Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Oral squamous cell carcinoma (OSCC) represents the primary form of oral cancer, posing a significant global health threat. The existing chemotherapy options are accompanied by notable side effects impacting patient treatment adherence. Consequently, the exploration and development of novel substances with enhanced anticancer effects and fewer side effects have become pivotal in the realms of biological and chemical science.

Objective

This work presents the pioneering examples of naphthoquinone-coumarin hybrids as a new category of highly effective cytotoxic substances targeting oral squamous cell carcinoma (OSCC).

Methods

Given the significance of both naphthoquinones and coumarins as essential pharmacophores/privileged structures in the quest for anticancer compounds, this study focused on the synthesis and evaluation of novel naphthoquinones/coumarin hybrids against oral squamous cell carcinoma.

Results

By several , , and approaches, we demonstrated that compound was highly cytotoxic against OSCC cells and several other cancer cell types and was more selective than current chemotherapeutic drugs (carboplatin) and the naphthoquinone lapachol. Furthermore, compound was non-hemolytic and tolerated at 50 mg/kg with an LD of 62.5 mg/kg. Furthermore, compound did not induce apoptosis and cell cycle arrest but led to intracellular vesicle formation with LC3 aggregation in autophagosomes, suggesting an autophagic cell death. Additionally, had a high-affinity potential for PKM2 protein, higher than the known ligands, such as lapachol or shikonin, and was able to inhibit this enzyme activity .

Conclusion

We assert that compound shows promise as a potential lead for a novel chemotherapeutic drug targeting OSCC, with potential applicability to other cancer types.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673298471240605072658
2024-06-14
2024-12-24
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. ScullyC. BaganJ. Oral squamous cell carcinoma overview.Oral Oncol.2009454-530130810.1016/j.oraloncology.2009.01.00419249237
    [Google Scholar]
  3. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  4. GharatS.A. MominM. BhavsarC. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy.Crit. Rev. Ther. Drug Carrier Syst.201633436340010.1615/CritRevTherDrugCarrierSyst.201601627227910740
    [Google Scholar]
  5. American Cancer SocietyChemotherapy for oral cavity and oropharyngeal cancer.2021 Available From: https://www.cancer.org/cancer/oral-cavity-and-oropharyngeal-cancer/treating/chemotherapy.html
  6. AmininD. PolonikS. 1,4-Naphthoquinones: Some Biological properties and application.Chem. Pharm. Bull. (Tokyo)2020681465710.1248/cpb.c19‑0091131902901
    [Google Scholar]
  7. PereyraC.E. DantasR.F. FerreiraS.B. GomesL.P. Silva-JrF.P. The diverse mechanisms and anticancer potential of naphthoquinones.Cancer Cell Int.201919120710.1186/s12935‑019‑0925‑831388334
    [Google Scholar]
  8. SandhuS. BansalY. SilakariO. BansalG. Coumarin hybrids as novel therapeutic agents.Bioorg. Med. Chem.201422153806381410.1016/j.bmc.2014.05.03224934993
    [Google Scholar]
  9. TorresF.C. GonçalvesG.A. VanzoliniK.L. MerloA.A. GauerB. HolzschuhM. AndradeS. PiedadeM. GarciaS.C. CarvalhoI. PoserG.L. KawanoD.F. Eifler-LimaV.L. CassQ.B. Combining the pharmacophore features of coumarins and 1,4-substituted 1,2,3-triazoles to design new acetylcholinesterase inhibitors: Fast and easy generation of 4-methylcoumarins/1,2,3-triazoles conjugates via click chemistry.J. Braz. Chem. Soc.2016271541155010.5935/0103‑5053.20160033
    [Google Scholar]
  10. MachadoT.Q. FelisbertoJ.R.S. GuimarãesE.F. QueirozG.A. FonsecaA.C.C. RamosY.J. MarquesA.M. MoreiraD.L. RobbsB.K. Apoptotic effect of β-pinene on oral squamous cell carcinoma as one of the major compounds from essential oil of medicinal plant Piper rivinoides Kunth.Nat. Prod. Res.20223661636164010.1080/14786419.2021.189514833678083
    [Google Scholar]
  11. de QueirozL.N. Da FonsecaA.C.C. WermelingerG.F. da SilvaD.P.D. PascoalA.C.R.F. SawayaA.C.H.F. de AlmeidaE.C.P. do AmaralB.S. de Lima MoreiraD. RobbsB.K. New substances of Equisetum hyemale L. extracts and their in vivo antitumoral effect against oral squamous cell carcinoma.J. Ethnopharmacol.202330311604310.1016/j.jep.2022.11604336535330
    [Google Scholar]
  12. SP. Toxicological screening.J. Pharmacol. Pharmacother.201122747910.4103/0976‑500X.8189521772764
    [Google Scholar]
  13. FonsecaA.C.C. de QueirozL.N. Sales FelisbertoJ. Jessé RamosY. Mesquita MarquesA. WermelingerG.F. PontesB. de Lima MoreiraD. RobbsB.K. Cytotoxic effect of pure compounds from Piper rivinoides Kunth against oral squamous cell carcinoma.Nat. Prod. Res.202135246163616710.1080/14786419.2020.183149433078660
    [Google Scholar]
  14. LucenaP.I. FagetD.V. PachulecE. RobainaM.C. KlumbC.E. RobbsB.K. ViolaJ.P.B. NFAT2 isoforms differentially regulate gene expression, cell death, and transformation through alternative N-terminal domains.Mol. Cell. Biol.201636111913110.1128/MCB.00501‑1526483414
    [Google Scholar]
  15. ZorzanelliB.C. OuverneyG. PauliF.P. da FonsecaA.C.C. de AlmeidaE.C.P. de CarvalhoD.G. PossikP.A. RabeloV.W.H. AbreuP.A. PontesB. FerreiraV.F. ForeziL.S.M. da SilvaF.C. RobbsB.K. Pro-apoptotic antitumoral effect of novel acridine-core naphthoquinone compounds against oral squamous cell carcinoma.Molecules20222716514810.3390/molecules2716514836014389
    [Google Scholar]
  16. ChenX. LiM. ChenD. GaoW. GuanJ.L. KomatsuM. YinX.M. Autophagy induced by calcium phosphate precipitates involves endoplasmic reticulum membranes in autophagosome biogenesis.PLoS One2012712e5234710.1371/journal.pone.005234723285000
    [Google Scholar]
  17. ChristofkH.R. Vander HeidenM.G. WuN. AsaraJ.M. CantleyL.C. Pyruvate kinase M2 is a phosphotyrosine-binding protein.Nature2008452718418118610.1038/nature0666718337815
    [Google Scholar]
  18. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  19. Cavalcanti ChipolineI. Carolina Carvalho da FonsecaA. Ribeiro Machado da CostaG. Pereira de SouzaM. Won-Held RabeloV. de QueirozL.N. Luiz Ferraz de SouzaT. Cardozo Paes de AlmeidaE. Alvarez AbreuP. PontesB. Francisco FerreiraV. de Carvalho da SilvaF. RobbsB.K. Molecular mechanism of action of new 1,4-naphthoquinones tethered to 1,2,3-1H-triazoles with cytotoxic and selective effect against oral squamous cell carcinoma.Bioorg. Chem.202010110398410.1016/j.bioorg.2020.10398432554278
    [Google Scholar]
  20. CostaD.C.S. de AlmeidaG.S. RabeloV.W.H. CabralL.M. SathlerP.C. Alvarez AbreuP. FerreiraV.F. Cláudio Rodrigues Pereira da SilvaL. da SilvaF.C. Synthesis and evaluation of the cytotoxic activity of Furanaphthoquinones tethered to 1H-1,2,3-triazoles in Caco-2, Calu-3, MDA-MB231 cells.Eur. J. Med. Chem.201815652453310.1016/j.ejmech.2018.07.01830025347
    [Google Scholar]
  21. BorgesA.A. de SouzaM.P. da FonsecaA.C.C. WermelingerG.F. RibeiroR.C.B. AmaralA.A.P. de CarvalhoC.J.C. AbreuL.S. de QueirozL.N. de AlmeidaE.C.P. RabeloV.W. AbreuP.A. PontesB. FerreiraV.F. da SilvaF.C. ForeziL.S.M. RobbsB.K. Chemoselective synthesis of mannich adducts from 1,4-naphthoquinones and profile as autophagic inducers in oral squamous cell carcinoma.Molecules202228130910.3390/molecules2801030936615502
    [Google Scholar]
  22. ThomsonR.H. 240. Quinones. Part I. Chloroalkylation.J. Chem. Soc.19531196119910.1039/jr9530001196
    [Google Scholar]
  23. FerreiraV.F. PintoA.V. PintoM.C.F.R. SantosS.C. The diels-alder reaction with O-2, 3-Dimethylene-1, 4- Naphtoquinone: A useful intermediate for the synthesis of b ring of anthracyclinones.J. Braz. Chem. Soc.19967316917210.5935/0103‑5053.19960026
    [Google Scholar]
  24. LipshutzB.H. KimS. MollardP. StevensK.L. An expeditious route to CoQn, vitamins K1 and K2, and related allylated para-quinones utilizing Ni(0) catalysis.Tetrahedron19985471241125310.1016/S0040‑4020(97)10222‑8
    [Google Scholar]
  25. WangQ. WangJ. WangJ. JuX. ZhangH. Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment.Toxicol. Res. (Camb.)20211061077108410.1093/toxres/tfab10734956612
    [Google Scholar]
  26. WermelingerG.F. RubiniL. da FonsecaA.C.C. OuverneyG. de OliveiraR.P.R.F. de SouzaA.S. ForeziL.S.M. Limaverde-SousaG. PinheiroS. RobbsB.K. A novel MDM2-binding chalcone induces apoptosis of oral squamous cell carcinoma.Biomedicines2023116171110.3390/biomedicines1106171137371806
    [Google Scholar]
  27. ZorzanelliB.C. de QueirozL.N. SantosR.M.A. MenezesL.M. GomesF.C. FerreiraV.F. C da SilvaF. RobbsB.K. Potential cytotoxic and selective effect of new benzo[b]xanthenes against oral squamous cell carcinoma.Future Med. Chem.201810101141115710.4155/fmc‑2017‑020529749745
    [Google Scholar]
  28. MachadoT.Q. LimaM.E.D. da SilvaR.C. MacedoA.L. de QueirozL.N. AngrisaniB.R.P. da FonsecaA.C.C. CâmaraP.R. RabeloV.V.H. CarolloC.A. de Lima MoreiraD. de AlmeidaE.C.P. VasconcelosT.R.A. AbreuP.A. ValverdeA.L. RobbsB.K. Anticancer activity and molecular targets of Piper cernuum substances in oral squamous cell carcinoma models.Biomedicines2023117191410.3390/biomedicines1107191437509552
    [Google Scholar]
  29. Center for Drug Evaluation and Research (CDER) FDASingle dose acute toxicity testing for pharmaceuticals.1996Available From: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/single-dose-acute-toxicity-testing-pharmaceuticals
  30. MacedoA.L. da SilvaD.P.D. MoreiraD.L. de QueirozL.N. VasconcelosT.R.A. AraujoG.F. KaplanM.A.C. PereiraS.S.C. de AlmeidaE.C.P. ValverdeA.L. RobbsB.K. Cytotoxicity and selectiveness of Brazilian Piper species towards oral carcinoma cells.Biomed. Pharmacother.201911034235210.1016/j.biopha.2018.11.12930529767
    [Google Scholar]
  31. SilvaR.H.N. MachadoT.Q. da FonsecaA.C.C. TejeraE. Perez-CastilloY. RobbsB.K. de SousaD.P. Molecular modeling and in vitro evaluation of piplartine analogs against oral squamous cell carcinoma.Molecules2023284167510.3390/molecules2804167536838660
    [Google Scholar]
  32. RandallT.D. Bronchus-associated lymphoid tissue (BALT) structure and function.Adv. Immunol.201010718724110.1016/B978‑0‑12‑381300‑8.00007‑121034975
    [Google Scholar]
  33. MarshallC.B. Rethinking glomerular basement membrane thickening in diabetic nephropathy: Adaptive or pathogenic?Am. J. Physiol. Renal Physiol.20163115F831F84310.1152/ajprenal.00313.201627582102
    [Google Scholar]
  34. PommierY. Topoisomerase I inhibitors: Camptothecins and beyond.Nat. Rev. Cancer200661078980210.1038/nrc197716990856
    [Google Scholar]
  35. LiuH. RenZ.L. WangW. GongJ.X. ChuM.J. MaQ.W. WangJ.C. LvX.H. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity.Eur. J. Med. Chem.2018157818710.1016/j.ejmech.2018.07.05930075404
    [Google Scholar]
  36. MenezesJ.C.J.M.D.S. DiederichM. Translational role of natural coumarins and their derivatives as anticancer agents.Future Med. Chem.20191191057108210.4155/fmc‑2018‑037531140865
    [Google Scholar]
  37. Hueso-FalcónI. AmestyÁ. Anaissi-AfonsoL. Lorenzo-CastrillejoI. MachínF. Estévez-BraunA. Synthesis and biological evaluation of naphthoquinone-coumarin conjugates as topoisomerase II inhibitors.Bioorg. Med. Chem. Lett.201727348448910.1016/j.bmcl.2016.12.04028040393
    [Google Scholar]
  38. GurbaniD. KukshalV. LaubenthalJ. KumarA. PandeyA. TripathiS. AroraA. JainS.K. RamachandranR. AndersonD. DhawanA. Mechanism of inhibition of the ATPase domain of human topoisomerase IIα by 1,4-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, and 9,10-phenanthroquinone.Toxicol. Sci.2012126237239010.1093/toxsci/kfr34522218491
    [Google Scholar]
  39. KundukadB. van der MaarelJ.R.C. Control of the flow properties of DNA by topoisomerase II and its targeting inhibitor.Biophys. J.20109961906191510.1016/j.bpj.2010.07.01320858436
    [Google Scholar]
  40. ZhangZ. DengX. LiuY. LiuY. SunL. ChenF. PKM2, function and expression and regulation.Cell Biosci.2019915210.1186/s13578‑019‑0317‑831391918
    [Google Scholar]
  41. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.116080919460998
    [Google Scholar]
  42. ZhangX. HeC. HeC. ChenB. LiuY. KongM. WangC. LinL. DongY. ShengH. Nuclear PKM2 expression predicts poor prognosis in patients with esophageal squamous cell carcinoma.Pathol. Res. Pract.2013209851051510.1016/j.prp.2013.06.00523880164
    [Google Scholar]
  43. PantaleãoS.Q. FernandesP.O. GonçalvesJ.E. MaltarolloV.G. HonorioK.M. Recent advances in the prediction of pharmacokinetics properties in drug design studies: A review.ChemMedChem2022171e20210054210.1002/cmdc.20210054234655454
    [Google Scholar]
  44. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.20126441710.1016/j.addr.2012.09.01911259830
    [Google Scholar]
  45. ErtlP. RohdeB. SelzerP. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties.J. Med. Chem.200043203714371710.1021/jm000942e11020286
    [Google Scholar]
  46. ClarkD.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption.J. Pharm. Sci.199988880781410.1021/js980401110430547
    [Google Scholar]
  47. LehneG. P-glycoprotein as a drug target in the treatment of multidrug resistant cancer.Curr. Drug Targets200011859910.2174/138945000334944311475537
    [Google Scholar]
  48. VarmaM.V.S. SateeshK. PanchagnulaR. Functional role of P-glycoprotein in limiting intestinal absorption of drugs: Contribution of passive permeability to P-glycoprotein mediated efflux transport.Mol. Pharm.200521122110.1021/mp049919615804173
    [Google Scholar]
  49. CreemersS.G. van KoetsveldP.M. De HerderW.W. DoganF. FranssenG.J.H. FeeldersR.A. HoflandL.J. MDR1 inhibition increases sensitivity to doxorubicin and etoposide in adrenocortical cancer.Endocr. Relat. Cancer201926336737810.1530/ERC‑18‑050030650062
    [Google Scholar]
  50. MoloneyJ.N. CotterT.G. ROS signalling in the biology of cancer.Semin. Cell Dev. Biol.201880506410.1016/j.semcdb.2017.05.02328587975
    [Google Scholar]
  51. ZouZ. ChangH. LiH. WangS. Induction of reactive oxygen species: An emerging approach for cancer therapy.Apoptosis201722111321133510.1007/s10495‑017‑1424‑928936716
    [Google Scholar]
  52. WuY. XuJ. LiuY. ZengY. WuG. A review on anti-tumor mechanisms of coumarins.Front. Oncol.20201059285310.3389/fonc.2020.59285333344242
    [Google Scholar]
  53. LoorG. KondapalliJ. SchriewerJ.M. ChandelN.S. Vanden HoekT.L. SchumackerP.T. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis.Free Radic. Biol. Med.201049121925193610.1016/j.freeradbiomed.2010.09.02120937380
    [Google Scholar]
  54. ZhangY.Y. ZhangQ.Q. SongJ.L. ZhangL. JiangC.S. ZhangH. Design, synthesis, and antiproliferative evaluation of novel coumarin/2-cyanoacryloyl hybrids as apoptosis inducing agents by activation of caspase-dependent pathway.Molecules2018238197210.3390/molecules2308197230087276
    [Google Scholar]
  55. UmarS. SoniR. DurgapalS.D. SomanS. BalakrishnanS. A synthetic coumarin derivative (4-flourophenylacetamide-acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS- mediated p53 and AKT signaling pathways in A549 cells.J. Biochem. Mol. Toxicol.20203410e2255310.1002/jbt.2255332578917
    [Google Scholar]
  56. Esteves-SouzaA. FigueiredoD.V. EstevesA. CâmaraC.A. VargasM.D. PintoA.C. EchevarriaA. Cytotoxic and DNA-topoisomerase effects of lapachol amine derivatives and interactions with DNA.Braz. J. Med. Biol. Res.200740101399140210.1590/S0100‑879X200600500015917713652
    [Google Scholar]
  57. XuX. LaiY. HuaZ.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials.Biosci. Rep.2019391BSR2018099210.1042/BSR2018099230530866
    [Google Scholar]
  58. MathiassenS.G. De ZioD. CecconiF. Autophagy and the cell cycle: A complex landscape.Front. Oncol.201775110.3389/fonc.2017.0005128409123
    [Google Scholar]
  59. MukhopadhyayS. PandaP.K. SinhaN. DasD.N. BhutiaS.K. Autophagy and apoptosis: Where do they meet?Apoptosis201419455556610.1007/s10495‑014‑0967‑224415198
    [Google Scholar]
  60. NikoletopoulouV. MarkakiM. PalikarasK. TavernarakisN. Crosstalk between apoptosis, necrosis and autophagy.Biochim. Biophys. Acta Mol. Cell Res.20131833123448345910.1016/j.bbamcr.2013.06.001
    [Google Scholar]
  61. (a) DentonD. KumarS. Autophagy-dependent cell death.Cell Death Differ.201926460561610.1038/s41418‑018‑0252‑y30568239
    [Google Scholar]
  62. (b) RyterS.W. MizumuraK. ChoiA.M.K. The impact of autophagy on cell death modalities.Int. J. Cell Biol.2014201411210.1155/2014/50267624639873
    [Google Scholar]
  63. LevineB. KlionskyD.J. Development by self-digestion.Dev. Cell20046446347710.1016/S1534‑5807(04)00099‑115068787
    [Google Scholar]
  64. KabeyaY. MizushimaN. UenoT. YamamotoA. KirisakoT. NodaT. KominamiE. OhsumiY. YoshimoriT. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.EMBO J.200019215720572810.1093/emboj/19.21.572011060023
    [Google Scholar]
  65. (a) PasquierB. Autophagy inhibitors.Cell. Mol. Life Sci.2016739851001
    [Google Scholar]
  66. (b) BlommaartE.F.C. KrauseU. SchellensJ.P.M. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes.Eur. J. Biochem.1997243240246
    [Google Scholar]
  67. GongK. ZhangZ. ChenY. ShuH.B. LiW. Extracellular signal-regulated kinase, receptor interacting protein, and reactive oxygen species regulate shikonin-induced autophagy in human hepatocellular carcinoma.Eur. J. Pharmacol.201473814215210.1016/j.ejphar.2014.05.03424886888
    [Google Scholar]
  68. ShiS. CaoH. Shikonin promotes autophagy in BXPC-3 human pancreatic cancer cells through the PI3K/Akt signaling pathway.Oncology Lett.20148310871089
    [Google Scholar]
  69. LinY. ChenY. WangS. MaJ. PengY. YuanX. LvB. ChenW. WeiY. Plumbagin induces autophagy and apoptosis of SMMC-7721 cells in vitro and in vivo.J. Cell. Biochem.201912069820983010.1002/jcb.2826230536473
    [Google Scholar]
  70. ZhengQ. LiQ. ZhaoG. ZhangJ. YuanH. GongD. GuoY. LiuX. LiK. LinP. Alkannin induces cytotoxic autophagy and apoptosis by promoting ROS-mediated mitochondrial dysfunction and activation of JNK pathway.Biochem. Pharmacol.202018011416710.1016/j.bcp.2020.11416732702370
    [Google Scholar]
  71. MizushimaN. LevineB. CuervoA.M. KlionskyD.J. Autophagy fights disease through cellular self-digestion.Nature200845171821069107510.1038/nature0663918305538
    [Google Scholar]
  72. ChhipaA.S. PatelS. Targeting pyruvate kinase muscle isoform 2 (PKM2) in cancer: What do we know so far?Life Sci.202128011969410.1016/j.lfs.2021.11969434102192
    [Google Scholar]
  73. AzoiteiN. BecherA. SteinestelK. RouhiA. DiepoldK. GenzeF. SimmetT. SeufferleinT. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation.Mol. Cancer2016151310.1186/s12943‑015‑0490‑226739387
    [Google Scholar]
  74. Kurihara-ShimomuraM. SasahiraT. NakashimaC. KuniyasuH. ShimomuraH. KiritaT. The multifarious functions of Pyruvate Kinase M2 in oral cancer cells.Int. J. Mol. Sci.20181910290710.3390/ijms1910290730257458
    [Google Scholar]
  75. Kurihara-ShimomuraM. SasahiraT. ShimomuraH. KiritaT. Peroxidan plays a tumor-promoting role in oral squamous cell carcinoma.Int. J. Mol. Sci.20202115541610.3390/ijms2115541632751434
    [Google Scholar]
  76. TanakaF. YoshimotoS. OkamuraK. IkebeT. HashimotoS. Nuclear PKM2 promotes the progression of oral squamous cell carcinoma by inducing EMT and post-translationally repressing TGIF2.Oncotarget2018973337453376110.18632/oncotarget.2585030333907
    [Google Scholar]
  77. DeyP. KunduA. SachanR. ParkJ.H. AhnM.Y. YoonK. LeeJ. KimN.D. KimI.S. LeeB.M. KimH.S. PKM2 knockdown induces autophagic cell death via AKT/mTOR pathway in human prostate cancer cells.Cell. Physiol. Biochem.20195261535155231135122
    [Google Scholar]
  78. PanS.T. QinY. ZhouZ.W. HeZ.X. ZhangX. YangT. YangY.X. WangD. QiuJ.X. ZhouS.F. Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells.Drug Des. Devel. Ther.201591601162625834400
    [Google Scholar]
  79. LiJ. PangJ. LiuZ. GeX. ZhenY. JiangC.C. LiuY. HuoQ. SunY. LiuH. Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways.Sci. Rep.20211111826310.1038/s41598‑021‑97713‑634521930
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673298471240605072658
Loading
/content/journals/cmc/10.2174/0109298673298471240605072658
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test