cmc/10.2174/0109298673297695240328074724
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test