Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Developing effective methods to enhance tumor radiosensitivity is crucial for improving the therapeutic efficacy of radiotherapy (RT). Due to its deep tissue penetration, excellent safety profile, and precise controllability, sonosensitizer-based sonodynamic therapy (SDT) has recently garnered significant attention as a promising combined approach with RT.

Methods

However, the limited reactive oxygen species (ROS) generation ability in the aggregated state and the absence of specific organelle targeting in sonosensitizers hinder their potential to augment RT. This study introduces a fundamental principle guiding the design of high-performance sonosensitizers employed in the aggregated state. Building upon these principles, we develop a mitochondria-targeted sonosensitizer molecule (TCSVP) with aggregation-induced emission (AIE) characteristics by organic synthesis. Then, we demonstrate the abilities of TCSVP to target mitochondria and produce ROS under ultrasound in H460 cancer cells using confocal laser scanning microscopy (CLSM) and fluorescence microscopy. Subsequently, we examine the effectiveness of enhancing tumor radiosensitivity by utilizing TCSVP and ultrasound in both H460 cells and H460 and 4T1 tumor-bearing mice.

Results

The results indicate that evoking non-lethal mitochondrial oxidative stress in tumors by TCSVP under ultrasound stimulation can significantly improve tumor radiosensitivity ( <0.05). Additionally, the safety profile of TCSVP is thoroughly confirmed by histopathological analysis.

Conclusion

This work proposes strategies for designing efficient sonosensitizers and underscores that evoking non-lethal mitochondrial oxidative stress is an effective method to enhance tumor radiosensitivity.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673300702240805055930
2024-08-13
2024-12-24
Loading full text...

Full text loading...

References

  1. RoosW.P. KainaB. DNA damage-induced cell death by apoptosis.Trends Mol. Med.200612944045010.1016/j.molmed.2006.07.00716899408
    [Google Scholar]
  2. KannanK. JainS.K. Oxidative stress and apoptosis.Pathophysiology20007315316310.1016/S0928‑4680(00)00053‑510996508
    [Google Scholar]
  3. KowalikM. MasternakJ. BarszczB. Recent research trends on bismuth compounds in cancer chemo-and radiotherapy.Curr. Med. Chem.201926472975910.2174/092986732466617100311354028971764
    [Google Scholar]
  4. VozeninM.C. BourhisJ. DuranteM. Towards clinical translation of FLASH radiotherapy.Nat. Rev. Clin. Oncol.2022191279180310.1038/s41571‑022‑00697‑z36303024
    [Google Scholar]
  5. De RuysscherD. NiedermannG. BurnetN.G. SivaS. LeeA.W.M. Hegi-JohnsonF. Radiotherapy toxicity.Nat. Rev. Dis. Primers2019511310.1038/s41572‑019‑0064‑530792503
    [Google Scholar]
  6. PetroniG. CantleyL.C. SantambrogioL. FormentiS.C. GalluzziL. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer.Nat. Rev. Clin. Oncol.202219211413110.1038/s41571‑021‑00579‑w34819622
    [Google Scholar]
  7. PriceJ.M. PrabhakaranA. WestC.M.L. Predicting tumour radiosensitivity to deliver precision radiotherapy.Nat. Rev. Clin. Oncol.2023202839810.1038/s41571‑022‑00709‑y36477705
    [Google Scholar]
  8. NingS. ZhangT. LyuM. LamJ.W.Y. ZhuD. HuangQ. TangB.Z. A type I AIE photosensitiser-loaded biomimetic nanosystem allowing precise depletion of cancer stem cells and prevention of cancer recurrence after radiotherapy.Biomaterials202329512203410.1016/j.biomaterials.2023.12203436746049
    [Google Scholar]
  9. HuaY. WangY. KangX. XuF. HanZ. ZhangC. WangZ.Y. LiuJ.Q. ZhaoX. ChenX. ZangS.Q. A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy.J. Nanobiotechnology202119143810.1186/s12951‑021‑01191‑x34930279
    [Google Scholar]
  10. ZhangJ. ZouH. GanS. HeB. HuangJ.C. PengC. LamJ.W.Y. ZhengL. TangB.Z. Endowing AIE with extraordinary potential: A new Au (I)-containing AIEgen for bimodal bioimaging-guided multimodal synergistic cancer therapy.Adv. Funct. Mater.2022322210819910.1002/adfm.202108199
    [Google Scholar]
  11. ThariatJ. Hannoun-LeviJ.M. Sun MyintA. VuongT. GérardJ.P. Past, present, and future of radiotherapy for the benefit of patients.Nat. Rev. Clin. Oncol.2013101526010.1038/nrclinonc.2012.20323183635
    [Google Scholar]
  12. ChandraR.A. KeaneF.K. VonckenF.E.M. ThomasC.R.Jr. Contemporary radiotherapy: present and future.Lancet20213981029517118410.1016/S0140‑6736(21)00233‑634166607
    [Google Scholar]
  13. DuoY. ChenZ. LiK. YangY. WangH. HuJ. LuoG. Targeted delivery of novel Au(I)-based AIEgen via inactivated cancer cells for trimodal chemo-radio-immunotherapy and vaccination against advanced tumor.Nano Today20235110192010.1016/j.nantod.2023.101920
    [Google Scholar]
  14. RobinsonP. CoveñasR. MuñozM. Combination therapy of chemotherapy or radiotherapy and the neurokinin-1 receptor antagonist aprepitant: A new antitumor strategy?Curr. Med. Chem.202330161798181210.2174/092986732966622081115260235959620
    [Google Scholar]
  15. LiuJ. HuF. WuM. TianL. GongF. ZhongX. ChenM. LiuZ. LiuB. Bioorthogonal coordination polymer nanoparticles with aggregation-induced emission for deep tumor-penetrating radio-and radiodynamic therapy.Adv. Mater.2021339200788810.1002/adma.20200788833491820
    [Google Scholar]
  16. YangC. NiX. MaoD. RenC. LiuJ. GaoY. DingD. LiuJ. Seeing the fate and mechanism of stem cells in treatment of ionizing radiation-induced injury using highly near-infrared emissive AIE dots.Biomaterials201918810711710.1016/j.biomaterials.2018.10.00930342204
    [Google Scholar]
  17. DuoY. ChenZ. LiZ. LiX. YaoY. XuT. GaoG. LuoG. Combination of bacterial-targeted delivery of gold-based AIEgen radiosensitizer for fluorescence-image-guided enhanced radio-immunotherapy against advanced cancer.Bioact. Mater.20233020021310.1016/j.bioactmat.2023.05.01037663305
    [Google Scholar]
  18. BeggA.C. StewartF.A. VensC. Strategies to improve radiotherapy with targeted drugs.Nat. Rev. Cancer201111423925310.1038/nrc300721430696
    [Google Scholar]
  19. GongL. ZhangY. LiuC. ZhangM. HanS. Application of radiosensitizers in cancer radiotherapy.Int. J. Nanomedicine2021161083110210.2147/IJN.S29043833603370
    [Google Scholar]
  20. ChenY. YangJ. FuS. WuJ. Gold nanoparticles as radiosensitizers in cancer radiotherapy.Int. J. Nanomedicine2020159407943010.2147/IJN.S27290233262595
    [Google Scholar]
  21. KanotraS.P. KanotraS. GuptaA. PaulJ. Chemoradiation in advanced head and neck cancers: A comparison of two radiosensitizers, paclitaxel and cisplatin.Indian J. Otolaryngol. Head Neck Surg.201163322923610.1007/s12070‑011‑0263‑122754800
    [Google Scholar]
  22. KulkaU. SchafferM. SiefertA. SchafferP.M. ÖlsnerA. KassebK. HofstetterA. DühmkeE. JoriG. Photofrin as a radiosensitizer in an in vitro cell survival assay.Biochem. Biophys. Res. Commun.200331119810310.1016/j.bbrc.2003.09.17014575700
    [Google Scholar]
  23. LinX. ZhuR. HongZ. ZhangX. ChenS. SongJ. YangH. GSH-responsive radiosensitizers with deep penetration ability for multimodal imaging-guided synergistic radio-chemodynamic cancer therapy.Adv. Funct. Mater.20213124210127810.1002/adfm.202101278
    [Google Scholar]
  24. ZhangJ. JiangD. LyuM. RenS. ZhouY. CaoZ. Synergistic radiosensitization mediated by chemodynamic therapy via a novel biodegradable peroxidases mimicking nanohybrid.Front. Oncol.20221287250210.3389/fonc.2022.87250235619898
    [Google Scholar]
  25. GillM.R. VallisK.A. Transition metal compounds as cancer radiosensitizers.Chem. Soc. Rev.201948254055710.1039/C8CS00641E30499573
    [Google Scholar]
  26. XieJ. GongL. ZhuS. YongY. GuZ. ZhaoY. Emerging strategies of nanomaterial-mediated tumor radiosensitization.Adv. Mater.2019313180224410.1002/adma.20180224430156333
    [Google Scholar]
  27. ZorovD.B. JuhaszovaM. SollottS.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol. Rev.201494390995010.1152/physrev.00026.201324987008
    [Google Scholar]
  28. ShadelG.S. HorvathT.L. Mitochondrial ROS signaling in organismal homeostasis.Cell2015163356056910.1016/j.cell.2015.10.00126496603
    [Google Scholar]
  29. ChenQ. VazquezE.J. MoghaddasS. HoppelC.L. LesnefskyE.J. Production of reactive oxygen species by mitochondria: central role of complex III.J. Biol. Chem.200327838360273603110.1074/jbc.M30485420012840017
    [Google Scholar]
  30. KowaltowskiA.J. de Souza-PintoN.C. CastilhoR.F. VercesiA.E. Mitochondria and reactive oxygen species.Free Radic. Biol. Med.200947433334310.1016/j.freeradbiomed.2009.05.00419427899
    [Google Scholar]
  31. YangL. ShiL. LiuY. ROS-mediated therapeutics combined with metal-based porphyrin nanoparticles and their applications in tumor treatment.Curr. Med. Chem.202437859412
    [Google Scholar]
  32. ChenY. LiN. WangJ. ZhangX. PanW. YuL. TangB. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer.Theranostics20199116717810.7150/thno.2803330662560
    [Google Scholar]
  33. LiN. YuL. WangJ. GaoX. ChenY. PanW. TangB. A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy.Chem. Sci.20189123159316410.1039/C7SC04458E29732098
    [Google Scholar]
  34. ZaffaroniM. VinciniM.G. CorraoG. MarvasoG. PepaM. VigliettoG. AmodioN. Jereczek-FossaB.A. Unraveling mitochondrial determinants of tumor response to radiation therapy.Int. J. Mol. Sci.202223191134310.3390/ijms23191134336232638
    [Google Scholar]
  35. NiK. LanG. VeroneauS.S. DuanX. SongY. LinW. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy.Nat. Commun.201891432110.1038/s41467‑018‑06655‑730333489
    [Google Scholar]
  36. OwariT. TanakaN. NakaiY. MiyakeM. AnaiS. KishiS. MoriS. Fujiwara-TaniR. HojoY. MoriT. KuwadaM. FujiiT. HasegawaM. FujimotoK. KuniyasuH. 5-Aminolevulinic acid overcomes hypoxia-induced radiation resistance by enhancing mitochondrial reactive oxygen species production in prostate cancer cells.Br. J. Cancer2022127235036310.1038/s41416‑022‑01789‑435365766
    [Google Scholar]
  37. YuC.Y.Y. XuH. JiS. KwokR.T.K. LamJ.W.Y. LiX. KrishnanS. DingD. TangB.Z. Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation.Adv. Mater.20172915160616710.1002/adma.20160616728195448
    [Google Scholar]
  38. SonS. KimJ.H. WangX. ZhangC. YoonS.A. ShinJ. SharmaA. LeeM.H. ChengL. WuJ. KimJ.S. Multifunctional sonosensitizers in sonodynamic cancer therapy.Chem. Soc. Rev.202049113244326110.1039/C9CS00648F32337527
    [Google Scholar]
  39. QianX. ZhengY. ChenY. Micro/nanoparticle-augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation.Adv. Mater.201628378097812910.1002/adma.20160201227384408
    [Google Scholar]
  40. HarveyC.J. PilcherJ.M. EckersleyR.J. BlomleyM.J.K. CosgroveD.O. Advances in ultrasound.Clin. Radiol.200257315717710.1053/crad.2001.091811952309
    [Google Scholar]
  41. CarovacA. SmajlovicF. JunuzovicD. Application of ultrasound in medicine.Acta Inform. Med.201119316817110.5455/aim.2011.19.168‑17123408755
    [Google Scholar]
  42. TsuruH. ShibaguchiH. KurokiM. YamashitaY. KurokiM. Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer.Free Radic. Biol. Med.201253346447210.1016/j.freeradbiomed.2012.04.02522588110
    [Google Scholar]
  43. YumitaN. NishigakiR. UmemuraK. UmemuraS. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound.Jpn. J. Cancer Res.198980321922210.1111/j.1349‑7006.1989.tb02295.x2470713
    [Google Scholar]
  44. BuneviciusA. PikisS. PadillaF. PradaF. SheehanJ. Sonodynamic therapy for gliomas.J. Neurooncol.2022156111010.1007/s11060‑021‑03807‑634251601
    [Google Scholar]
  45. LafondM. YoshizawaS. UmemuraS. Sonodynamic therapy: Advances and challenges in clinical translation.J. Ultrasound Med.201938356758010.1002/jum.1473330338863
    [Google Scholar]
  46. ZhaB. YangJ. DangQ. LiP. ShiS. WuJ. CuiH. HuangfuL. LiY. YangD. ZhengY. A phase I clinical trial of sonodynamic therapy combined with temozolomide in the treatment of recurrent glioblastoma.J. Neurooncol.2023162231732610.1007/s11060‑023‑04292‑936988745
    [Google Scholar]
  47. LiangS. DengX. XuG. XiaoX. WangM. GuoX. MaP. ChengZ. ZhangD. LinJ. A novel Pt–TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy.Adv. Funct. Mater.20203013190859810.1002/adfm.201908598
    [Google Scholar]
  48. YuanM. LiangS. ZhouY. XiaoX. LiuB. YangC. MaP. ChengZ. LinJ. A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy.Nano Lett.202121146042605010.1021/acs.nanolett.1c0122034254814
    [Google Scholar]
  49. XingX. ZhaoS. XuT. HuangL. ZhangY. LanM. LinC. ZhengX. WangP. Advances and perspectives in organic sonosensitizers for sonodynamic therapy.Coord. Chem. Rev.202144521408710.1016/j.ccr.2021.214087
    [Google Scholar]
  50. PangX. XuC. JiangY. XiaoQ. LeungA.W. Natural products in the discovery of novel sonosensitizers.Pharmacol. Ther.201616214415110.1016/j.pharmthera.2015.12.00426706240
    [Google Scholar]
  51. TianY. SangW. TianH. XieL. WangG. ZhangZ. LiW. DaiY. A two-step flexible ultrasound strategy to enhance tumor radiotherapy via metal–phenolic network Nanoplatform.Adv. Funct. Mater.20223236220569010.1002/adfm.202205690
    [Google Scholar]
  52. WangZ. YuN. ZhangJ. RenQ. LiM. ChenZ. Nanoscale Hf-hematoporphyrin frameworks for synergetic sonodynamic/radiation therapy of deep-seated tumors.J. Colloid Interface Sci.202262680381410.1016/j.jcis.2022.06.17435820215
    [Google Scholar]
  53. SonS. ZhangC. WonM. JangiliP. ChoiM. WuJ. KimJ.S. Ultrasound activatable antiangiogenic sonosensitizer for VEGFR associated glioblastoma tumor models.Aggregate202124e9710.1002/agt2.97
    [Google Scholar]
  54. ZengW. XuY. YangW. LiuK. BianK. ZhangB. An Ultrasound-excitable aggregation-induced emission dye for enhanced sonodynamic therapy of tumors.Adv. Healthc. Mater.2020917200056010.1002/adhm.20200056033448676
    [Google Scholar]
  55. ZhangY. ZhangX. YangH. YuL. XuY. SharmaA. YinP. LiX. KimJ.S. SunY. Advanced biotechnology-assisted precise sonodynamic therapy.Chem. Soc. Rev.20215020112271124810.1039/D1CS00403D34661214
    [Google Scholar]
  56. JiaS. GaoZ. WuZ. GaoH. WangH. OuH. DingD. Sonosensitized aggregation-induced emission dots with capacities of immunogenic cell death induction and multivalent blocking of programmed cell death-ligand 1 for amplified antitumor immunotherapy.CCS Chemistry20224250151410.31635/ccschem.021.202101458
    [Google Scholar]
  57. FengG. ZhangG.Q. DingD. Design of superior phototheranostic agents guided by Jablonski diagrams.Chem. Soc. Rev.202049228179823410.1039/D0CS00671H33196726
    [Google Scholar]
  58. ChenC. OuH. LiuR. DingD. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics.Adv. Mater.2020323180633110.1002/adma.20180633130924971
    [Google Scholar]
  59. ChenC. TangY. DingD. Intramolecular motion-associated biomaterials for image-guided cancer surgery.Smart Mat. Med.20201243110.1016/j.smaim.2020.05.001
    [Google Scholar]
  60. SunW. LuoL. FengY. CaiY. ZhuangY. XieR.J. ChenX. ChenH. Aggregation-induced emission gold clustoluminogens for enhanced low-dose X-ray-induced photodynamic therapy.Angew. Chem. Int. Ed.202059259914992110.1002/anie.20190871231418982
    [Google Scholar]
  61. LyuM. ZhangT. LiY. XiangJ. ZhuD. XiaL. GuoB. XuY. YuH. TangB. AIEgen-based nanotherapeutic strategy for enhanced FLASH irradiation to prevent tumour recurrence and avoid severe side effects.Chem. Eng. J.202347314517910.1016/j.cej.2023.145179
    [Google Scholar]
  62. XiaQ. ZhangY. LiY. LiY. LiY. FengZ. FanX. QianJ. LinH. A historical review of aggregation-induced emission from 2001 to 2020: A bibliometric analysis.Aggregate202231e15210.1002/agt2.152
    [Google Scholar]
  63. ChenC. GaoH. OuH. KwokR.T.K. TangY. ZhengD. DingD. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases.J. Am. Chem. Soc.202214483429344110.1021/jacs.1c1145535050608
    [Google Scholar]
  64. ChenC. NiX. TianH.W. LiuQ. GuoD.S. DingD. Calixarene-based supramolecular AIE dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery.Angew. Chem. Int. Ed.20205925100081001210.1002/anie.20191643031981392
    [Google Scholar]
  65. ChenC. WangZ. JiaS. ZhangY. JiS. ZhaoZ. KwokR.T.K. LamJ.W.Y. DingD. ShiY. TangB.Z. Evoking highly immunogenic ferroptosis aided by intramolecular motion-induced photo-hyperthermia for cancer therapy.Adv. Sci.2022910210488510.1002/advs.20210488535132824
    [Google Scholar]
  66. ZhouP. HanK. ESIPT-based AIE luminogens: Design strategies, applications, and mechanisms.Aggregate202235e16010.1002/agt2.160
    [Google Scholar]
  67. PengQ. ShuaiZ. Molecular mechanism of aggregation-induced emission.Aggregate202125e9110.1002/agt2.91
    [Google Scholar]
  68. LuoJ. XieZ. LamJ.W.Y. ChengL. TangB.Z. ChenH. QiuC. KwokH.S. ZhanX. LiuY. ZhuD. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole.Chem. Commun.2001181740174110.1039/b105159h12240292
    [Google Scholar]
  69. HongY. LamJ.W.Y. TangB.Z. Aggregation-induced emission: phenomenon, mechanism and applications.Chem. Commun.2009294332435310.1039/b904665h19597589
    [Google Scholar]
  70. ZhaoZ. ZhangH. LamJ.W.Y. TangB.Z. Aggregation-induced emission: New vistas at the aggregate level.Angew. Chem. Int. Ed.202059259888990710.1002/anie.20191672932048428
    [Google Scholar]
  71. LiuZ. ZouH. ZhaoZ. ZhangP. ShanG.G. KwokR.T.K. LamJ.W.Y. ZhengL. TangB.Z. Tuning organelle specificity and photodynamic therapy efficiency by molecular function design.ACS Nano20191310112831129310.1021/acsnano.9b0443031525947
    [Google Scholar]
  72. LiuJ. ChenW. ZhengC. HuF. ZhaiJ. BaiQ. SunN. QianG. ZhangY. DongK. LuT. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers.Eur. J. Med. Chem.202224411484310.1016/j.ejmech.2022.11484336265281
    [Google Scholar]
  73. ChenC. NiX. JiaS. LiangY. WuX. KongD. DingD. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure.Adv. Mater.20193152190491410.1002/adma.20190491431696981
    [Google Scholar]
  74. ChenC. ZhangR. ZhangJ. ZhangY. ZhangH. WangZ. HuangX. ChenS. KwokR.T.K. LamJ.W.Y. DingD. TangB.Z. Taming reactive oxygen species: mitochondria-targeting aggregation-induced emission luminogen for neuron protection via photosensitization-triggered autophagy.CCS Chemistry2022472249225710.31635/ccschem.021.202101217
    [Google Scholar]
  75. LiS. ChenY. HeP. MaY. CaiY. HouX. ZhangG. ZhangX. WangZ. Aggregation-induced emission (AIE) photosensitizer combined polydopamine nanomaterials for organelle-targeting photodynamic and photothermal therapy by the recognition of sialic acid.Adv. Healthcare. Mater.20221115220024210.1002/adhm.20220024235613621
    [Google Scholar]
  76. TangY. WangX. ZhuG. LiuZ. ChenX.M. BisoyiH.K. ChenX. ChenX. XuY. LiJ. LiQ. Hypoxia-responsive photosensitizer targeting dual organelles for photodynamic therapy of tumors.Small2023191220544010.1002/smll.20220544036285777
    [Google Scholar]
  77. XuR. ChiW. ZhaoY. TangY. JingX. WangZ. ZhouY. ShenQ. ZhangJ. YangZ. DangD. MengL. All-in-one theranostic platforms: Deep-red AIE nanocrystals to target dual-organelles for efficient photodynamic therapy.ACS Nano20221612201512016210.1021/acsnano.2c0446536250626
    [Google Scholar]
  78. HeM.Y. RancouleC. Rehailia-BlanchardA. EspenelS. TroneJ.C. BernichonE. GuillaumeE. VallardA. MagnéN. Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies.Crit. Rev. Oncol. Hematol.20181319610110.1016/j.critrevonc.2018.09.00430293712
    [Google Scholar]
  79. YaoY. ChuY. XuB. HuQ. SongQ. Radiotherapy after surgery has significant survival benefits for patients with triple-negative breast cancer.Cancer Med.20198255456310.1002/cam4.195430632300
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673300702240805055930
Loading
/content/journals/cmc/10.2174/0109298673300702240805055930
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test