Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Epidemiological trends in cancer research show that lung cancer can affect up to 1 in 15 men and 1 in 17 women. With incidence rates as high as these and significant associated mortality and morbidity, it is no wonder that lung cancer is one of the main areas of research focused on cancer. Advances in targeted treatments and specialized irradiation protocols have allowed the treatment of more advanced cases. However, as the patient numbers grow, so does the need for cancer-preventive strategies. The present narrative review focuses on soy isoflavones' role in the chemoprevention of lung cancer and their possible role in therapeutic adjuncts. Laboratory studies on lung cancer cell lines have shown that isoflavones can induce apoptosis, tamper with the expression of proliferative molecular pathways, and even reduce tumor angiogenesis. Additionally, population-level studies have emerged that correlate the consumption of isoflavonoids with reduced risk for the development of lung cancer. Interestingly enough, the literature also contains small-scale studies with evidence of isoflavones being effective chemotherapeutic adjuncts that are currently understudied. Our literature review underlines such findings and provides a call for the enhancement of research regarding naturally occurring dietary products with possible anticarcinogenic effects.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673278897231229121524
2024-02-01
2024-12-24
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. SharmaR. Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050.Int. J. Clin. Oncol.202227466567510.1007/s10147‑021‑02108‑235020103
    [Google Scholar]
  3. Chaitanya ThandraK. BarsoukA. SaginalaK. Sukumar AluruJ. BarsoukA. Epidemiology of lung cancer.Contemp. Oncol.2021251455210.5114/wo.2021.10382933911981
    [Google Scholar]
  4. InamuraK. Lung cancer: Understanding its molecular pathology and the 2015 who classification.Front. Oncol.2017719310.3389/fonc.2017.0019328894699
    [Google Scholar]
  5. NooreldeenR. BachH. Current and future development in lung cancer diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms2216866134445366
    [Google Scholar]
  6. BeckerN. MotschE. TrotterA. HeusselC.P. DienemannH. SchnabelP.A. KauczorH.U. MaldonadoS.G. MillerA.B. KaaksR. DelormeS. Lung cancer mortality reduction by LDCT screening-Results from the randomized German LUSI trial.Int. J. Cancer202014661503151310.1002/ijc.3248631162856
    [Google Scholar]
  7. AberleD.R. AdamsA.M. BergC.D. BlackW.C. ClappJ.D. FagerstromR.M. GareenI.F. GatsonisC. MarcusP.M. SicksJ.D. National Lung Screening Trial Research Team Reduced lung-cancer mortality with low-dose computed tomographic screening.N. Engl. J. Med.2011365539540910.1056/NEJMoa110287321714641
    [Google Scholar]
  8. OudkerkM. LiuS. HeuvelmansM.A. WalterJ.E. FieldJ.K. Lung cancer LDCT screening and mortality reduction - evidence, pitfalls and future perspectives.Nat. Rev. Clin. Oncol.202118313515110.1038/s41571‑020‑00432‑633046839
    [Google Scholar]
  9. ToyodaY. NakayamaT. KusunokiY. IsoH. SuzukiT. Sensitivity and specificity of lung cancer screening using chest low-dose computed tomography.Br. J. Cancer200898101602160710.1038/sj.bjc.660435118475292
    [Google Scholar]
  10. de KoningH.J. MezaR. PlevritisS.K. ten HaafK. MunshiV.N. JeonJ. ErdoganS.A. KongC.Y. HanS.S. van RosmalenJ. ChoiS.E. PinskyP.F. de GonzalezA.B. BergC.D. BlackW.C. TammemägiM.C. HazeltonW.D. FeuerE.J. McMahonP.M. Benefits and harms of computed tomography lung cancer screening strategies: A comparative modeling study for the U.S. Preventive Services Task Force.Ann. Intern. Med.2014160531132010.7326/M13‑231624379002
    [Google Scholar]
  11. SunJ. GarfieldD.H. LamB. YanJ. GuA. ShenJ. HanB. The value of autofluorescence bronchoscopy combined with white light bronchoscopy compared with white light alone in the diagnosis of intraepithelial neoplasia and invasive lung cancer: a meta-analysis.J. Thorac. Oncol.2011681336134410.1097/JTO.0b013e318220c98421642863
    [Google Scholar]
  12. MunozM.L. LechtzinN. LiQ.K. WangK. YarmusL.B. LeeH.J. Feller-KopmanD.J. Bronchoscopy with endobronchial ultrasound guided transbronchial needle aspiration vs. transthoracic needle aspiration in lung cancer diagnosis and staging.J. Thorac. Dis.2017972178218510.21037/jtd.2017.07.2628840019
    [Google Scholar]
  13. WangS. ZimmermannS. ParikhK. MansfieldA.S. AdjeiA.A. Current diagnosis and management of small- cell lung cancer.Mayo Clin. Proc.20199481599162210.1016/j.mayocp.2019.01.03431378235
    [Google Scholar]
  14. WaqarS.N. MorgenszternD. Treatment advances in small cell lung cancer (SCLC).Pharmacol. Ther.2017180162310.1016/j.pharmthera.2017.06.00228579387
    [Google Scholar]
  15. EspositoG. PalumboG. CarillioG. ManzoA. MontaninoA. SforzaV. CostanzoR. SandomenicoC. La MannaC. MartucciN. La RoccaA. De LucaG. PiccirilloM.C. De CecioR. BottiG. TotaroG. MutoP. PiconeC. NormannoN. MorabitoA. Immunotherapy in small cell lung cancer.Cancers2020129252210.3390/cancers1209252232899891
    [Google Scholar]
  16. CallesA. AguadoG. SandovalC. ÁlvarezR. The role of immunotherapy in small cell lung cancer.Clin. Transl. Oncol.201921896197610.1007/s12094‑018‑02011‑930637710
    [Google Scholar]
  17. YangS. ZhangZ. WangQ. Emerging therapies for small cell lung cancer.J. Hematol. Oncol.20191214710.1186/s13045‑019‑0736‑331046803
    [Google Scholar]
  18. TariqS. KimS.Y. Monteiro de Oliveira NovaesJ. ChengH. Update 2021: Management of small cell lung cancer.Lung2021199657958710.1007/s00408‑021‑00486‑y34757446
    [Google Scholar]
  19. BarnesH. SeeK. BarnettS. ManserR. Surgery for limited-stage small-cell lung cancer.Cochrane Libr.201720174CD01191710.1002/14651858.CD011917.pub228429473
    [Google Scholar]
  20. MartucciN. MorabitoA. La RoccaA. De LucaG. De CecioR. BottiG. TotaroG. MutoP. PiconeC. EspositoG. NormannoN. La MannaC. Surgery in small- cell lung cancer.Cancers202113339010.3390/cancers1303039033494285
    [Google Scholar]
  21. DingemansA.M.C. FrühM. ArdizzoniA. BesseB. Faivre-FinnC. HendriksL.E. LantuejoulS. PetersS. ReguartN. RudinC.M. De RuysscherD. Van SchilP.E. VansteenkisteJ. ReckM. ESMO Guidelines Committee. Electronic address: [email protected] Small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.202132783985310.1016/j.annonc.2021.03.20733864941
    [Google Scholar]
  22. National comprehensive cancer network (2022) NCCN Guidelines Version 3.2023 - small cell lung cancer.Available from: https://www.nccn.org/professionals/physician_gls/pdf/sclc.pdf
  23. Ignatius OuS.H. ZellJ.A. The applicability of the proposed IASLC staging revisions to small cell lung cancer (SCLC) with comparison to the current UICC 6th TNM Edition.J. Thorac. Oncol.20094330031010.1097/JTO.0b013e318194a35519156001
    [Google Scholar]
  24. AlexanderM. KimS.Y. ChengH. Update 2020: Management of non-small cell lung cancer.Lung2020198689790710.1007/s00408‑020‑00407‑533175991
    [Google Scholar]
  25. HoyH. LynchT. BeckM. Surgical treatment of lung cancer.Crit. Care Nurs. Clin. North Am.201931330331310.1016/j.cnc.2019.05.00231351552
    [Google Scholar]
  26. Gloeckler RiesL.A. ReichmanM.E. LewisD.R. HankeyB.F. EdwardsB.K. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program.Oncologist20038654155210.1634/theoncologist.8‑6‑54114657533
    [Google Scholar]
  27. NSCLC Meta-analysis Collaborative GroupPreoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data.Lancet201438399281561157110.1016/S0140‑6736(13)62159‑524576776
    [Google Scholar]
  28. PistersK.M.W. Le ChevalierT. Adjuvant chemotherapy in completely resected non-small-cell lung cancer.J. Clin. Oncol.200523143270327810.1200/JCO.2005.11.47815886314
    [Google Scholar]
  29. ArriagadaR. AuperinA. BurdettS. HigginsJ.P. JohnsonD.H. Le ChevalierT. Le PechouxC. ParmarM.K.B. PignonJ.P. SouhamiR.L. StephensR.J. StewartL.A. TierneyJ.F. TribodetH. van MeerbeeckJ. NSCLC Meta-analyses Collaborative Group Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: Two meta-analyses of individual patient data.Lancet201037597221267127710.1016/S0140‑6736(10)60059‑120338627
    [Google Scholar]
  30. FriedlaenderA. AddeoA. RussoA. GregorcV. CortinovisD. RolfoC. Targeted therapies in early stage NSCLC: Hype or hope?Int. J. Mol. Sci.20202117632910.3390/ijms2117632932878298
    [Google Scholar]
  31. OsmaniL. AskinF. GabrielsonE. LiQ.K. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy.Semin. Cancer Biol.201852Pt110310910.1016/j.semcancer.2017.11.01929183778
    [Google Scholar]
  32. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc323922437870
    [Google Scholar]
  33. ReckM. Rodríguez-AbreuD. RobinsonA.G. HuiR. CsősziT. FülöpA. GottfriedM. PeledN. TafreshiA. CuffeS. O’BrienM. RaoS. HottaK. LeibyM.A. LubinieckiG.M. ShentuY. RangwalaR. BrahmerJ.R. KEYNOTE-024 Investigators Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer.N. Engl. J. Med.2016375191823183310.1056/NEJMoa160677427718847
    [Google Scholar]
  34. GandhiL. Rodríguez-AbreuD. GadgeelS. EstebanE. FelipE. De AngelisF. DomineM. ClinganP. HochmairM.J. PowellS.F. ChengS.Y.S. BischoffH.G. PeledN. GrossiF. JennensR.R. ReckM. HuiR. GaronE.B. BoyerM. Rubio-ViqueiraB. NovelloS. KurataT. GrayJ.E. VidaJ. WeiZ. YangJ. RaftopoulosH. PietanzaM.C. GarassinoM.C. KEYNOTE-189 Investigators Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer.N. Engl. J. Med.2018378222078209210.1056/NEJMoa180100529658856
    [Google Scholar]
  35. LangerC.J. GadgeelS.M. BorghaeiH. PapadimitrakopoulouV.A. PatnaikA. PowellS.F. GentzlerR.D. MartinsR.G. StevensonJ.P. JalalS.I. PanwalkarA. YangJ.C.H. GubensM. SequistL.V. AwadM.M. FioreJ. GeY. RaftopoulosH. GandhiL. KEYNOTE-021 investigators Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study.Lancet Oncol.201617111497150810.1016/S1470‑2045(16)30498‑327745820
    [Google Scholar]
  36. SocinskiM.A. JotteR.M. CappuzzoF. OrlandiF. StroyakovskiyD. NogamiN. Rodríguez-AbreuD. Moro-SibilotD. ThomasC.A. BarlesiF. FinleyG. KelschC. LeeA. ColemanS. DengY. ShenY. KowanetzM. Lopez-ChavezA. SandlerA. ReckM. IMpower150 Study Group Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC.N. Engl. J. Med.2018378242288230110.1056/NEJMoa171694829863955
    [Google Scholar]
  37. ReckM. CiuleanuT.E. DolsM.C. SchenkerM. ZurawskiB. MenezesJ. RichardetE. BennounaJ. FelipE. Juan-VidalO. AlexandruA. SakaiH. ScherpereelA. LuS. JohnT. CarboneD.P. Meadows-ShropshireS. YanJ. Paz-AresL.G. Nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles of platinum-doublet chemotherapy (chemo) vs 4 cycles chemo as first-line (1L) treatment (tx) for stage IV/recurrent non-small cell lung cancer (NSCLC): CheckMate 9LA.J. Clin. Oncol.20203815_suppl9501950110.1200/JCO.2020.38.15_suppl.9501
    [Google Scholar]
  38. GrayJ.E. VillegasA. DanielD. VicenteD. MurakamiS. HuiR. KurataT. ChiapporiA. LeeK.H. ChoB.C. PlanchardD. Paz-AresL. Faivre-FinnC. VansteenkisteJ.F. SpigelD.R. WadsworthC. TaboadaM. DennisP.A. ÖzgüroğluM. AntoniaS.J. Three-year overall survival with durvalumab after chemoradiotherapy in stage III NSCLC-update from PACIFIC.J. Thorac. Oncol.202015228829310.1016/j.jtho.2019.10.00231622733
    [Google Scholar]
  39. Agulló-OrtuñoM.T. López-RíosF. Paz-AresL. Lung cancer genomic signatures.J. Thorac. Oncol.20105101673169110.1097/JTO.0b013e3181f1900e20736853
    [Google Scholar]
  40. NadeauJ.A. SackF.D. Stomatal development in Arabidopsis.Arabidopsis Book20021e006610.1199/tab.006622303215
    [Google Scholar]
  41. SodaM. ChoiY.L. EnomotoM. TakadaS. YamashitaY. IshikawaS. FujiwaraS. WatanabeH. KurashinaK. HatanakaH. BandoM. OhnoS. IshikawaY. AburataniH. NikiT. SoharaY. SugiyamaY. ManoH. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer.Nature2007448715356156610.1038/nature0594517625570
    [Google Scholar]
  42. MazièresJ. ZalcmanG. CrinòL. BiondaniP. BarlesiF. FilleronT. DingemansA.M.C. LénaH. MonnetI. RothschildS.I. CappuzzoF. BesseB. ThibervilleL. RouvièreD. DziadziuszkoR. SmitE.F. WolfJ. SpirigC. PecuchetN. LeendersF. HeuckmannJ.M. DieboldJ. MiliaJ.D. ThomasR.K. GautschiO. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: Results from the EUROS1 cohort.J. Clin. Oncol.201533999299910.1200/JCO.2014.58.330225667280
    [Google Scholar]
  43. ShawA.T. OuS.H.I. BangY.J. CamidgeD.R. SolomonB.J. SalgiaR. RielyG.J. Varella-GarciaM. ShapiroG.I. CostaD.B. DoebeleR.C. LeL.P. ZhengZ. TanW. StephensonP. ShreeveS.M. TyeL.M. ChristensenJ.G. WilnerK.D. ClarkJ.W. IafrateA.J. Crizotinib in ROS1-rearranged non-small-cell lung cancer.N. Engl. J. Med.2014371211963197110.1056/NEJMoa140676625264305
    [Google Scholar]
  44. PaikP.K. ArcilaM.E. FaraM. SimaC.S. MillerV.A. KrisM.G. LadanyiM. RielyG.J. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations.J. Clin. Oncol.201129152046205110.1200/JCO.2010.33.128021483012
    [Google Scholar]
  45. LinJ.J. ZhuV.W. YodaS. YeapB.Y. SchrockA.B. Dagogo-JackI. JessopN.A. JiangG.Y. LeL.P. GowenK. StephensP.J. RossJ.S. AliS.M. MillerV.A. JohnsonM.L. LovlyC.M. HataA.N. GainorJ.F. IafrateA.J. ShawA.T. OuS.H.I. Impact of EML4-ALK variant on resistance mechanisms and clinical outcomes in alk-positive lung cancer.J. Clin. Oncol.201836121199120610.1200/JCO.2017.76.229429373100
    [Google Scholar]
  46. MascauxC. TsaoM. S. HirschF. R. Genomic testing in lung cancer: Past, present, and future.J. Natl. Compr. Cancer Network201816332333410.6004/jnccn.2017.7019
    [Google Scholar]
  47. Sweet-CorderoA. MukherjeeS. SubramanianA. YouH. RoixJ.J. Ladd-AcostaC. MesirovJ. GolubT.R. JacksT. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis.Nat. Genet.2005371485510.1038/ng149015608639
    [Google Scholar]
  48. BorczukA.C. KimH.K. YegenH.A. FriedmanR.A. PowellC.A. Lung adenocarcinoma global profiling identifies type II transforming growth factor-β receptor as a repressor of invasiveness.Am. J. Respir. Crit. Care Med.2005172672973710.1164/rccm.200504‑615OC15976377
    [Google Scholar]
  49. BellD.W. GoreI. OkimotoR.A. Godin-HeymannN. SordellaR. MulloyR. SharmaS.V. BranniganB.W. MohapatraG. SettlemanJ. HaberD.A. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR.Nat. Genet.200537121315131610.1038/ng167116258541
    [Google Scholar]
  50. LandiM.T. DrachevaT. RotunnoM. FigueroaJ.D. LiuH. DasguptaA. MannF.E. FukuokaJ. HamesM. BergenA.W. MurphyS.E. YangP. PesatoriA.C. ConsonniD. BertazziP.A. WacholderS. ShihJ.H. CaporasoN.E. JenJ. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival.PLoS One200832e165110.1371/journal.pone.000165118297132
    [Google Scholar]
  51. ZhangY. Recent progress in the epigenetics and chromatin field.Cell Res.201121337337410.1038/cr.2011.3321383679
    [Google Scholar]
  52. NémethA. LängstG. Chromatin higher order structure: Opening up chromatin for transcription.Brief. Funct. Genomic Proteomic.2004243344310.1093/bfgp/2.4.33415163368
    [Google Scholar]
  53. OzturkN. SinghI. MehtaA. BraunT. BarretoG. HMGA proteins as modulators of chromatin structure during transcriptional activation.Front. Cell Dev. Biol.20142510.3389/fcell.2014.0000525364713
    [Google Scholar]
  54. BrzeziańskaE. DutkowskaA. AntczakA. The significance of epigenetic alterations in lung carcinogenesis.Mol. Biol. Rep.201340130932510.1007/s11033‑012‑2063‑423086271
    [Google Scholar]
  55. FeinbergA.P. VogelsteinB. Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature19833015895899210.1038/301089a06185846
    [Google Scholar]
  56. RauchT. A. ZhongX. WuX. WangM. KernstineK. H. WangZ. RiggsA. D. PfeiferG. P. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer.Proc Natl Acad Sci.20071051252257
    [Google Scholar]
  57. SargurupremrajM. WjstM. Transposable elements and their potential role in complex lung disorder.Respir. Res.2013991810.1186/1465‑9921‑14‑99
    [Google Scholar]
  58. KimM. TrinhB.N. LongT.I. OghamianS. LairdP.W. Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells.Nucleic Acids Res.200432195742574910.1093/nar/gkh91215509869
    [Google Scholar]
  59. BrabenderJ. UsadelH. DanenbergK. D. MetzgerR. SchneiderP. M. LordR. Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival.Oncogene2001202735283532
    [Google Scholar]
  60. SoriaJ-C. LeeH-Y. LeeJ.I. WangL. IssaJ-P. KempB.L. LiuD.D. KurieJ.M. MaoL. KhuriF.R. Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation.Clin. Cancer Res.2002851178118412006535
    [Google Scholar]
  61. NakataS. SugioK. UramotoH. OyamaT. HanagiriT. MoritaM. YasumotoK. The methylation status and protein expression of CDH1, p16INK4A , and fragile histidine triad in nonsmall cell lung carcinoma.Cancer2006106102190219910.1002/cncr.2187016598757
    [Google Scholar]
  62. LinS.H. WangJ. SaintignyP. WuC.C. GiriU. ZhangJ. MenjuT. DiaoL. ByersL. WeinsteinJ.N. CoombesK.R. GirardL. KomakiR. WistubaI.I. DateH. MinnaJ.D. HeymachJ.V. Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial–mesenchymal transition.BMC Genomics2014151107910.1186/1471‑2164‑15‑107925486910
    [Google Scholar]
  63. AhrendtS. A. ChowJ. T. XuL.-H. YangS. C. EisenbergerC. F. EstellerM. HermanJ. G. WuL. DeckerP. A. JenJ. SidranskyD. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer.J. NCI199991433233910.1093/jnci/91.4.332
    [Google Scholar]
  64. LengS. DoK. YinglingC.M. PicchiM.A. WolfH.J. KennedyT.C. FeserW.J. BaronA.E. FranklinW.A. BrockM.V. HermanJ.G. BaylinS.B. ByersT. StidleyC.A. BelinskyS.A. Defining a gene promoter methylation signature in sputum for lung cancer risk assessment.Clin. Cancer Res.201218123387339510.1158/1078‑0432.CCR‑11‑304922510351
    [Google Scholar]
  65. HsuH.S. ChenT.P. HungC.H. WenC.K. LinR.K. LeeH.C. WangY.C. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma.Cancer200711092019202610.1002/cncr.2300117876837
    [Google Scholar]
  66. XiaoP. ChenJ. ZhouF. LuC. YangQ. TaoG. TaoY. ChenJ. Methylation of P16 in exhaled breath condensate for diagnosis of non-small cell lung cancer.Lung Cancer2014831566010.1016/j.lungcan.2013.09.00824268095
    [Google Scholar]
  67. MehtaA. DoberschS. Romero-OlmedoA.J. BarretoG. Epigenetics in lung cancer diagnosis and therapy.Cancer Metastasis Rev.201534222924110.1007/s10555‑015‑9563‑325939322
    [Google Scholar]
  68. KimH.J. BaeS.C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs.Am. J. Transl. Res.20113216617921416059
    [Google Scholar]
  69. JucáM.M. Cysne FilhoF.M.S. de AlmeidaJ.C. MesquitaD.S. BarrigaJ.R.M. DiasK.C.F. BarbosaT.M. VasconcelosL.C. LealL.K.A.M. RibeiroJ.E. VasconcelosS.M.M. Flavonoids: Biological activities and therapeutic potential.Nat. Prod. Res.202034569270510.1080/14786419.2018.149358830445839
    [Google Scholar]
  70. IwashinaT. The structure and distribution of the flavonoids in plants.J. Plant Res.2000113328729910.1007/PL00013940
    [Google Scholar]
  71. DurazzoA. LucariniM. SoutoE.B. CicalaC. CaiazzoE. IzzoA.A. NovellinoE. SantiniA. Polyphenols: A concise overview on the chemistry, occurrence, and human health.Phytother. Res.20193392221224310.1002/ptr.641931359516
    [Google Scholar]
  72. WangQ. GeX. TianX. ZhangY. ZhangJ. ZhangP. Soy isoflavone: The multipurpose phytochemical (Review).Biomed. Rep.20131569770110.3892/br.2013.12924649012
    [Google Scholar]
  73. MessinaM.J. WoodC.E. Soy isoflavones, estrogen therapy, and breast cancer risk: Analysis and commentary.Nutr. J.2008711710.1186/1475‑2891‑7‑1718522734
    [Google Scholar]
  74. KimI.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans.Antioxidants2021107106410.3390/antiox1007106434209224
    [Google Scholar]
  75. PabichM. MaterskaM. Biological effect of soy isoflavones in the prevention of civilization diseases.Nutrients2019117166010.3390/nu1107166031330799
    [Google Scholar]
  76. NakaiS. FujitaM. KameiY. Health promotion effects of soy isoflavones.J. Nutr. Sci. Vitaminol.202066650250710.3177/jnsv.66.50233390391
    [Google Scholar]
  77. Gómez-ZoritaS. González-ArceoM. Fernández-QuintelaA. EseberriI. TrepianaJ. PortilloM.P. Scientific evidence supporting the beneficial effects of isoflavones on human health.Nutrients20201212385310.3390/nu1212385333348600
    [Google Scholar]
  78. ZaheerK. Humayoun AkhtarM. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health.Crit. Rev. Food Sci. Nutr.20175761280129310.1080/10408398.2014.98995826565435
    [Google Scholar]
  79. WangS. WangY. PanM.H. HoC.T. Anti-obesity molecular mechanism of soy isoflavones: Weaving the way to new therapeutic routes.Food Funct.20178113831384610.1039/C7FO01094J29043346
    [Google Scholar]
  80. AblatN. LvD. RenR. XiaokaitiY. MaX. ZhaoX. SunY. LeiH. XuJ. MaY. QiX. YeM. XuF. HanH. PuX. Neuroprotective effects of a standardized flavonoid extract from safflower against a rotenone-induced rat model of Parkinson’s disease.Molecules2016219110710.3390/molecules2109110727563865
    [Google Scholar]
  81. SirtoriC.R. Risks and benefits of soy phytoestrogens in cardiovascular diseases, cancer, climacteric symptoms and osteoporosis.Drug Saf.200124966568210.2165/00002018‑200124090‑0000311522120
    [Google Scholar]
  82. PudenzM. RothK. GerhauserC. Impact of soy isoflavones on the epigenome in cancer prevention.Nutrients20146104218427210.3390/nu610421825322458
    [Google Scholar]
  83. MessinaM.J. LoprinziC.L. Soy for breast cancer survivors: A critical review of the literature.J. Nutr.200113111Suppl.3095S3108S10.1093/jn/131.11.3095S11694655
    [Google Scholar]
  84. BernatonieneJ. KazlauskaiteJ.A. KopustinskieneD.M. Pleiotropic effects of isoflavones in inflammation and chronic degenerative diseases.Int. J. Mol. Sci.20212211565610.3390/ijms2211565634073381
    [Google Scholar]
  85. ZhaoT.T. JinF. LiJ.G. XuY.Y. DongH.T. LiuQ. XingP. ZhuG.L. XuH. MiaoZ.F. Dietary isoflavones or isoflavone-rich food intake and breast cancer risk: A meta-analysis of prospective cohort studies.Clin. Nutr.201938113614510.1016/j.clnu.2017.12.00629277346
    [Google Scholar]
  86. BoutasI. KontogeorgiA. DimitrakakisC. KalantaridouS.N. Soy isoflavones and breast cancer risk: A meta-analysis.In Vivo202236255656210.21873/invivo.1273735241506
    [Google Scholar]
  87. JianL. Soy, isoflavones, and prostate cancer.Mol. Nutr. Food Res.200953221722610.1002/mnfr.20080016718985655
    [Google Scholar]
  88. HsuA. BrayT.M. HelferichW.G. DoergeD.R. HoE. Differential effects of whole soy extract and soy isoflavones on apoptosis in prostate cancer cells.Exp. Biol. Med.20102351909710.1258/ebm.2009.00912820404023
    [Google Scholar]
  89. ApplegateC. RowlesJ.III RanardK. JeonS. ErdmanJ. Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis.Nutrients20181014010.3390/nu1001004029300347
    [Google Scholar]
  90. YanL. SpitznagelE.L. Soy consumption and prostate cancer risk in men: A revisit of a meta-analysis.Am. J. Clin. Nutr.20098941155116310.3945/ajcn.2008.2702919211820
    [Google Scholar]
  91. SawadaN. IwasakiM. YamajiT. ShimazuT. InoueM. TsuganeS. Japan Public Health Center-based Prospective Study Group Soy and isoflavone consumption and subsequent risk of prostate cancer mortality: The Japan Public Health Center-based Prospective Study.Int. J. Epidemiol.20204951553156110.1093/ije/dyaa17732968784
    [Google Scholar]
  92. YuY. JingX. LiH. ZhaoX. WangD. Soy isoflavone consumption and colorectal cancer risk: A systematic review and meta-analysis.Sci. Rep.2016612593910.1038/srep2593927170217
    [Google Scholar]
  93. ShafieeG. SaidijamM. TavilaniH. GhasemkhaniN. KhodadadiI. Genistein induces apoptosis and inhibits proliferation of HT29 colon cancer cells.Int. J. Mol. Cell. Med.20165317819127942504
    [Google Scholar]
  94. EnewoldL. MechanicL.E. BowmanE.D. ZhengY.L. YuZ. TriversG. AlbergA.J. HarrisC.C. Serum concentrations of cytokines and lung cancer survival in African Americans and Caucasians.Cancer Epidemiol. Biomarkers Prev.200918121522210.1158/1055‑9965.EPI‑08‑070519124500
    [Google Scholar]
  95. AkcaH. DemirayA. TokgunO. YokotaJ. Invasiveness and anchorage independent growth ability augmented by PTEN inactivation through the PI3K/AKT/NFkB pathway in lung cancer cells.Lung Cancer201173330230910.1016/j.lungcan.2011.01.01221333374
    [Google Scholar]
  96. SerugaB. ZhangH. BernsteinL.J. TannockI.F. Cytokines and their relationship to the symptoms and outcome of cancer.Nat. Rev. Cancer200881188789910.1038/nrc250718846100
    [Google Scholar]
  97. HendrichS. Bioavailability of isoflavones.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20027771-220321010.1016/S1570‑0232(02)00347‑112270213
    [Google Scholar]
  98. GuoS. WangY. LiY. LiY. FengC. LiZ. Daidzein-rich isoflavones aglycone inhibits lung cancer growth through inhibition of NF-κB signaling pathway.Immunol. Lett.2020222677210.1016/j.imlet.2020.03.00432197974
    [Google Scholar]
  99. HessD. IgalR.A. Genistein downregulates de novo lipid synthesis and impairs cell proliferation in human lung cancer cells.Exp. Biol. Med. (Maywood)2011236670771310.1258/ebm.2011.01026521565896
    [Google Scholar]
  100. LiY. YuH. HanF. WangM. LuoY. GuoX. BiochaninA. InducesS. Biochanin A Induces S phase arrest and apoptosis in lung cancer cells.BioMed Res. Int.2018201811210.1155/2018/354537630402472
    [Google Scholar]
  101. TianF. XuL.H. ZhaoW. TianL.J. JiX.L. The optimal therapeutic timing and mechanism of puerarin treatment of spinal cord ischemia–reperfusion injury in rats.J. Ethnopharmacol.2011134389289610.1016/j.jep.2011.01.05521296138
    [Google Scholar]
  102. YanagiharaK. ItoA. TogeT. NumotoM. Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract.Cancer Res.19935323581558218242641
    [Google Scholar]
  103. HuY. LiX. LinL. LiangS. YanJ. Puerarin inhibits non-small cell lung cancer cell growth via the induction of apoptosis.Oncol. Rep.20183941731173810.3892/or.2018.623429393465
    [Google Scholar]
  104. PetersonT.G. CowardL. KirkM. FalanyC.N. BarnesS. The role of metabolism in mammary epithelial cell growth inhibition by the isoflavones genistein and biochanin A.Carcinogenesis19961791861186910.1093/carcin/17.9.18618824507
    [Google Scholar]
  105. RiceL. SamediV.G. MedranoT.A. SweeneyC.A. BakerH.V. StenstromA. FurmanJ. ShiverickK.T. Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts.Prostate200252320121210.1002/pros.1010012111696
    [Google Scholar]
  106. YangY ZangA JiaY ShangY ZhangZ GeK ZhangJ FanW WangB. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling.Oncology letters20161232189219310.3892/ol.2016.4817
    [Google Scholar]
  107. LiZ.G. ZhaoY.L. WuX. YeH.Y. PengA. CaoZ.X. MaoY.Q. ZhengY.Z. JiangP.D. ZhaoX. ChenL.J. WeiY.Q. Barbigerone, a natural isoflavone, induces apoptosis in murine lung-cancer cells via the mitochondrial apoptotic pathway.Cell. Physiol. Biochem.2009241-29510410.1159/00022781719590197
    [Google Scholar]
  108. KumarV. AbbasA. AsterJ. PerkinsJ. Robbins basic pathology.PhiladelphiaElsevier20182869
    [Google Scholar]
  109. WatsonJ. BakerT. BellS. GannA. LevineM. LosickR. Molecular biology of the gene. Pearson/benjamin cummings.2004Available from: https://www.worldcat.org/search?qt=worldcat_org_allamp;q=080539592X
    [Google Scholar]
  110. ShibuyaM. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies.Genes Cancer20112121097110510.1177/194760191142303122866201
    [Google Scholar]
  111. DiasS. HattoriK. HeissigB. ZhuZ. WuY. WitteL. HicklinD.J. TatenoM. BohlenP. MooreM.A.S. RafiiS. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias.Proc. Natl. Acad. Sci.20019819108571086210.1073/pnas.19111749811553814
    [Google Scholar]
  112. OhS.H. WooJ.K. JinQ. KangH.J. JeongJ.W. KimK.W. HongW.K. LeeH.Y. Identification of novel antiangiogenic anticancer activities of deguelin targeting hypoxia-inducible factor-1 alpha.Int. J. Cancer2008122151410.1002/ijc.2307517764071
    [Google Scholar]
  113. ZhangS. CaoZ. TianH. ShenG. MaY. XieH. LiuY. ZhaoC. DengS. YangY. ZhengR. LiW. ZhangN. LiuS. WangW. DaiL. ShiS. ChengL. PanY. FengS. ZhaoX. DengH. YangS. WeiY. SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo.Clin. Cancer Res.201117134439445010.1158/1078‑0432.CCR‑10‑310921622720
    [Google Scholar]
  114. LiX. WangX. YeH. PengA. ChenL. Barbigerone, an isoflavone, inhibits tumor angiogenesis and human non-small-cell lung cancer xenografts growth through VEGFR2 signaling pathways.Cancer Chemother. Pharmacol.201270342543710.1007/s00280‑012‑1923‑x22814678
    [Google Scholar]
  115. ZhouR.J. YangX.Q. WangD. ZhouQ. XiaL. LiM.X. ZengL.L. WangG. YangZ.Z. Anti-tumor effects of all-trans retinoic acid are enhanced by genistein.Cell Biochem. Biophys.201262117718410.1007/s12013‑011‑9279‑021898109
    [Google Scholar]
  116. TsaiY.M. YangC.J. HsuY.L. WuL.Y. TsaiY.C. HungJ.Y. LienC.T. HuangM.S. KuoP.L. Glabridin inhibits migration, invasion, and angiogenesis of human non-small cell lung cancer A549 cells by inhibiting the FAK/rho signaling pathway.Integr. Cancer Ther.201110434134910.1177/153473541038486021059620
    [Google Scholar]
  117. AnsóE. ZuazoA. IrigoyenM. UrdaciM.C. RouzautA. Martínez-IrujoJ.J. Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism.Biochem. Pharmacol.201079111600160910.1016/j.bcp.2010.02.00420153296
    [Google Scholar]
  118. NguyenM.P. LeeD. LeeS.H. LeeH.E. LeeH.Y. LeeY.M. Deguelin inhibits vasculogenic function of endothelial progenitor cells in tumor progression and metastasis via suppression of focal adhesion.Oncotarget2015618165881660010.18632/oncotarget.375226078334
    [Google Scholar]
  119. LeeS.C. MinH.Y. ChoiH. KimH.S. KimK.C. ParkS.J. SeongM.A. SeoJ.H. ParkH.J. SuhY.G. KimK.W. HongH.S. KimH. LeeM.Y. LeeJ. LeeH.Y. Synthesis and evaluation of a novel deguelin derivative, l80, which disrupts atp binding to the c-terminal domain of heat shock protein 90.Mol. Pharmacol.201588224525510.1124/mol.114.09688325976766
    [Google Scholar]
  120. KangH. ZhangJ. WangB. LiuM. ZhaoJ. YangM. LiY. Puerarin inhibits M2 polarization and metastasis of tumor-associated macrophages from NSCLC xenograft model via inactivating MEK/ERK 1/2 pathway.Int. J. Oncol.201750254555410.3892/ijo.2017.384128101568
    [Google Scholar]
  121. MantovaniA. MarchesiF. MalesciA. LaghiL. AllavenaP. Tumour-associated macrophages as treatment targets in oncology.Nat. Rev. Clin. Oncol.201714739941610.1038/nrclinonc.2016.21728117416
    [Google Scholar]
  122. van DalenF. van StevendaalM. FennemannF. VerdoesM. IlinaO. Molecular repolarisation of tumour-associated macrophages.Molecules2018241910.3390/molecules2401000930577495
    [Google Scholar]
  123. BoutilierAva J Macrophage polarization states in the tumor microenvironment.Int. J. Mol. Sci.202122699510.3390/ijms22136995
    [Google Scholar]
  124. KumarV. AbbasA.K. AsterJ.C. Robbins Basic Pathology.10th edElsevier - Health Sciences Division2017
    [Google Scholar]
  125. HuangS.R. JinS.S. XuB. WangR.P. Puerarin alleviates the progression of non-small cell lung cancer by regulating the miR-342/CCND1 axis.Neoplasma20216761244125510.4149/neo_2020_191107N114532749850
    [Google Scholar]
  126. PengB. CaoJ. YiS. WangC. ZhengG. HeZ. Inhibition of proliferation and induction of G1-phase cell-cycle arrest by dFMGEN, a novel genistein derivative, in lung carcinoma A549 cells.Drug Chem. Toxicol.201336219620410.3109/01480545.2012.71062022931124
    [Google Scholar]
  127. YangY. ZhaoY. AiX. ChengB. LuS. Formononetin suppresses the proliferation of human non-small cell lung cancer through induction of cell cycle arrest and apoptosis.Int. J. Clin. Exp. Pathol.20147128453846125674209
    [Google Scholar]
  128. YuY. XingY. ZhangQ. ZhangQ. HuangS. LiX. GaoC. Soy isoflavone genistein inhibits hsa_circ_0031250/miR-873-5p/FOXM1 axis to suppress non-small-cell lung cancer progression.IUBMB Life20217319210710.1002/iub.240433159503
    [Google Scholar]
  129. RietjensI.M.C.M. SotocaA.M. VervoortJ. LouisseJ. Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks.Mol. Nutr. Food Res.201357110011310.1002/mnfr.20120043923175102
    [Google Scholar]
  130. VitaleD.C. PiazzaC. MelilliB. DragoF. SalomoneS. Isoflavones: estrogenic activity, biological effect and bioavailability.Eur. J. Drug Metab. Pharmacokinet.2013381152510.1007/s13318‑012‑0112‑y23161396
    [Google Scholar]
  131. GildaG. Soy isoflavones radiosensitize lung cancer while mitigating normal tissue injury.Radiother. Oncol.2011101232933610.1016/j.radonc.2011.10.020
    [Google Scholar]
  132. AbernathyL.M. FountainM.D. RothsteinS.E. DavidJ.M. YunkerC.K. RakowskiJ. LonardoF. JoinerM.C. HillmanG.G. Soy isoflavones promote radioprotection of normal lung tissue by inhibition of radiation-induced activation of macrophages and neutrophils.J. Thorac. Oncol.201510121703171210.1097/JTO.000000000000067726709479
    [Google Scholar]
  133. DengL.J. QiM. LiN. LeiY.H. ZhangD.M. ChenJ.X. Natural products and their derivatives: Promising modulators of tumor immunotherapy.J. Leukoc. Biol.2020108249350810.1002/JLB.3MR0320‑444R32678943
    [Google Scholar]
  134. HayakawaSumio OhishiTomokazu MiyoshiNoriyuki OishiYumiko NakamuraYoriyuki IsemuraMamoru Anti-cancer effects of green tea epigallocatchin-3-gallate and coffee chlorogenic acid.Molecules20202519455310.3390/molecules25194553
    [Google Scholar]
  135. AthanasiouE. VerrasG.I. PapageorgiouS. KelesisI. GatsisA. KaraoulaniC. StourasI. KanatasP. SaitaniE.M. OikonomouM.E. VlassiD.A. VasileiouM. TsagkarisC. AlexiouA. KamalM.A. The association between the risk of breast cancer and epigallocatechin-3- gallate intake: A literature review of a potential chemopreventive agent.Curr. Med. Chem.202229406169619610.2174/092986732966622072615341235894455
    [Google Scholar]
  136. DoroshowD.B. SanmamedM.F. HastingsK. PolitiK. RimmD.L. ChenL. MeleroI. SchalperK.A. HerbstR.S. Immunotherapy in non-small cell lung cancer: Facts and hopes.Clin. Cancer Res.201925154592-460210.1158/1078‑0432.CCR‑18‑1538
    [Google Scholar]
  137. Pai-ScherfL. BlumenthalG.M. LiH. SubramaniamS. Mishra-KalyaniP.S. HeK. ZhaoH. YuJ. PacigaM. GoldbergK.B. McKeeA.E. KeeganP. PazdurR. FDA approval summary: Pembrolizumab for treatment of metastatic non-small cell lung cancer: First-Line therapy and beyond.The Oncologist, Theoncologist2017007810.1634/theoncologist.2017‑0078
    [Google Scholar]
  138. O’NeillCo-stimulatory and co-inhibitory pathways in cancer immunotherapy.Adv Cancer Res.201914314519410.1016/bs.acr.2019.03.003
    [Google Scholar]
  139. RowshanravanB. HallidayN. SansomD.M. CTLA-4: A moving target in immunotherapy.Blood20171311586710.1182/blood‑2017‑06‑741033
    [Google Scholar]
  140. ZamaniM.R. AslaniS. SalmaninejadA. JavanM.R. RezaeiN.N. PD-1/PD-L and autoimmunity: A growing relationship.Cell Immunol.2016310274110.1016/j.cellimm.2016.09.009
    [Google Scholar]
  141. SalmaninejadA. ValilouS.F. ShabgahA.G. AslaniS. AlimardaniM. PasdarA. SahebkarA. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy.J. Cell. Physiol.201923410168241683710.1002/jcp.2835830784085
    [Google Scholar]
  142. OnoiK. ChiharaY. UchinoJ. ShimamotoT. MorimotoY. IwasakuM. KanekoY. YamadaT. TakayamaK. Immune checkpoint inhibitors for lung cancer treatment: A review.J. Clin. Med.202095136210.3390/jcm9051362
    [Google Scholar]
  143. BunnP.A.Jr. The expanding role of cisplatin in the treatment of non-small-cell lung cancer.Semin. Oncol.1989164Suppl. 610212548280
    [Google Scholar]
  144. RoseM.C. KostyanovskayaE. HuangR.S. Pharmacogenomics of cisplatin sensitivity in non-small cell lung cancer.Genomics Proteomics Bioinf.201412519820910.1016/j.gpb.2014.10.00325449594
    [Google Scholar]
  145. TianT. LiJ. LiB. WangY. LiM. MaD. WangX. Genistein exhibits anti-cancer effects via down-regulating FoxM1 in H446 small-cell lung cancer cells.Tumour Biol.20143554137414510.1007/s13277‑013‑1542‑024379139
    [Google Scholar]
  146. LiY. AhmedF. AliS. PhilipP.A. KucukO. SarkarF.H. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells.Cancer Res.200565156934694210.1158/0008‑5472.CAN‑04‑460416061678
    [Google Scholar]
  147. LiuD. YanL. WangL. TaiW. WangW. YangC. Genistein enhances the effect of cisplatin on the inhibition of non-small cell lung cancer A549 cell growth in vitro and in vivo. Oncol. Lett.2014862806281010.3892/ol.2014.259725364470
    [Google Scholar]
  148. MengH. FuG. ShenJ. ShenK. XuZ. WangY. JinB. PanH. Ameliorative effect of daidzein on cisplatin-induced nephrotoxicity in mice via modulation of inflammation, oxidative stress, and cell death.Oxid. Med. Cell. Longev.2017201711010.1155/2017/314068028831294
    [Google Scholar]
  149. Clinicaltrials.gov nih. radiation therapy, chemotherapy, and soy isoflavones in treating patients with stage iiia-iiib non-small cell lung cancer - tabular view - clinicalTrials.gov2022Available from: https://clinicaltrials.gov/ct2/show/record/NCT01958372
  150. GelattiA.C.Z. DrilonA. SantiniF.C. Optimizing the sequencing of tyrosine kinase inhibitors (tkis) in epidermal growth factor receptor (egfr) mutation-positive non-small cell lung cancer (NSCLC).Lung Cancer201913711312210.1016/j.lungcan.2019.09.01731568888
    [Google Scholar]
  151. TartaroneA. LeroseR. Clinical approaches to treat patients with non-small cell lung cancer and epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance.Ther. Adv. Respir. Dis.20159524225010.1177/175346581558782026016841
    [Google Scholar]
  152. ArbourK.C. RielyG.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer.JAMA2019322876477410.1001/jama.2019.1105831454018
    [Google Scholar]
  153. SongK.A. HosonoY. TurnerC. JacobS. LochmannT.L. MurakamiY. PatelN.U. HamJ. HuB. PowellK.M. CoonC.M. WindleB.E. OyaY. KoblinskiJ.E. HaradaH. LeversonJ.D. SouersA.J. HataA.N. BoikosS. YatabeY. EbiH. FaberA.C. Increased synthesis of MCL-1 protein underlies initial survival of EGFR-mutant lung cancer to EGFR inhibitors and provides a novel drug target.Clin. Cancer Res.201824225658567210.1158/1078‑0432.CCR‑18‑030430087143
    [Google Scholar]
  154. BooyE.P. HensonE.S. GibsonS.B. Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer.Oncogene201130202367237810.1038/onc.2010.61621258408
    [Google Scholar]
  155. ClohessyJ.G. ZhuangJ. de BoerJ. Gil-GómezG. BradyH.J.M. Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis.J. Biol. Chem.200628195750575910.1074/jbc.M50568820016380381
    [Google Scholar]
  156. HillmanG.G. Singh-GuptaV. Soy isoflavones sensitize cancer cells to radiotherapy.Free Radic. Biol. Med.201151228929810.1016/j.freeradbiomed.2011.04.03921605661
    [Google Scholar]
  157. HillmanG.G. Soy isoflavones protect normal tissues while enhancing radiation responses.Semin. Radiat. Oncol.2019291627110.1016/j.semradonc.2018.10.00230573186
    [Google Scholar]
  158. ThyagarajanA. SahuR.P. Potential contributions of antioxidants to cancer therapy: immunomodulation and radiosensitization.Integr. Cancer Ther.201817221021610.1177/153473541668163928627256
    [Google Scholar]
  159. ZanoagaO. BraicuC. JurjA. RusuA. BuigaR. Berindan-NeagoeI. Progress in research on the role of flavonoids in lung cancer.Int. J. Mol. Sci.20192017429110.3390/ijms2017429131480720
    [Google Scholar]
  160. Singh-GuptaV. JoinerM.C. RunyanL. YunkerC.K. SarkarF.H. MillerS. GadgeelS.M. KonskiA.A. HillmanG.G. Soy isoflavones augment radiation effect by inhibiting APE1/Ref-1 DNA repair activity in non-small cell lung cancer.J. Thorac. Oncol.20116468869810.1097/JTO.0b013e31821034ae21325978
    [Google Scholar]
  161. HillmanG.G. Singh-GuptaV. RunyanL. YunkerC.K. RakowskiJ.T. SarkarF.H. MillerS. GadgeelS.M. SethiS. JoinerM.C. KonskiA.A. Soy isoflavones radiosensitize lung cancer while mitigating normal tissue injury.Radiother. Oncol.2011101232933610.1016/j.radonc.2011.10.02022079530
    [Google Scholar]
  162. HillmanG.G. Singh-GuptaV. HoogstraD.J. AbernathyL. RakowskiJ. YunkerC.K. RothsteinS.E. SarkarF.H. GadgeelS. KonskiA.A. LonardoF. JoinerM.C. Differential effect of soy isoflavones in enhancing high intensity radiotherapy and protecting lung tissue in a pre-clinical model of lung carcinoma.Radiother. Oncol.2013109111712510.1016/j.radonc.2013.08.01524021346
    [Google Scholar]
  163. FountainM.D. McLellanL.A. SmithN.L. LougheryB.F. RakowskiJ.T. TseH.Y. HillmanG.G. Isoflavone- mediated radioprotection involves regulation of early endothelial cell death and inflammatory signaling in radiation-induced lung injury.Int. J. Radiat. Biol.202096224525610.1080/09553002.2020.168364231633433
    [Google Scholar]
  164. BoldriniG.G. MolineroG.D.M. ChacaM.V.P. GómezN.N. AlvarezS.M. Soybean Seed Compounds as Natural Health Protectors.IntechOpen20212
    [Google Scholar]
  165. JitB.P. PradhanB. DashR. BhuyanP.P. BeheraC. BeheraR.K. SharmaA. AlcarazM. JenaM. Phytochemicals: Potential therapeutic modulators of radiation induced signaling pathways.Antioxidants20211114910.3390/antiox1101004935052553
    [Google Scholar]
  166. KongF-M HaymanJA GriffithKA KalemkerianGP ArenbergD LyonsS Final toxicity results of a radiation- dose escalation study in patients with non–small-cell lung cancer. Predictors for radiation pneumonitis and fibrosis. J.Int. Rad.Onco.200665410751086
    [Google Scholar]
  167. AbernathyL.M. FountainM.D. JoinerM.C. HillmanG.G. Innate immune pathways associated with lung radioprotection by soy isoflavones.Front. Oncol.20177710.3389/fonc.2017.0000728168165
    [Google Scholar]
  168. FaramarziS. PiccolellaS. MantiL. PacificoS. Could polyphenols really be a good radioprotective strategy?Molecules20212616496910.3390/molecules2616496934443561
    [Google Scholar]
  169. CaoS.Y. LiY. MengX. ZhaoC.N. LiS. GanR.Y. LiH.B. Dietary natural products and lung cancer: Effects and mechanisms of action.J. Funct. Foods20195231633110.1016/j.jff.2018.11.004
    [Google Scholar]
  170. ZhangZ. JinF. LianX. LiM. WangG. LanB. HeH. LiuG.D. WuY. SunG. XuC.X. YangZ.Z. Genistein promotes ionizing radiation-induced cell death by reducing cytoplasmic Bcl-xL levels in non-small cell lung cancer.Sci. Rep.20188132810.1038/s41598‑017‑18755‑329321496
    [Google Scholar]
  171. NachvakS.M. MoradiS. Anjom-shoaeJ. RahmaniJ. NasiriM. MalekiV. SadeghiO. Soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: A systematic review and dose-response meta-analysis of prospective cohort studies.J. Acad. Nutr. Dietetics2019119914831500
    [Google Scholar]
  172. LiN. WuX. ZhuangW. XiaL. ChenY. ZhaoR. YiM. WanQ. DuL. ZhouY. Soy and isoflavone consumption and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomized trials in humans.Mol. Nutr. Food Res.2020644190075110.1002/mnfr.20190075131584249
    [Google Scholar]
  173. YangW.S. VaP. WongM.Y. ZhangH.L. XiangY.B. Soy intake is associated with lower lung cancer risk: results from a meta-analysis of epidemiologic studies.Am. J. Clin. Nutr.20119461575158310.3945/ajcn.111.02096622071712
    [Google Scholar]
  174. ChenL.R. ChenK.H. Utilization of isoflavones in soybeans for women with menopausal syndrome: An overview.Int. J. Mol. Sci.2021226321210.3390/ijms2206321233809928
    [Google Scholar]
  175. TousenY. TakebayashiJ. KondoT. FuchinoH. KawanoN. InuiT. YoshimatsuK. KawaharaN. IshimiY. Safety and efficacy assessment of isoflavones from Pueraria (kudzu) flower extract in ovariectomised mice: A comparison with soy isoflavones.Int. J. Mol. Sci.20192012286710.3390/ijms2012286731212773
    [Google Scholar]
  176. AboushanabS.A. KhedrS.M. GetteI.F. DanilovaI.G. KolbergN.A. RavishankarG.A. AmbatiR.R. KovalevaE.G. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation.Crit. Rev. Food Sci. Nutr.202112734251921
    [Google Scholar]
  177. KřížováL. DadákováK. KašparovskáJ. KašparovskýT. Isoflavones.Molecules2019246107610.3390/molecules2406107630893792
    [Google Scholar]
  178. RanjanA. RamachandranS. GuptaN. KaushikI. WrightS. SrivastavaS. DasH. SrivastavaS. PrasadS. SrivastavaS.K. Role of phytochemicals in cancer prevention.Int. J. Mol. Sci.20192020498110.3390/ijms2020498131600949
    [Google Scholar]
  179. BloedonL.T. JeffcoatA.R. LopaczynskiW. SchellM.J. BlackT.M. DixK.J. ThomasB.F. AlbrightC. BusbyM.G. CrowellJ.A. ZeiselS.H. Safety and pharmacokinetics of purified soy isoflavones: single-dose administration to postmenopausal women.Am. J. Clin. Nutr.20027651126113710.1093/ajcn/76.5.112612399289
    [Google Scholar]
  180. Wocławek-PotockaI. MannelliC. BoruszewskaD. Kowalczyk-ZiebaI. WaśniewskiT. SkarżyńskiD.J. Hindawi Publishing Corporation Diverse effects of phytoestrogens on the reproductive performance: Cow as a model.Int. J. Endocrinol.2013201311510.1155/2013/650984
    [Google Scholar]
  181. TestaI. SalvatoriC. Di CaraG. LatiniA. FratiF. TroianiS. PrincipiN. EspositoS. Soy-Based infant formula: Are phyto-oestrogens still in doubt?Front. Nutr.2018511010.3389/fnut.2018.0011030533415
    [Google Scholar]
  182. GoldwynS. LazinskyA. WeiH. Promotion of health by soy isoflavones: Efficacy, benefit and safety concerns.Drug Metabol. Drug Interact.2000171-426129010.1515/DMDI.2000.17.1‑4.26111201299
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673278897231229121524
Loading
/content/journals/cmc/10.2174/0109298673278897231229121524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test