Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Carbon-based nanomaterials (CBNM) have been widely used in various fields due to their excellent physicochemical properties. In particular, in the area of tumor diagnosis and treatment, researchers have frequently reported them for their potential fluorescence, photoacoustic (PA), and ultrasound imaging performance, as well as their photothermal, photodynamic, sonodynamic, and other therapeutic properties. As the functions of CBNM are increasingly developed, their excellent imaging properties and superior tumor treatment effects make them extremely promising theranostic agents. This review aims to integrate the considered and researched information in a specific field of this research topic and systematically present, summarize, and comment on the efforts made by authoritative scholars. In this review, we summarized the work exploring carbon-based materials in the field of tumor imaging and therapy, focusing on PA imaging-guided photothermal therapy (PTT) and discussing their imaging and therapeutic mechanisms and developments. Finally, the current challenges and potential opportunities of carbon-based materials for PA imaging-guided PTT are presented, and issues that researchers should be aware of when studying CBNM are provided.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673287448240311112523
2024-03-25
2024-12-23
Loading full text...

Full text loading...

References

  1. ZhaoC. KangJ. LiY. WangY. TangX. JiangZ.J.C. SystemsB. Systems, carbon-based stimuli-responsive nanomaterials: Classification and application.Cyborg Bionic Syst.202340022
    [Google Scholar]
  2. ChangL. WangD. JiangA. HuY. Soft actuators based on carbon nanomaterials.ChemPlusChem2022872e20210043710.1002/cplu.20210043735103423
    [Google Scholar]
  3. MaY. TongS. BaoG. GaoC. DaiZ. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy.Biomaterials201334317706771410.1016/j.biomaterials.2013.07.00723871538
    [Google Scholar]
  4. SmithB.A. GammonS.T. XiaoS. WangW. ChapmanS. McDermottR. SuckowM.A. JohnsonJ.R. Piwnica-WormsD. GokelG.W. SmithB.D. LeevyW.M. In vivo optical imaging of acute cell death using a near-infrared fluorescent zinc-dipicolylamine probe.Mol. Pharm.20118258359010.1021/mp100395u21323375
    [Google Scholar]
  5. KeH. YueX. WangJ. XingS. ZhangQ. DaiZ. TianJ. WangS. JinY. Gold nanoshelled liquid perfluorocarbon nanocapsules for combined dual modal ultrasound/CT imaging and photothermal therapy of cancer.Small20141061220122710.1002/smll.20130225224500926
    [Google Scholar]
  6. BanQ. BaiT. DuanX. KongJ. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers.Biomater. Sci.20175219021010.1039/C6BM00600K27990534
    [Google Scholar]
  7. HanX. ZhaoC. PanZ. TangX. JiangZ. N-doping of the TiO2/C nanostructure derived from metal-organic frameworks with high drug loading for efficient sonodynamic & chemotherapy.Smart Mater Med.2022316817810.1016/j.smaim.2022.01.002
    [Google Scholar]
  8. PootA.J. LamM.G.E.H. van NoeselM.M. The current status and future potential of theranostics to diagnose and treat childhood cancer.Front. Oncol.20201057828610.3389/fonc.2020.57828633330054
    [Google Scholar]
  9. ZhaoC. SunS. LiS. LvA. ChenQ. JiangK. JiangZ. LiZ. WuA. LinH. Programmed stimuli-responsive carbon dot-nanogel hybrids for imaging-guided enhanced tumor phototherapy.ACS Appl. Mater. Interfaces2022148101421015310.1021/acsami.2c0017435175020
    [Google Scholar]
  10. KangM.S. LeeH. JeongS.J. EomT.J. KimJ. HanD.W. State of the art in carbon nanomaterials for photoacoustic imaging.Biomedicines2022106137410.3390/biomedicines1006137435740396
    [Google Scholar]
  11. LiJ. DekanovskyL. KhezriB. WuB. ZhouH. SoferZ.J.C. SystemsB. Biohybrid micro-and nanorobots for intelligent drug delivery.Cyborg Bionic Syst.20222022982405710.34133/2022/9824057
    [Google Scholar]
  12. GaiY. YinY. GuanL. ZhangS. ChenJ. YangJ. ZhouH. LiJ.J.C. SystemsB. Systems, rational design of bioactive materials for bone hemostasis and defect repair.Cyborg Bionic Syst.202340058
    [Google Scholar]
  13. Xiaoyan XieC.Z. A kind of composite Nano diagnosis and treatment preparation and preparation method thereof.ChinaFirst Affiliated Hospital of Sun Yat Sen University2017
    [Google Scholar]
  14. LiangP. MaoL. DongY. ZhaoZ. SunQ. MazharM. MaY. YangS. RenW. Design and application of near-infrared nanomaterial-liposome hybrid nanocarriers for cancer photothermal therapy.Pharmaceutics20211312207010.3390/pharmaceutics1312207034959351
    [Google Scholar]
  15. SajjadiM. NasrollahzadehM. JalehB. SoufiG.J. IravaniS. Carbon-based nanomaterials for targeted cancer nanotherapy: Recent trends and future prospects.J. Drug Target.202129771674110.1080/1061186X.2021.188630133566719
    [Google Scholar]
  16. PatelK.D. SinghR.K. KimH.W. Carbon-based nanomaterials as an emerging platform for theranostics.Mater. Horiz.20196343446910.1039/C8MH00966J
    [Google Scholar]
  17. WangX. ChengL. Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy.Nanoscale20191134156851570810.1039/C9NR04044G31355405
    [Google Scholar]
  18. ChenQ. WenJ. LiH. XuY. LiuF. SunS. Recent advances in different modal imaging-guided photothermal therapy.Biomaterials201610614416610.1016/j.biomaterials.2016.08.02227561885
    [Google Scholar]
  19. ChenX. ShiS. WeiJ. ChenM. ZhengN. Two-dimensional Pd-based nanomaterials for bioapplications.Sci. Bull.201762857958810.1016/j.scib.2017.02.01236659366
    [Google Scholar]
  20. WeisslederR. PittetM.J. Imaging in the era of molecular oncology.Nature2008452718758058910.1038/nature0691718385732
    [Google Scholar]
  21. MegasonS.G. FraserS.E. Imaging in systems biology.Cell2007130578479510.1016/j.cell.2007.08.03117803903
    [Google Scholar]
  22. ZhenX. PuK. JiangX. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: Signal amplification and second near-infrared construction.Small2021176200472310.1002/smll.20200472333448155
    [Google Scholar]
  23. FuQ. ZhuR. SongJ. YangH. ChenX. Photoacoustic imaging: Contrast agents and their biomedical applications.Adv. Mater.2019316180587510.1002/adma.20180587530556205
    [Google Scholar]
  24. UpputuriP.K. PramanikM. Recent advances in photoacoustic contrast agents for in vivo imaging.Wires Nanomed. Nanobiotechnol.2020124e1618
    [Google Scholar]
  25. ZackrissonS. van de VenS.M.W.Y. GambhirS.S. Light in and sound out: Emerging translational strategies for photoacoustic imaging.Cancer Res.2014744979100410.1158/0008‑5472.CAN‑13‑238724514041
    [Google Scholar]
  26. LiuY. BhattaraiP. DaiZ. ChenX. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer.Chem. Soc. Rev.20194872053210810.1039/C8CS00618K30259015
    [Google Scholar]
  27. FerrariM. Cancer nanotechnology: Opportunities and challenges.Nat. Rev. Cancer20055316117110.1038/nrc156615738981
    [Google Scholar]
  28. DresselhausM.S. TerronesM.J.P.I. Carbon-based nanomaterials from a historical perspective.Proc. IEEE Inst. Electr. Electron Eng. 1012013101715271535
    [Google Scholar]
  29. AlvesS. BabcinschiM. SilvaA. NetoD. FonsecaD. NetoP.J.C. SystemsB. Systems, integrated design fabrication and control of a bioinspired multimaterial soft robotic hand.Cyborg Bionic Syst.202340051
    [Google Scholar]
  30. Application of copper-palladium alloy nanoparticles and autophagy inhibitor in preparation of medicine or kit for killing tumors based on photothermal effect.ChinaSouth China University of Technology SCUT2018
    [Google Scholar]
  31. IijimaS. Helical microtubules of graphitic carbon.Nature19913546348565810.1038/354056a0
    [Google Scholar]
  32. LiX. DingW. WangS. YangL. YuQ. XiaoC. ChenG. ZhangL. GuanS. SunD.J.C. SystemsB. Systems, three-dimensional sulfated bacterial cellulose/gelatin composite scaffolds for culturing hepatocytes.Cyborg Bionic Syst.202340021
    [Google Scholar]
  33. XieL. WangG. ZhouH. ZhangF. GuoZ. LiuC. ZhangX. ZhuL. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy.Biomaterials201610321922810.1016/j.biomaterials.2016.06.05827392290
    [Google Scholar]
  34. JunS.W. ManivasaganP. KwonJ. NguyenV.T. MondalS. LyC.D. LeeJ. KangY.H. KimC.S. OhJ. Folic acid-conjugated chitosan-functionalized graphene oxide for highly efficient photoacoustic imaging-guided tumor-targeted photothermal therapy.Int. J. Biol. Macromol.202015596197110.1016/j.ijbiomac.2019.11.05531712157
    [Google Scholar]
  35. BaoX. YuanY. ChenJ. ZhangB. LiD. ZhouD. JingP. XuG. WangY. HoláK. ShenD. WuC. SongL. LiuC. ZbořilR. QuS. In vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration.Light Sci. Appl.2018719110.1038/s41377‑018‑0090‑130479757
    [Google Scholar]
  36. XuG. BaoX. ChenJ. ZhangB. LiD. ZhouD. WangX. LiuC. WangY. QuS. In vivo tumor photoacoustic imaging and photothermal therapy based on supra-(carbon nanodots).Adv. Healthc. Mater.201982180099510.1002/adhm.20180099530474227
    [Google Scholar]
  37. WangG. ZhangF. TianR. ZhangL. FuG. YangL. ZhuL. Nanotubes-embedded indocyanine green-hyaluronic acid nanoparticles for photoacoustic-imaging-guided phototherapy.ACS Appl. Mater. Interfaces2016885608561710.1021/acsami.5b1240026860184
    [Google Scholar]
  38. LiuC. WangD. ZhanY. YanL. LuQ. ChangM.Y.Z. LuoJ. WangL. DuD. LinY. XiaJ. WuY. Switchable photoacoustic imaging of glutathione using MnO2 nanotubes for cancer diagnosis.ACS Appl. Mater. Interfaces20181051442314423910.1021/acsami.8b1494430499652
    [Google Scholar]
  39. GenadyA.R. FongD. SlikboerS.R. El-ZariaM.E. SwannR. JanzenN. FaradayA. McNellesS.A. RezvaniM. SadeghiS. AdronovA. ValliantJ.F. 99mTc- functionalized single-walled carbon nanotubes for bone targeting.ACS Appl. Nano Mater.2020312118191182410.1021/acsanm.0c02339
    [Google Scholar]
  40. ChangX. ZhangY. XuP. ZhangM. WuH. YangS. Graphene oxide / MnWO4 nanocomposite for magnetic resonance / photoacoustic dual-model imaging and tumor photothermo-chemotherapy.Carbon201813839740910.1016/j.carbon.2018.07.058
    [Google Scholar]
  41. YanX. HuH. LinJ. JinA.J. NiuG. ZhangS. HuangP. ShenB. ChenX. Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies.Nanoscale2015762520252610.1039/C4NR06868H25573051
    [Google Scholar]
  42. HuD. ZhangJ. GaoG. ShengZ. CuiH. CaiL. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics.Theranostics2016671043105210.7150/thno.1456627217837
    [Google Scholar]
  43. WangZ. SunX. HuangT. SongJ. WangY. A sandwich nanostructure of gold nanoparticle coated reduced graphene oxide for photoacoustic imaging-guided photothermal therapy in the second NIR window.Front. Bioeng. Biotechnol.2020865510.3389/fbioe.2020.0065532695755
    [Google Scholar]
  44. SongJ. YangX. JacobsonO. LinL. HuangP. NiuG. MaQ. ChenX. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy.ACS Nano2015999199920910.1021/acsnano.5b0380426308265
    [Google Scholar]
  45. ZhangY. GuoZ. ZhuH. XingW. TaoP. ShangW. FuB. SongC. HongY. DickeyM.D. DengT. Synthesis of liquid gallium@reduced graphene oxide core-shell nanoparticles with enhanced photoacoustic and photothermal performance.J. Am. Chem. Soc.2022144156779679010.1021/jacs.2c0016235293736
    [Google Scholar]
  46. TianB. LiuS. FengL. LiuS. GaiS. DaiY. XieL. LiuB. YangP. ZhaoY. Renal-clearable nickel- doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindow.Adv. Funct. Mater.20213126210054910.1002/adfm.202100549
    [Google Scholar]
  47. GuoX.L. DingZ.Y. DengS.M. WenC.C. ShenX.C. JiangB.P. LiangH. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies.Carbon201813451953010.1016/j.carbon.2018.04.001
    [Google Scholar]
  48. BaiY. ZhangB. ChenL. LinZ. ZhangX. GeD. ShiW. SunY. Facile one-pot synthesis of polydopamine carbon dots for photothermal therapy.Nanoscale Res. Lett.201813128710.1186/s11671‑018‑2711‑230225652
    [Google Scholar]
  49. KimD. JoG. ChaeY. SubramaniS. LeeB.Y. KimE.J. JiM.K. SimU. HyunH. Bioinspired Camellia japonica carbon dots with high near-infrared absorbance for efficient photothermal cancer therapy.Nanoscale20211334144261443410.1039/D1NR03999G34473179
    [Google Scholar]
  50. WangH. DiJ. SunY.B. FuJ.P. WeiZ.Y. MatsuiH. AlonsoA.D. ZhouS.Q. Biocompatible PEG-Chitosan@Carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy.Adv. Funct. Mater.201525345537554710.1002/adfm.201501524
    [Google Scholar]
  51. ZhaoS. YanL. CaoM. HuangL. YangK. WuS. LanM. NiuG. ZhangW. Near-infrared light-triggered lysosome-targetable carbon dots for photothermal therapy of cancer.ACS Appl. Mater. Interfaces20211345536105361710.1021/acsami.1c1592634730323
    [Google Scholar]
  52. LiY. BaiG. ZengS. HaoJ. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy.ACS Appl. Mater. Interfaces20191154737474410.1021/acsami.8b1487730644718
    [Google Scholar]
  53. SunS. ZhangL. JiangK. WuA. LinH. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents.Chem. Mater.201628238659866810.1021/acs.chemmater.6b03695
    [Google Scholar]
  54. ZhouL. JingY. LiuY. LiuZ. GaoD. ChenH. SongW. WangT. FangX. QinW. YuanZ. DaiS. QiaoZ.A. WuC. Mesoporous carbon nanospheres as a multifunctional carrier for cancer theranostics.Theranostics20188366367510.7150/thno.2192729344297
    [Google Scholar]
  55. MiaoZ.H. WangH. YangH. LiZ. ZhenL. XuC.Y. Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy.ACS Appl. Mater. Interfaces2016825159041591010.1021/acsami.6b0365227281299
    [Google Scholar]
  56. ZhangJ. ZhangJ. LiW. ChenR. ZhangZ. ZhangW. TangY. ChenX. LiuG. LeeC.S. Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imaging-guided highly effective chemo-thermal tumor therapy in vitro and in vivo.Theranostics20177123007302010.7150/thno.1846028839460
    [Google Scholar]
  57. TaruttisA. NtziachristosV. Advances in real-time multispectral optoacoustic imaging and its applications.Nat. Photonics20159421922710.1038/nphoton.2015.29
    [Google Scholar]
  58. WangC. WuS. Research update on cell membrane camouflaged nanoparticles for cancer therapy.Front. Bioeng. Biotechnol.20221094451810.3389/fbioe.2022.94451835992357
    [Google Scholar]
  59. NtziachristosV. RazanskyD. Molecular imaging by means of multispectral optoacoustic tomography (MSOT).Chem. Rev.201011052783279410.1021/cr900256620387910
    [Google Scholar]
  60. XuM. WangL.V. Photoacoustic imaging in biomedicine.Rev. Sci. Instrum.200677404110110.1063/1.2195024
    [Google Scholar]
  61. Zhong CaoQ.G. WuD. Multifunctional nano diagnosis and treatment agent with mesoporous polydopamine loaded carbonyl manganese and preparation method and application thereof.ChinaNational Sun Yat Sen University2018
    [Google Scholar]
  62. FarooqA. SabahS. DhouS. AlsawaftahN. HusseiniG. Exogenous contrast agents in photoacoustic imaging: An in vivo review for tumor imaging.Nanomaterials202212339310.3390/nano1203039335159738
    [Google Scholar]
  63. AttiaA.B.E. BalasundaramG. MoothancheryM. DinishU.S. BiR. NtziachristosV. OlivoM. A review of clinical photoacoustic imaging: Current and future trends.Photoacoustics20191610014410.1016/j.pacs.2019.10014431871888
    [Google Scholar]
  64. KimC. FavazzaC. WangL.V. In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths.Chem. Rev.201011052756278210.1021/cr900266s20210338
    [Google Scholar]
  65. HolaK. ZhangY. WangY. GiannelisE.P. ZborilR. RogachA.L. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics.Nano Today20149559060310.1016/j.nantod.2014.09.004
    [Google Scholar]
  66. ImashiroC. JinY. HayamaM. YamadaT.G. FunahashiA. SakaguchiK. UmezuS. KomotoriJ.J.C. SystemsB. Systems, titanium culture vessel presenting temperature gradation for the thermotolerance estimation of cells.Cyborg Bionic Syst.202340049
    [Google Scholar]
  67. SeongM. ChenS.L. Recent advances toward clinical applications of photoacoustic microscopy: A review.Sci. China Life Sci.202063121798181210.1007/s11427‑019‑1628‑732399767
    [Google Scholar]
  68. ElmingP. SørensenB. OeiA. FrankenN. CrezeeJ. OvergaardJ. HorsmanM. Hyperthermia: The optimal treatment to overcome radiation resistant hypoxia.Cancers20191116010.3390/cancers1101006030634444
    [Google Scholar]
  69. MeiX. ten CateR. van LeeuwenC.M. RodermondH.M. de LeeuwL. DimitrakopoulouD. StalpersL.J.A. CrezeeJ. KokH.P. FrankenN.A.P. OeiA.L. Radiosensitization by hyperthermia: The effects of temperature, sequence, and time interval in cervical cell lines.Cancers202012358210.3390/cancers1203058232138173
    [Google Scholar]
  70. MantsoT. VasileiadisS. AnestopoulosI. VoulgaridouG.P. LampriE. BotaitisS. KontomanolisE.N. SimopoulosC. GoussetisG. FrancoR. ChlichliaK. PappaA. PanayiotidisM.I. Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma.Sci. Rep.2018811072410.1038/s41598‑018‑29018‑030013176
    [Google Scholar]
  71. Ultra-small protein composite nanoparticle with near-infrared photothermal effect and multi-modal imaging function, and preparation method and application thereof.ChinaSuzhou University2017
    [Google Scholar]
  72. LiJ. ZhangW. JiW. WangJ. WangN. WuW. WuQ. HouX. HuW. LiL. Near infrared photothermal conversion materials: Mechanism, preparation, and photothermal cancer therapy applications.J. Mater. Chem. B Mater. Biol. Med.20219387909792610.1039/D1TB01310F34611678
    [Google Scholar]
  73. SharmaH. MondalS. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: A promising material in nanomedicine.Int. J. Mol. Sci.20202117628010.3390/ijms2117628032872646
    [Google Scholar]
  74. HanH.S. ChoiK.Y. Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications.Biomedicines20219330510.3390/biomedicines903030533809691
    [Google Scholar]
  75. A kind of coordination polymer nano particle based on polyphenol and preparation method thereof.ChinaChangchun Institute of Applied Chemistry of CAS2017
    [Google Scholar]
  76. WeberJ. BeardP.C. BohndiekS.E. Contrast agents for molecular photoacoustic imaging.Nat. Methods201613863965010.1038/nmeth.392927467727
    [Google Scholar]
  77. MaturiM. LocatelliE. MonacoI. Comes FranchiniM. Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging.Biomater. Sci.2019751746177510.1039/C8BM01444B30901017
    [Google Scholar]
  78. PramanikM. SwierczewskaM. GreenD. SitharamanB. WangL.V. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent.J. Biomed. Opt.200914303401810.1117/1.314740719566311
    [Google Scholar]
  79. SattarT. Current review on synthesis, composites and multifunctional properties of graphene.Top. Curr. Chem.201937721010.1007/s41061‑019‑0235‑630874921
    [Google Scholar]
  80. LiX. JiangH. HeN. YuanW-E. QianY. OuyangY.J.C. SystemsB. Graphdiyne-related materials in biomedical applications and their potential in peripheral nerve tissue engineering.Cyborg Bionic Syst20222022989252610.34133/2022/9892526
    [Google Scholar]
  81. YooJ.M. KangJ.H. HongB.H. Graphene-based nanomaterials for versatile imaging studies.Chem. Soc. Rev.201544144835485210.1039/C5CS00072F25777530
    [Google Scholar]
  82. LalwaniG. CaiX. NieL. WangL.V. SitharamanB. Graphene-based contrast agents for photoacoustic and thermoacoustic tomography.Photoacoustics201313-4626710.1016/j.pacs.2013.10.00124490141
    [Google Scholar]
  83. ShiY. CuiD. ZhangZ. Quantitative study of the nonlinearly enhanced photoacoustic/photothermal effect by strong LSPR-coupled nanoassemblies.Nanomaterials20201010194210.3390/nano1010194233003437
    [Google Scholar]
  84. ChenY. XuC. ChengY. ChengQ. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy.Photoacoustics20212310028410.1016/j.pacs.2021.10028434354923
    [Google Scholar]
  85. Boakye-YiadomK.O. KesseS. Opoku-DamoahY. FilliM.S. AquibM. JoelleM.M.B. FarooqM.A. MavlyanovaR. RazaF. BaviR. WangB. Carbon dots: Applications in bioimaging and theranostics.Int. J. Pharm.201956430831710.1016/j.ijpharm.2019.04.05531015004
    [Google Scholar]
  86. AdamG.O. SharkerS.M. RyuJ.H. Emerging biomedical applications of carbon dot and polymer composite materials.Appl. Sci.202212201056510.3390/app122010565
    [Google Scholar]
  87. TadesseA. BelachewN. HagosM. BasavaiahK. Synthesis of fluorescent nitrogen and phosphorous co-doped carbon quantum dots for sensing of iron, cell imaging and antioxidant activities.J. Fluoresc.202131376377410.1007/s10895‑021‑02696‑233655457
    [Google Scholar]
  88. DöringA. UshakovaE. RogachA.L. Chiral carbon dots: Synthesis, optical properties, and emerging applications.Light Sci. Appl.20221117510.1038/s41377‑022‑00764‑135351850
    [Google Scholar]
  89. QuJ.H. WeiQ. SunD.W. Carbon dots: Principles and their applications in food quality and safety detection.Crit. Rev. Food Sci. Nutr.201858142466247510.1080/10408398.2018.143771229420064
    [Google Scholar]
  90. CaoL. Shiral FernandoK.A. LiangW. SeilkopA. Monica VecaL. SunY.P. BunkerC.E. Carbon dots for energy conversion applications.J. Appl. Phys.20191252222090310.1063/1.5094032
    [Google Scholar]
  91. XuJ. GuoY. GongT. CuiK. HouL. YuanC. B, N co-doped carbon dots based fluorescent test paper and hydrogel for visual and efficient dual ion detection.Inorg. Chem. Commun.202214511004710.1016/j.inoche.2022.110047
    [Google Scholar]
  92. WeiS. LiY. LiangH. YenY. LinY. ChangH. Photoluminescent carbon nanomaterials for sensing of illicit drugs: focus.Anal. Sci.202238224726010.2116/analsci.21SAR0635314972
    [Google Scholar]
  93. RongG. ZhengY. YangX. BaoK. XiaF. RenH. BianS. LiL. ZhuB. SawanM. A closed-loop approach to fight coronavirus: Early detection and subsequent treatment.Biosensors2022121090010.3390/bios1210090036291037
    [Google Scholar]
  94. LiuF. JiangY. ShaoH. WangC. XuS. ZhangR. Precise control of the ratiometric fluorescence of dual-emissive B/N-doped carbon dots using pH-dependent bonds.Nanotechnology2021321717560410.1088/1361‑6528/abd6b033361573
    [Google Scholar]
  95. ZhangJ. YangH. PanS. LiuH. HuX. SpectroscopyB. A novel “off-on-off” fluorescent-nanoprobe based on B, N co-doped carbon dots and MnO2 nanosheets for sensitive detection of GSH and Ag+.Spectrochim. Acta A Mol. Biomol. Spectrosc.202124411883110.1016/j.saa.2020.11883132860994
    [Google Scholar]
  96. SubbarajuS.G. ChockaiyanU. PandiS. KannanA. SaravananM.J.C.N.V. Nanoerythrosome-biohybrid microswimmers for cancer theranostics cargo delivery.Cancer NanotheranosticsSpringer202126128410.1007/978‑3‑030‑76263‑6_10
    [Google Scholar]
  97. SharkerS.M. DoM. Nanoscale carbon-polymer dots for theranostics and biomedical exploration.J. Nanother.20212311813010.3390/jnt2030008
    [Google Scholar]
  98. LiX. JiangH. HeN. YuanW.-E. QianY. OuyangY.J.C. SystemsB. Systems, graphdiyne-related materials in biomedical applications and their potential in peripheral nerve tissue engineering.Cyb. Bionic Syst.2022
    [Google Scholar]
  99. Masoudi AsilS. GuerreroE.D. BugariniG. CaymeJ. De AvilaN. GarciaJ. HernandezA. MecadoJ. MaderoY. MoncayoF. OlmosR. PerchesD. RomanJ. Salcido-PadillaD. SanchezE. TrejoC. TrevinoP. NurunnabiM. NarayanM. Theranostic applications of multifunctional carbon nanomaterials.VIEW2023422022005610.1002/VIW.2022005637426287
    [Google Scholar]
  100. Rodríguez-GalvánA. RiveraM. García-LópezP. MedinaL.A. BasiukV.A. MedicineM. Gadolinium-containing carbon nanomaterials for magnetic resonance imaging: Trends and challenges.J. Cell. Mol. Med.20202473779379410.1111/jcmm.1506532154648
    [Google Scholar]
  101. ZhangY. WuM. WuM. ZhuJ. ZhangX. Multifunctional carbon-based nanomaterials: applications in biomolecular imaging and therapy.ACS Omega2018389126914510.1021/acsomega.8b0107131459047
    [Google Scholar]
  102. BiancoA. KostarelosK. PratoM. Opportunities and challenges of carbon-based nanomaterials for cancer therapy.Expert Opin. Drug Deliv.20085333134210.1517/17425247.5.3.33118318654
    [Google Scholar]
  103. BhattacharyaK. MukherjeeS.P. GalludA. BurkertS.C. BistarelliS. BellucciS. BottiniM. StarA. FadeelB. Biological interactions of carbon-based nanomaterials: From coronation to degradation.Nanomedicine201612233335110.1016/j.nano.2015.11.01126707820
    [Google Scholar]
  104. LiangC. DiaoS. WangC. GongH. LiuT. HongG. ShiX. DaiH. LiuZ. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes.Adv. Mater.201426325646565210.1002/adma.20140182524924258
    [Google Scholar]
  105. GuanQ. ZhouL.L. ZhouL.N. LiM. QinG.X. LiW.Y. LiY.A. DongY.B. A carbon nanomaterial derived from a nanoscale covalent organic framework for photothermal therapy in the NIR-II biowindow.Chem. Commun.202056567793779610.1039/D0CC00861C32555850
    [Google Scholar]
  106. FernandesN. RodriguesC.F. MoreiraA.F. CorreiaI.J. Overview of the application of inorganic nanomaterials in cancer photothermal therapy.Biomater. Sci.20208112990302010.1039/D0BM00222D32355937
    [Google Scholar]
  107. ZhangH. ChenG. YuB. CongH. Emerging advanced nanomaterials for cancer photothermal therapy.Rev. Adv. Mater. Sci.201853213114610.1515/rams‑2018‑0010
    [Google Scholar]
  108. BourdonJ.A. SaberA.T. JacobsenN.R. JensenK.A. MadsenA.M. LamsonJ.S. WallinH. MøllerP. LoftS. YaukC.L. VogelU.B. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver.Part. Fibre Toxicol.201291510.1186/1743‑8977‑9‑522300514
    [Google Scholar]
  109. FrankE.A. BirchM.E. YadavJ.S. MyD88 mediates in vivo effector functions of alveolar macrophages in acute lung inflammatory responses to carbon nanotube exposure.Toxicol. Appl. Pharmacol.2015288332232910.1016/j.taap.2015.08.00426272622
    [Google Scholar]
  110. RydmanE.M. IlvesM. KoivistoA.J. KinaretP.A.S. FortinoV. SavinkoT.S. LehtoM.T. PulkkinenV. VippolaM. HämeriK.J. MatikainenS. WolffH. SavolainenK.M. GrecoD. AleniusH. Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation.Part. Fibre Toxicol.20141114810.1186/s12989‑014‑0048‑2
    [Google Scholar]
  111. ChenS. YinR. MutzeK. YuY. TakenakaS. KönigshoffM. StoegerT. No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice.Part. Fibre Toxicol.20151313310.1186/s12989‑016‑0144‑627328634
    [Google Scholar]
  112. GreccoA.C.P. PaulaR.F.O. MizutaniE. SartorelliJ.C. MilaniA.M. LonghiniA.L.F. OliveiraE.C. PradellaF. SilvaV.D.R. MoraesA.S. PeterlevitzA.C. FariasA.S. CeragioliH.J. SantosL.M.B. BaranauskasV. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes.Nanotechnology2011222626510310.1088/0957‑4484/22/26/26510321576788
    [Google Scholar]
  113. AndersenA.J. WibroeP.P. MoghimiS.M. Perspectives on carbon nanotube-mediated adverse immune effects.Adv. Drug Deliv. Rev.201264151700170510.1016/j.addr.2012.05.00522634159
    [Google Scholar]
  114. SweeneyS. GrandolfoD. RuenraroengsakP. TetleyT.D. Functional consequences for primary human alveolar macrophages following treatment with long, but not short, multiwalled carbon nanotubes.Int. J. Nanomedicine2015103115312925960651
    [Google Scholar]
  115. SagerT.M. WolfarthM.W. AndrewM. HubbsA. FriendS. ChenT. PorterD.W. WuN. YangF. HamiltonR.F. HolianA. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model.Nanotoxicology20148331732710.3109/17435390.2013.77975723432020
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673287448240311112523
Loading
/content/journals/cmc/10.2174/0109298673287448240311112523
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test