- Home
- A-Z Publications
- Current Gene Therapy
- Previous Issues
- Volume 25, Issue 2, 2025
Current Gene Therapy - Volume 25, Issue 2, 2025
Volume 25, Issue 2, 2025
- Life Sciences, Genetics & Genomics, Molecular Medicine, Genetics & Heredity
-
-
-
Theranostic Potential of Bacteriophages against Oral Squamous Cell Carcinoma
More LessOral Squamous Cell Carcinoma (OSCC) is a widespread and challenging disease that accounts for 94% of cancers of the oral cavity worldwide. Bacteriophages (phages) have shown promise as a potential theranostic agent for the treatment of OSCC. It may offer advantages in overcoming the challenges of conventional methods. Modern high-throughput pyrosequencing techniques confirm the presence of specific bacterial strains associated with OSCC. Bio-panning and filamentous phages facilitate visualization of the peptide on surfaces and show high affinity in OSCC cells. The peptide has the potential to bind integrin (αvβ6), aid in diagnosis, and inhibit the proliferation of OSCC cells. Mimotopes of tumor-associated antigens show cytotoxic and immune responses against cancer cells. Biomarker-based approaches such as transferrin enable early OSCC diagnosis. A modified temperate phage introduces CRISPR-Cas3 to target antimicrobial-resistant bacteria associated with OSCC. The research findings highlight the evolving field of phage diagnostics and therapy and represent a new avenue for non-invasive, targeted approaches to the detection and treatment of OSCC. However, extensive clinical research is required to validate the efficacy of phages in innovative cancer theranostic strategies.
-
-
-
-
Lipid-Based Nanocarriers for Targeted Gene Delivery in Lung Cancer Therapy: Exploring a Novel Therapeutic Paradigm
Lung cancer is a significant cause of cancer-related death worldwide. It can be broadly categorised into small-cell lung cancer (SCLC) and Non-small cell lung cancer (NSCLC). Surgical intervention, radiation therapy, and the administration of chemotherapeutic medications are among the current treatment modalities. However, the application of chemotherapy may be limited in more advanced stages of metastasis due to the potential for adverse effects and a lack of cell selectivity. Although small-molecule anticancer treatments have demonstrated effectiveness, they still face several challenges. The challenges at hand in this context comprise insufficient solubility in water, limited bioavailability at specific sites, adverse effects, and the requirement for epidermal growth factor receptor inhibitors that are genetically tailored. Bio-macromolecular drugs, including small interfering RNA (siRNA) and messenger RNA (mRNA), are susceptible to degradation when exposed to the bodily fluids of humans, which can reduce stability and concentration. In this context, nanoscale delivery technologies are utilised. These agents offer encouraging prospects for the preservation and regulation of pharmaceutical substances, in addition to improving the solubility and stability of medications. Nanocarrier-based systems possess the notable advantage of facilitating accurate and sustained drug release, as opposed to traditional systemic methodologies. The primary focus of scientific investigation has been to augment the therapeutic efficacy of nanoparticles composed of lipids. Numerous nanoscale drug delivery techniques have been implemented to treat various respiratory ailments, such as lung cancer. These technologies have exhibited the potential to mitigate the limitations associated with conventional therapy. As an illustration, applying nanocarriers may enhance the solubility of small-molecule anticancer drugs and prevent the degradation of bio-macromolecular drugs. Furthermore, these devices can administer medications in a controlled and extended fashion, thereby augmenting the therapeutic intervention's effectiveness and reducing adverse reactions. However, despite these promising results, challenges remain that must be addressed. Multiple factors necessitate consideration when contemplating the application of nanoparticles in medical interventions. To begin with, the advancement of more efficient delivery methods is imperative. In addition, a comprehensive investigation into the potential toxicity of nanoparticles is required. Finally, additional research is needed to comprehend these treatments' enduring ramifications. Despite these challenges, the field of nanomedicine demonstrates considerable promise in enhancing the therapy of lung cancer and other respiratory diseases.
-
-
-
Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance in Cancer Cells
Radiotherapy (RT) is an integral part of treatment management in cancer patients. However, one of the limitations of this treatment method is the resistance of cancer cells to radiotherapy. These restrictions necessitate the introduction of modalities for the radiosensitization of cancer cells. It has been shown that Noncoding RNAs (ncRNAs), along with modifiers, can act as radiosensitivity and radioresistant regulators in a variety of cancers by affecting double strand break (DSB), wnt signaling, glycolysis, irradiation induced apoptosis, ferroptosis and cell autophagy. This review will provide an overview of the latest research on the roles and regulatory mechanisms of ncRNA after RT in in vitro and preclinical researches.
-
-
-
Significance of Ribonucleoside-diphosphate Reductase Subunit M2 in Lung Adenocarcinoma
Authors: Xiao-Jun Wang, Yun-Xia Huo, Peng-Jun Yang, Jing Gao and Wei-Dong HuIntroductionThe Ribonucleoside-diphosphate Reductase subunit M2 (RRM2) is known to be overexpressed in various cancers, though its specific functional implications remain unclear. This aims to elucidate the role of RRM2 in the progression of Lung Adenocarcinoma (LUAD) by exploring its involvement and potential impact.
MethodsRRM2 data were sourced from multiple databases to assess its diagnostic and prognostic significance in LUAD. We evaluated the association between RRM2 expression and immune cell infiltration, analyzed its function, and explored the effects of modulating RRM2 expression on LUAD cell characteristics through laboratory experiments.
ResultsRRM2 was significantly upregulated in LUAD tissues and cells compared to normal counterparts (p < 0.05), with rare genetic alterations noted (approximately 2%). This overexpression clearly distinguished LUAD from normal tissue (area under the curve (AUC): 0.963, 95% confidence intervals (CI): 0.946-0.981). Elevated RRM2 expression was significantly associated with adverse clinicopathological characteristics and poor prognosis in LUAD patients. Furthermore, a positive association was observed between RRM2 expression and immune cell infiltration. Pathway analysis revealed a critical connection between RRM2 and the cell cycle signaling pathway within LUAD. Targeting RRM2 inhibition effectively suppressed LUAD cell proliferation, migration, and invasion while promoting apoptosis. This intervention also modified the expression of several crucial proteins, including the downregulation of CDC25A, CDC25C, RAD1, Bcl-2, and PPM1D and the upregulation of TP53 and Bax (p < 0.05).
ConclusionOur findings highlight the potential utility of RRM2 expression as a biomarker for diagnosing and predicting prognosis in LUAD, shedding new light on the role of RRM2 in this malignancy.
-
-
-
SLC2A3 is a Potential Factor for Head and Neck Squamous Cancer Development through Tumor Microenvironment Alteration
More LessIntroductionTumor immunity has garnered increasing attention in cancer treatment and progression. However, there is still a challenge in understanding the mechanisms of specific molecules affecting the clinical prognosis and tumor microenvironment (TME).
MethodsHere, we applied the ESTIMATE algorithm to calculate the immune and stromal scores in 504 HNSC cases from TCGA. Patients were grouped according to the median value of the immune and stromal. Clinicopathological characteristics and differentially expressed genes (DEG) were analyzed. Subsequently, LASSO, COX regression, survival analysis, and clinicopathological characteristics were conducted. Subsequently, SLC2A3 was determined as a predictive factor that high expression of SLC2A3 at the mRNA and protein levels predicted a worse clinical prognosis. GSEA25099 was utilized for external validation of immune infiltration, while tissue PCR, IHC, and Western Blot were used to confirm the expression levels of SLC2A3.
ResultsA series of immune-infiltration analyses showed that SLC2A3 expression was negatively correlated with CD8+ T cells, significantly affecting the survival prognosis of HNSC. In the GSEA analysis, the high expression of SLC2A3 was mainly enriched for immune-related biological processes. Meanwhile, high expression of SLC2A3 possessed higher TIDE scores and was also strongly positively correlated with a series of immune checkpoints affecting survival prognosis, thus causing greater susceptibility to immune escape.
ConclusionConclusively, SLC2A3 is a potential oncogene and factor of HNSC development, notably by an altered state of the immune microenvironment, immune-suppressive regulation, and immune escape.
-
-
-
Single-cell and Bulk Transcriptomic Analyses Reveal a Stemness and Circadian Rhythm Disturbance-related Signature Predicting Clinical Outcome and Immunotherapy Response in Hepatocellular Carcinoma
Authors: Xiaojing Zhu, Zixin Zhang, Jiaxing Zhang, Yanqi Xiao, Hao Wang, Mingwei Wang, Minghui Jiang and Yan XuAimsInvestigating the impact of stemness-related circadian rhythm disruption (SCRD) on hepatocellular carcinoma (HCC) prognosis and its potential as a predictor for immunotherapy response.
BackgroundCircadian disruption has been linked to tumor progression through its effect on the stemness of cancer cells.
ObjectiveDevelop a novel signature for SCRD to accurately predict clinical outcomes and immune therapy response in patients with HCC.
MethodsThe stemness degree of patients with HCC was assessed based on the stemness index (mRNAsi). The co-expression circadian genes significantly correlated with mRNAsi were identified and defined as stemness- and circadian-related genes (SCRGs). The SCRD scores of samples and cells were calculated based on the SCRGs. Differentially expressed genes with a prognostic value between distinct SCRD groups were identified in bulk and single-cell datasets to develop an SCRD signature.
ResultsA higher SCRD score indicates a worse patient survival rate. Analysis of the tumor microenvironment revealed a significant correlation between SCRD and infiltrating immune cells. Heterogeneous expression patterns, functional states, genomic variants, and cell-cell interactions between two SCRD populations were revealed by transcriptomic, genomic, and interaction analyses. The robust SCRD signature for predicting immunotherapy response and prognosis in patients with HCC was developed and validated in multiple independent cohorts.
ConclusionIn summary, distinct tumor immune microenvironment patterns were confirmed under SCRD in bulk and single-cell transcriptomic, and SCRD signature associated with clinical outcomes and immunotherapy response was developed and validated in HCC.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
New Hope for Intervertebral Disc Degeneration: Bone Marrow Mesenchymal Stem Cells and Exosomes Derived from Bone Marrow Mesenchymal Stem Cell Transplantation
Authors: Xiao-bo Zhang, Xiang-yi Chen, Jin Qi, Hai-yu Zhou, Xiao-bing Zhao, Yi-cun Hu, Rui-hao Zhang, De-chen Yu, Xi-dan Gao, Ke-ping Wang and Lin Ma
-
- More Less