Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Introduction

The Ribonucleoside-diphosphate Reductase subunit M2 (RRM2) is known to be overexpressed in various cancers, though its specific functional implications remain unclear. This aims to elucidate the role of RRM2 in the progression of Lung Adenocarcinoma (LUAD) by exploring its involvement and potential impact.

Methods

RRM2 data were sourced from multiple databases to assess its diagnostic and prognostic significance in LUAD. We evaluated the association between RRM2 expression and immune cell infiltration, analyzed its function, and explored the effects of modulating RRM2 expression on LUAD cell characteristics through laboratory experiments.

Results

RRM2 was significantly upregulated in LUAD tissues and cells compared to normal counterparts ( < 0.05), with rare genetic alterations noted (approximately 2%). This overexpression clearly distinguished LUAD from normal tissue (area under the curve (AUC): 0.963, 95% confidence intervals (CI): 0.946-0.981). Elevated RRM2 expression was significantly associated with adverse clinicopathological characteristics and poor prognosis in LUAD patients. Furthermore, a positive association was observed between RRM2 expression and immune cell infiltration. Pathway analysis revealed a critical connection between RRM2 and the cell cycle signaling pathway within LUAD. Targeting RRM2 inhibition effectively suppressed LUAD cell proliferation, migration, and invasion while promoting apoptosis. This intervention also modified the expression of several crucial proteins, including the downregulation of CDC25A, CDC25C, RAD1, Bcl-2, and PPM1D and the upregulation of TP53 and Bax ( < 0.05).

Conclusion

Our findings highlight the potential utility of RRM2 expression as a biomarker for diagnosing and predicting prognosis in LUAD, shedding new light on the role of RRM2 in this malignancy.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232286359240611051307
2025-04-01
2024-11-21
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statisticsCA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature2518329364287
    [Google Scholar]
  3. LamortA.S. KaiserJ.C. PepeM.A.A. LilisI. NtaliardaG. SomogyiK. SpellaM. BehrendS.J. GiotopoulouG.A. KujawaW. LindnerM. KochI. HatzR.A. BehrJ. SotilloR. SchambergerA.C. StathopoulosG.T. Prognostic phenotypes of early-stage lung adenocarcinoma.Eur. Respir. J.20226012101674Available from: https://erj.ersjournals.com/content/60/1/2101674 10.1183/13993003.01674‑202134887322
    [Google Scholar]
  4. VokesN.I. PanK. LeX. Efficacy of immunotherapy in oncogene-driven non-small-cell lung cancer.Ther. Adv. Med. Oncol.2023151758835923116140910.1177/1758835923116140936950275
    [Google Scholar]
  5. LahiriA. MajiA. PotdarP.D. SinghN. ParikhP. BishtB. MukherjeeA. PaulM.K. Lung cancer immunotherapy: Progress, pitfalls, and promises.Mol. Cancer20232214010.1186/s12943‑023‑01740‑y36810079
    [Google Scholar]
  6. SantarpiaM. AguilarA. ChaibI. CardonaA.F. FancelliS. LaguiaF. BrachtJ.W.P. CaoP. VilaM.M.A. KarachaliouN. RosellR. Non-small-cell lung cancer signaling pathways, metabolism, and PD-1/PD-L1 antibodies.Cancers2020126147510.3390/cancers1206147532516941
    [Google Scholar]
  7. YangS.R. SchultheisA.M. YuH. MandelkerD. LadanyiM. BüttnerR. Precision medicine in non-small cell lung cancer: Current applications and future directions.Semin. Cancer Biol.20228418419810.1016/j.semcancer.2020.07.00932730814
    [Google Scholar]
  8. XieB. ChenX. DengQ. ShiK. XiaoJ. ZouY. YangB. GuanA. YangS. DaiZ. XieH. HeS. ChenQ. Development and validation of a prognostic nomogram for lung adenocarcinoma: A population-based study.J. Healthc. Eng.2022202211310.1155/2022/569858236536690
    [Google Scholar]
  9. BlonsH. GarinetS. PuigL.P. OudartJ.B. Molecular markers and prediction of response to immunotherapy in non-small cell lung cancer, an update.J. Thorac. Dis.201911S1S25S36Available from: https://jtd.amegroups.org/article/view/26414/19776 10.21037/jtd.2018.12.4830775025
    [Google Scholar]
  10. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  11. FeitelsonM.A. ArzumanyanA. KulathinalR.J. BlainS.W. HolcombeR.F. MahajnaJ. MarinoM. ChantarM.M.L. NawrothR. GarciaS.I. SharmaD. SaxenaN.K. SinghN. VlachostergiosP.J. GuoS. HonokiK. FujiiH. GeorgakilasA.G. BilslandA. AmedeiA. NiccolaiE. AminA. AshrafS.S. BoosaniC.S. GuhaG. CirioloM.R. AquilanoK. ChenS. MohammedS.I. AzmiA.S. BhaktaD. HalickaD. KeithW.N. NowsheenS. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets.Semin. Cancer Biol.201535S1S25S5410.1016/j.semcancer.2015.02.00625892662
    [Google Scholar]
  12. ZhangB.N. VenegasB.A. HicksonI.D. ChuW.K. DNA replication stress and its impact on chromosome segregation and tumorigenesis.Semin. Cancer Biol.201955616910.1016/j.semcancer.2018.04.00529692334
    [Google Scholar]
  13. TanJ. ChenF. OuyangB. LiX. ZhangW. GaoX. CDCA4 as a novel molecular biomarker of poor prognosis in patients with lung adenocarcinoma.Front. Oncol.20221286575610.3389/fonc.2022.86575636185189
    [Google Scholar]
  14. YangY. CuiH. LiD. GaoY. ChenL. ZhouC. FengM. TuW. LiS. ChenX. HaoB. LiL. CaoY. Prognosis and immunological characteristics of PGK1 in lung adenocarcinoma: A systematic analysis.Cancers20221421522810.3390/cancers1421522836358653
    [Google Scholar]
  15. ZhanY. JiangL. JinX. YingS. WuZ. WangL. YuW. TongJ. ZhangL. LouY. QiuY. Inhibiting RRM2 to enhance the anticancer activity of chemotherapy.Biomed. Pharmacother.202113311099610.1016/j.biopha.2020.11099633227712
    [Google Scholar]
  16. WiśniewskaK.A. BuchholzK. DługoszN.I. DurślewiczJ. GrzankaD. ZabrzyńskiJ. SopońskaP. GrzankaA. GagatM. Expression of genomic instability-related molecules: Cyclin F, RRM2 and SPDL1 and their prognostic significance in pancreatic adenocarcinoma.Cancers202113485910.3390/cancers1304085933670609
    [Google Scholar]
  17. ZhouZ. SongQ. YangY. WangL. WuZ. Comprehensive landscape of RRM2 with immune infiltration in pan-cancer.Cancers20221412293810.3390/cancers1412293835740608
    [Google Scholar]
  18. XiongW. ZhangB. YuH. ZhuL. YiL. JinX. RRM2 regulates sensitivity to sunitinib and PD-1 blockade in renal cancer by stabilizing ANXA1 and activating the AKT pathway.Adv. Sci.2021818210088110.1002/advs.20210088134319001
    [Google Scholar]
  19. TangB. XuW. WangY. ZhuJ. WangH. TuJ. WengQ. KongC. YangY. QiuR. ZhaoZ. XuM. JiJ. Identification of critical ferroptosis regulators in lung adenocarcinoma that RRM2 facilitates tumor immune infiltration by inhibiting ferroptotic death.Clin. Immunol.202123210887210.1016/j.clim.2021.10887234648954
    [Google Scholar]
  20. LeiG. ZhuangL. GanB. Targeting ferroptosis as a vulnerability in cancer.Nat. Rev. Cancer2022227381396Available from: https://www.nature.com/articles/s41568-022-00459-0 10.1038/s41568‑022‑00459‑035338310
    [Google Scholar]
  21. JinC.Y. DuL. NuerlanA.H. WangX.L. YangY.W. GuoR. High expression of RRM2 as an independent predictive factor of poor prognosis in patients with lung adenocarcinoma.Aging20211333518353510.18632/aging.20229233411689
    [Google Scholar]
  22. MaC. LuoH. CaoJ. GaoC. FaX. WangG. Independent prognostic implications of RRM2 in lung adenocarcinoma.J. Cancer2020112370097022Available from: https://www.jcancer.org/v11p7009.htm 10.7150/jca.4789533123291
    [Google Scholar]
  23. JiangX. LiY. ZhangN. GaoY. HanL. LiS. LiJ. LiuX. GongY. XieC. RRM2 silencing suppresses malignant phenotype and enhances radiosensitivity via activating cGAS/STING signaling pathway in lung adenocarcinoma.Cell Biosci.20211117410.1186/s13578‑021‑00586‑533858512
    [Google Scholar]
  24. DengB. XiangJ. LiangZ. LuoL. Identification and validation of a ferroptosis-related gene to predict survival outcomes and the immune microenvironment in lung adenocarcinoma.Cancer Cell Int.202222129210.1186/s12935‑022‑02699‑436153508
    [Google Scholar]
  25. GoldmanM.J. ZhangJ. FonsecaN.A. CirianoC.I. XiangQ. CraftB. YáñezP.E. O’ConnorB.D. BazantW. BarreraE. PomerM.A. PetryszakR. FüllgrabeA. ShahrourA.F. KeaysM. HausslerD. WeinsteinJ.N. HuberW. ValenciaA. ParkP.J. PapatheodorouI. ZhuJ. FerrettiV. VazquezM. A user guide for the online exploration and visualization of PCAWG data.Nat. Commun.2020111340010.1038/s41467‑020‑16785‑632636365
    [Google Scholar]
  26. VivianJ. RaoA.A. NothaftF.A. KetchumC. ArmstrongJ. NovakA. PfeilJ. NarkizianJ. DeranA.D. BrownM.A. SchmidtH. AmstutzP. CraftB. GoldmanM. RosenbloomK. ClineM. O’ConnorB. HannaM. BirgerC. KentW.J. PattersonD.A. JosephA.D. ZhuJ. ZaranekS. GetzG. HausslerD. PatenB. Toil enables reproducible, open source, big biomedical data analyses.Nat. Biotechnol.201735431431610.1038/nbt.377228398314
    [Google Scholar]
  27. FangH. ShengS. ChenB. WangJ. MaoD. HanY. LiuY. WangX. GuiS. ZhangT. ZhangL. LiC. HuX. DengW. LiuX. XuH. XuW. WangX. LiuR. KongW. A pan-cancer analysis of the oncogenic role of cell division cycle-associated protein 4 (CDCA4) in human tumors.Front. Immunol.20221382633710.3389/fimmu.2022.82633735251007
    [Google Scholar]
  28. ZhangY. ChenF. ChandrashekarD.S. VaramballyS. CreightonC.J. Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways.Nat. Commun.2022131266910.1038/s41467‑022‑30342‑335562349
    [Google Scholar]
  29. GaoJ. AksoyB.A. DogrusozU. DresdnerG. GrossB. SumerS.O. SunY. JacobsenA. SinhaR. LarssonE. CeramiE. SanderC. SchultzN. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci. Signal.20136269pl110.1126/scisignal.200408823550210
    [Google Scholar]
  30. CuiX. ZhangX. LiuM. ZhaoC. ZhangN. RenY. SuC. ZhangW. SunX. HeJ. GaoX. YangJ. A pan-cancer analysis of the oncogenic role of staphylococcal nuclease domain-containing protein 1 (SND1) in human tumors.Genomics202011263958396710.1016/j.ygeno.2020.06.04432645525
    [Google Scholar]
  31. LiuJ. LichtenbergT. HoadleyK.A. PoissonL.M. LazarA.J. CherniackA.D. KovatichA.J. BenzC.C. LevineD.A. LeeA.V. OmbergL. WolfD.M. ShriverC.D. ThorssonV. HuH. JohnsonC.S.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. VegaS.F. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbroE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. FilhoL.A. ReisR.M. NetoS.C. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. SloanB.J.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. Angulo GonzalezA.M. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. Mora PineroE.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. CampbellF.J.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics.Cell20181732400416.e1110.1016/j.cell.2018.02.05229625055
    [Google Scholar]
  32. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. CepasH.J. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  33. LiC. TangZ. ZhangW. YeZ. LiuF. GEPIA2021: Integrating multiple deconvolution-based analysis into GEPIA.Nucleic Acids Res.202149W1W242W24610.1093/nar/gkab41834050758
    [Google Scholar]
  34. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  35. WangX.J. GaoJ. WangZ. YuQ. Identification of a potentially functional microRNA–mRNA regulatory network in lung adenocarcinoma using a bioinformatics analysis.Front. Cell Dev. Biol.2021964184010.3389/fcell.2021.64184033681226
    [Google Scholar]
  36. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci.200510243155451555010.1073/pnas.050658010216199517
    [Google Scholar]
  37. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  38. BarbieD.A. TamayoP. BoehmJ.S. KimS.Y. MoodyS.E. DunnI.F. SchinzelA.C. SandyP. MeylanE. SchollC. FröhlingS. ChanE.M. SosM.L. MichelK. MermelC. SilverS.J. WeirB.A. ReilingJ.H. ShengQ. GuptaP.B. WadlowR.C. LeH. HoerschS. WittnerB.S. RamaswamyS. LivingstonD.M. SabatiniD.M. MeyersonM. ThomasR.K. LanderE.S. MesirovJ.P. RootD.E. GillilandD.G. JacksT. HahnW.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature20094627269108112Available from: https://www.nature.com/articles/nature08460 10.1038/nature0846019847166
    [Google Scholar]
  39. WangX. DuanmuJ. FuX. LiT. JiangQ. Analyzing and validating the prognostic value and mechanism of colon cancer immune microenvironment.J. Transl. Med.202018132410.1186/s12967‑020‑02491‑w32859214
    [Google Scholar]
  40. XiaS. LinY. LinJ. LiX. TanX. HuangZ. Increased expression of TICRR predicts poor clinical outcomes: A potential therapeutic target for papillary renal cell carcinoma.Front. Genet.20211160537810.3389/fgene.2020.60537833505430
    [Google Scholar]
  41. BindeaG. MlecnikB. TosoliniM. KirilovskyA. WaldnerM. ObenaufA.C. AngellH. FredriksenT. LafontaineL. BergerA. BrunevalP. FridmanW.H. BeckerC. PagèsF. SpeicherM.R. TrajanoskiZ. GalonJ. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.Immunity201339478279510.1016/j.immuni.2013.10.00324138885
    [Google Scholar]
  42. LiW. XuL. CaoJ. GeJ. LiuX. LiuP. TengY. WangS. SunY. LiuM. TianL. DACH1 regulates macrophage activation and tumour progression in hypopharyngeal squamous cell carcinoma.Immunology2023170225326910.1111/imm.1366737243970
    [Google Scholar]
  43. CaoX. XueF. ChenH. ShenL. YuanX. YuY. ZongY. ZhongL. HuangF. MiR-202-3p inhibits the proliferation and metastasis of lung adenocarcinoma cells by targeting RRM2.Ann. Transl. Med.202210241374Available from: https://atm.amegroups.org/article/view/107046/html 10.21037/atm‑22‑608936660663
    [Google Scholar]
  44. BokhariA.A. LaiW-Y. LeA.T. GabreJ.L. ChuangT-P. FranssonS. BergmanB. DjosA. ChenN. MartinssonT. Van den EyndenJ. DoebeleR.C. PalmerR.H. HallbergB. UmapathyG. Novel human-derived EML4-ALK fusion cell lines identify ribonucleotide reductase RRM2 as a target of activated ALK in NSCLC.Lung Cancer202217110311410.1016/j.lungcan.2022.07.01035933914
    [Google Scholar]
  45. LeeS.K. HwangY. HanJ.H. HaamS. LeeH.W. KohY.W. Characteristics of the immune microenvironment associated with RRM2 expression and its application to PD-L1/PD-1 inhibitors in lung adenocarcinoma.Am. J. Cancer Res.2023131154435454Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695782/ 38058821
    [Google Scholar]
  46. LinX. ZhouM. XuZ. ChenY. LinF. Bioinformatics study on genes related to a high-risk postoperative recurrence of lung adenocarcinoma.Sci. Prog.202110430036850421101805310.1177/0036850421101805334304612
    [Google Scholar]
  47. ChengW.C. ChangC.Y. LoC.C. HsiehC.Y. KuoT.T. TsengG.C. WongS.C. ChiangS.F. HuangK.C.Y. LaiL.C. LuT.P. ChaoK.S.C. SherY.P. Identification of theranostic factors for patients developing metastasis after surgery for early-stage lung adenocarcinoma.Theranostics202111836613675Available from: https://www.thno.org/v11p3661.htm 10.7150/thno.5317633664854
    [Google Scholar]
  48. LiH.L. WangJ.X. DaiH.W. LiuJ.J. LiuZ.Y. ZouM.Y. ZhangL. WangW.R. Prognostic prediction value and biological functions of non-apoptotic regulated cell death genes in lung adenocarcinoma.Chin. Med. Sci. J.2023383178190Available from: http://cmsj.cams.cn/EN/10.24920/004222 37622313
    [Google Scholar]
  49. JiangY. HuX. PangM. HuangY. RenB. HeL. JiangL. RRM2-mediated Wnt/β-catenin signaling pathway activation in lung adenocarcinoma: A potential prognostic biomarker.Oncol. Lett.202326441710.3892/ol.2023.1400337664657
    [Google Scholar]
  50. LiuK. WangL. LouZ. GuoL. XuY. QiH. FangZ. MeiL. ChenX. ZhangX. ShaoJ. XiangX. E2F8 exerts cancer-promoting effects by transcriptionally activating RRM2 and E2F8 knockdown synergizes with WEE1 inhibition in suppressing lung adenocarcinoma.Biochem. Pharmacol.202321811585410.1016/j.bcp.2023.11585437863324
    [Google Scholar]
  51. PaulS. LalG. Regulatory and effector functions of gamma–delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer.Int. J. Cancer2016139597698510.1002/ijc.3010927012367
    [Google Scholar]
  52. FridmanW.H. PagèsF. FridmanS.C. GalonJ. The immune contexture in human tumours: Impact on clinical outcome.Nat. Rev. Cancer201212429830610.1038/nrc324522419253
    [Google Scholar]
  53. HongS. QianJ. YangJ. LiH. KwakL.W. YiQ. Roles of idiotype-specific t cells in myeloma cell growth and survival: Th1 and CTL cells are tumoricidal while Th2 cells promote tumor growth.Cancer Res.200868208456846410.1158/0008‑5472.CAN‑08‑221318922919
    [Google Scholar]
  54. SultanaN. ElfordH.L. FaridiJ.S. Targeting the cell cycle, RRM2 and NF-κB for the treatment of breast cancers.Cancers202416597510.3390/cancers1605097538473336
    [Google Scholar]
  55. ZuoZ. ZhouZ. ChangY. LiuY. ShenY. LiQ. ZhangL. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer.Genes Dis.202411121823310.1016/j.gendis.2022.11.02237588202
    [Google Scholar]
  56. ChengB. LiL. WuY. LuoT. TangC. WangQ. ZhouQ. WuJ. LaiY. ZhuD. DuT. HuangH. The key cellular senescence related molecule RRM2 regulates prostate cancer progression and resistance to docetaxel treatment.Cell Biosci.202313121110.1186/s13578‑023‑01157‑637968699
    [Google Scholar]
  57. QinZ. XieB. QianJ. MaX. ZhangL. WeiJ. WangZ. FanL. ZhuZ. QianZ. YinH. ZhuF. TanY. Over-expression of RRM2 predicts adverse prognosis correlated with immune infiltrates: A potential biomarker for hepatocellular carcinoma.Front. Oncol.202313114426910.3389/fonc.2023.114426937056349
    [Google Scholar]
  58. GriesshammerM. WilleK. SadjadianP. StegelmannF. DöhnerK. A review of hydroxyurea-related cutaneous adverse events.Expert Opin. Drug Saf.202120121515152110.1080/14740338.2021.194503234181494
    [Google Scholar]
  59. AspertiM. CantamessaL. GhidinelliS. GryzikM. DenardoA. GiacominiA. LonghiG. FanzaniA. ArosioP. PoliM. The antitumor didox acts as an iron chelator in hepatocellular carcinoma cells.Pharmaceuticals201912312910.3390/ph1203012931480699
    [Google Scholar]
  60. FontecaveM. LepoivreM. ElleingandE. GerezC. GuittetO. Resveratrol, a remarkable inhibitor of ribonucleotide reductase.FEBS Lett.1998421327727910.1016/S0014‑5793(97)01572‑X9468322
    [Google Scholar]
  61. WilsonM.B. SchreinerS.J. ChoiH.J. KamensJ. SmithgallT.E. Selective pyrrolo-pyrimidine inhibitors reveal a necessary role for Src family kinases in Bcr–Abl signal transduction and oncogenesis.Oncogene2002215380758088Available from: https://www.nature.com/articles/1206008 10.1038/sj.onc.120600812444544
    [Google Scholar]
  62. MannargudiM.B. DebS. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: Is it a viable cancer therapy?J. Cancer Res. Clin. Oncol.201714381499152910.1007/s00432‑017‑2457‑828624910
    [Google Scholar]
  63. AimiuwuJ. WangH. ChenP. XieZ. WangJ. LiuS. KlisovicR. MimsA. BlumW. MarcucciG. ChanK.K. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia.Blood2012119225229523810.1182/blood‑2011‑11‑38222622517893
    [Google Scholar]
  64. ChenP. WuJ.N. ShuY. JiangH.G. ZhaoX.H. QianH. ChenK. LanT. ChenC.G. LiJ. Gemcitabine resistance mediated by ribonucleotide reductase M2 in lung squamous cell carcinoma is reversed by GW8510 through autophagy induction.Clin. Sci.2018132131417143310.1042/CS2018001029853661
    [Google Scholar]
  65. PasqualettiG. RicciardiS. MeyV. Del TaccaM. DanesiR. Synergistic cytotoxicity, inhibition of signal transduction pathways and pharmacogenetics of sorafenib and gemcitabine in human NSCLC cell lines.Lung Cancer201174219720510.1016/j.lungcan.2011.03.00321529991
    [Google Scholar]
  66. ChenC.W. LiY. HuS. ZhouW. MengY. LiZ. ZhangY. SunJ. BoZ. DePamphilisM.L. YenY. HanZ. ZhuW. DHS (trans−4,4′-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2).Oncogene201938132364237910.1038/s41388‑018‑0584‑630518875
    [Google Scholar]
  67. ZhangH. LiuX. WardenC.D. HuangY. LoeraS. XueL. ZhangS. ChuP. ZhengS. YenY. Prognostic and therapeutic significance of ribonucleotide reductase small subunit M2 in estrogen-negative breast cancers.BMC Cancer201414166410.1186/1471‑2407‑14‑66425213022
    [Google Scholar]
  68. TangQ. WuL. XuM. YanD. ShaoJ. YanS. Osalmid, a novel identified RRM2 inhibitor, enhances radiosensitivity of esophageal cancer.Int. J. Radiat. Oncol. Biol. Phys.202010851368137910.1016/j.ijrobp.2020.07.232232763454
    [Google Scholar]
  69. WuZ. ZhanY. WangL. TongJ. ZhangL. LinM. JinX. JiangL. LouY. QiuY. Identification of osalmid metabolic profile and active metabolites with anti-tumor activity in human hepatocellular carcinoma cells.Biomed. Pharmacother.202013011055610.1016/j.biopha.2020.11055632763815
    [Google Scholar]
  70. MaX. FuT. KeZ.Y. DuS.L. WangX.C. ZhouN. ZhongM.Y. LiuY.J. LiangA.L. MiR-17- 5p/RRM2 regulated gemcitabine resistance in lung cancer A549 cells.Cell Cycle202322111367137910.1080/15384101.2023.220724737115505
    [Google Scholar]
  71. KhanS. SetuaS. KumariS. DanN. MasseyA. HafeezB.B. YallapuM.M. StilesZ.E. AlabkaaA. YueJ. GanjuA. BehrmanS. JaggiM. ChauhanS.C. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer.Biomaterials2019208839710.1016/j.biomaterials.2019.04.00530999154
    [Google Scholar]
  72. ZhengS. WangX. WengY.H. JinX. JiJ.L. GuoL. HuB. LiuN. ChengQ. ZhangJ. BaiH. YangT. XiaX.H. ZhangH.Y. GaoS. HuangY. siRNA knockdown of RRM2 effectively suppressed pancreatic tumor growth alone or synergistically with doxorubicin.Mol. Ther. Nucleic Acids20181280581610.1016/j.omtn.2018.08.00330153565
    [Google Scholar]
  73. WangH. HeX. ZhangL. DongH. HuangF. XianJ. LiM. ChenW. LuX. PathakK.V. HuangW. LiZ. ZhangL. NguyenL.X.T. YangL. FengL. GordonD.J. ZhangJ. PirrotteP. ChenC.W. SalhotraA. KuoY.H. HorneD. MarcucciG. SykesD.B. TizianiS. JinH. WangX. LiL. Disruption of dNTP homeostasis by ribonucleotide reductase hyperactivation overcomes AML differentiation blockade.Blood20221392637523770Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247363/ 10.1182/blood.202101510835439288
    [Google Scholar]
  74. WangS. WangR. HuD. ZhangC. CaoP. HuangJ. Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy.NPJ Precis. Oncol.2024814910.1038/s41698‑024‑00538‑538409471
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232286359240611051307
Loading
/content/journals/cgt/10.2174/0115665232286359240611051307
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test