Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Introduction

Tumor immunity has garnered increasing attention in cancer treatment and progression. However, there is still a challenge in understanding the mechanisms of specific molecules affecting the clinical prognosis and tumor microenvironment (TME).

Methods

Here, we applied the ESTIMATE algorithm to calculate the immune and stromal scores in 504 HNSC cases from TCGA. Patients were grouped according to the median value of the immune and stromal. Clinicopathological characteristics and differentially expressed genes (DEG) were analyzed. Subsequently, LASSO, COX regression, survival analysis, and clinicopathological characteristics were conducted. Subsequently, SLC2A3 was determined as a predictive factor that high expression of SLC2A3 at the mRNA and protein levels predicted a worse clinical prognosis. GSEA25099 was utilized for external validation of immune infiltration, while tissue PCR, IHC, and Western Blot were used to confirm the expression levels of SLC2A3.

Results

A series of immune-infiltration analyses showed that SLC2A3 expression was negatively correlated with CD8+ T cells, significantly affecting the survival prognosis of HNSC. In the GSEA analysis, the high expression of SLC2A3 was mainly enriched for immune-related biological processes. Meanwhile, high expression of SLC2A3 possessed higher TIDE scores and was also strongly positively correlated with a series of immune checkpoints affecting survival prognosis, thus causing greater susceptibility to immune escape.

Conclusion

Conclusively, SLC2A3 is a potential oncogene and factor of HNSC development, notably by an altered state of the immune microenvironment, immune-suppressive regulation, and immune escape.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232291300240509104344
2025-04-01
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cgt/25/2/CGT-25-2-05.html?itemId=/content/journals/cgt/10.2174/0115665232291300240509104344&mimeType=html&fmt=ahah

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. WondergemN.E. NautaI.H. MuijlwijkT. LeemansC.R. van de VenR. The immune microenvironment in head and neck squamous cell carcinoma: On subsets and subsites.Curr. Oncol. Rep.2020228819510.1007/s11912‑020‑00938‑332602047
    [Google Scholar]
  3. WoodS.L. PernemalmM. CrosbieP.A. WhettonA.D. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets.Cancer Treat. Rev.201440455856610.1016/j.ctrv.2013.10.00124176790
    [Google Scholar]
  4. XiaoY. YuD. Tumor microenvironment as a therapeutic target in cancer.Pharmacol. Ther.20212211010775310.1016/j.pharmthera.2020.10775333259885
    [Google Scholar]
  5. PittJ.M. MarabelleA. EggermontA. SoriaJ.C. KroemerG. ZitvogelL. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy.Ann. Oncol.20162781482149210.1093/annonc/mdw16827069014
    [Google Scholar]
  6. QuailD.F. JoyceJ.A. Microenvironmental regulation of tumor progression and metastasis.Nat. Med.201319111423143710.1038/nm.339424202395
    [Google Scholar]
  7. BruniD. AngellH.K. GalonJ. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy.Nat. Rev. Cancer2020201166268010.1038/s41568‑020‑0285‑732753728
    [Google Scholar]
  8. St PaulM. OhashiP.S. The roles of CD8+ T cell subsets in antitumor immunity.Trends Cell Biol.202030969570410.1016/j.tcb.2020.06.00332624246
    [Google Scholar]
  9. RahimM.K. OkholmT.L.H. JonesK.B. McCarthyE.E. LiuC.C. YeeJ.L. TamakiS.J. MarquezD.M. TenvoorenI. WaiK. CheungA. DavidsonB.R. JohriV. SamadB. O’GormanW.E. KrummelM.F. van ZanteA. CombesA.J. AngeloM. FongL. AlgaziA.P. HaP. SpitzerM.H. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes.Cell2023186611271143.e1810.1016/j.cell.2023.02.02136931243
    [Google Scholar]
  10. Reina-CamposM. ScharpingN.E. GoldrathA.W. CD8+ T cell metabolism in infection and cancer.Nat. Rev. Immunol.2021211171873810.1038/s41577‑021‑00537‑833981085
    [Google Scholar]
  11. FengZ. BethmannD. KapplerM. MerinoB.C. EckertA. BellR.B. ChengA. BuiT. LeidnerR. UrbaW.J. JohnsonK. HoytC. BifulcoC.B. BukurJ. WickenhauserC. SeligerB. FoxB.A. Multiparametric immune profiling in HPV– oral squamous cell cancer.JCI Insight2017214e9365210.1172/jci.insight.9365228724788
    [Google Scholar]
  12. EberhardtC.S. KissickH.T. PatelM.R. CardenasM.A. ProkhnevskaN. ObengR.C. NastiT.H. GriffithC.C. ImS.J. WangX. ShinD.M. CarringtonM. ChenZ.G. SidneyJ. SetteA. SabaN.F. WielandA. AhmedR. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer.Nature2021597787527928410.1038/s41586‑021‑03862‑z34471285
    [Google Scholar]
  13. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. GarciaT.W. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  14. WongR.S.Y. Apoptosis in cancer: From pathogenesis to treatment.J. Exp. Clin. Cancer Res.20113018710010.1186/1756‑9966‑30‑8721943236
    [Google Scholar]
  15. NoyR. PollardJ.W. Tumor-associated macrophages: From mechanisms to therapy.Immunity2014411496110.1016/j.immuni.2014.06.01025035953
    [Google Scholar]
  16. BaderJ.E. VossK. RathmellJ.C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy.Mol. Cell20207861019103310.1016/j.molcel.2020.05.03432559423
    [Google Scholar]
  17. De PalmaM. LewisC.E. Macrophage regulation of tumor responses to anticancer therapies.Cancer Cell201323327728610.1016/j.ccr.2013.02.01323518347
    [Google Scholar]
  18. GunassekaranG.R. VadevooP.S.M. BaekM.C. LeeB. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages.Biomaterials2021278812113710.1016/j.biomaterials.2021.12113734560422
    [Google Scholar]
  19. GaoJ. LiangY. WangL. Shaping polarization of tumor-associated macrophages in cancer immunotherapy.Front. Immunol.202213388871310.3389/fimmu.2022.88871335844605
    [Google Scholar]
  20. FolkmanJ. Angiogenesis and apoptosis.Semin. Cancer Biol.200313215916710.1016/S1044‑579X(02)00133‑512654259
    [Google Scholar]
  21. TongX. TangR. XiaoM. XuJ. WangW. ZhangB. LiuJ. YuX. ShiS. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research.J. Hematol. Oncol.202215117418810.1186/s13045‑022‑01392‑336482419
    [Google Scholar]
  22. ArnerE.N. RathmellJ.C. Metabolic programming and immune suppression in the tumor microenvironment.Cancer Cell202341342143310.1016/j.ccell.2023.01.00936801000
    [Google Scholar]
  23. ChenY. SongY. DuW. GongL. ChangH. ZouZ. Tumor-associated macrophages: An accomplice in solid tumor progression.J. Biomed. Sci.20192617810010.1186/s12929‑019‑0568‑z31629410
    [Google Scholar]
  24. XiaL. OyangL. LinJ. TanS. HanY. WuN. YiP. TangL. PanQ. RaoS. LiangJ. TangY. SuM. LuoX. YangY. ShiY. WangH. ZhouY. LiaoQ. The cancer metabolic reprogramming and immune response.Mol. Cancer2021201284910.1186/s12943‑021‑01316‑833546704
    [Google Scholar]
  25. ChenC. WangZ. DingY. QinY. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma.Front. Immunol.2023144113330810.3389/fimmu.2023.113330836845131
    [Google Scholar]
  26. AlonsoM.H. AussóS. DorigaL.A. CorderoD. GuinóE. SoléX. BarenysM. de OcaJ. CapellaG. SalazarR. PamplonaS.R. MorenoV. Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component.Br. J. Cancer2017117342143110.1038/bjc.2017.20828683472
    [Google Scholar]
  27. LiT. FuJ. ZengZ. CohenD. LiJ. ChenQ. LiB. LiuX.S. TIMER2.0 for analysis of tumor-infiltrating immune cells.Nucleic Acids Res.202048W1W509W51410.1093/nar/gkaa40732442275
    [Google Scholar]
  28. XiangS. LiJ. ShenJ. ZhaoY. WuX. LiM. YangX. KaboliP.J. DuF. ZhengY. WenQ. ChoC.H. YiT. XiaoZ. Identification of prognostic genes in the tumor microenvironment of hepatocellular carcinoma.Front. Immunol.2021121065383610.3389/fimmu.2021.65383633897701
    [Google Scholar]
  29. ZhengX. MaY. BaiY. HuangT. LvX. DengJ. WangZ. LianW. TongY. ZhangX. YueM. ZhangY. LiL. PengM. Identification and validation of immunotherapy for four novel clusters of colorectal cancer based on the tumor microenvironment.Front. Immunol.202213598448010.3389/fimmu.2022.98448036389763
    [Google Scholar]
  30. FaneM. WeeraratnaA.T. How the ageing microenvironment influences tumour progression.Nat. Rev. Cancer20202028910610.1038/s41568‑019‑0222‑931836838
    [Google Scholar]
  31. ChengP. MaJ. ZhengX. ZhouC. ChenX. Bioinformatic profiling identifies prognosis-related genes in the immune microenvironment of endometrial carcinoma.Sci. Rep.20211111260810.1038/s41598‑021‑92091‑534131259
    [Google Scholar]
  32. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  33. ZieglerG.C. AlmosP. McNeillR.V. JanschC. LeschK.P. Cellular effects and clinical implications of SLC2A3 copy number variation.J. Cell. Physiol.2020235129021903610.1002/jcp.2975332372501
    [Google Scholar]
  34. XiangJ. ChenH. LinZ. ChenJ. LuoL. Identification and experimental validation of ferroptosis-related gene SLC2A3 is involved in rheumatoid arthritis.Eur. J. Pharmacol.2023943317556810.1016/j.ejphar.2023.17556836736942
    [Google Scholar]
  35. LinL. QueR. WangJ. ZhuY. LiuX. XuR. Prognostic value of the ferroptosis-related gene SLC2A3 in gastric cancer and related immune mechanisms.Front. Genet.202213291931310.3389/fgene.2022.91931335957685
    [Google Scholar]
  36. LangF. SinghY. SalkerM.S. MaK. PandyraA.A. LangP.A. LangK.S. Glucose transport in lymphocytes.Pflugers Arch.202047291401140610.1007/s00424‑020‑02416‑y32529300
    [Google Scholar]
  37. EstiloCL Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis.BMC Cancer2019121292610.1186/1471‑2407‑9‑1119138406
    [Google Scholar]
  38. SongM.Y. LeeD.Y. YunS.M. KimE.H. GLUT3 promotes epithelial–mesenchymal transition via TGF-β/JNK/ATF2 signaling pathway in colorectal cancer cells.Biomedicines2022108183710.3390/biomedicines1008183736009381
    [Google Scholar]
  39. YaoX. HeZ. QinC. DengX. BaiL. LiG. ShiJ. SLC2A3 promotes macrophage infiltration by glycolysis reprogramming in gastric cancer.Cancer Cell Int.202020150352510.1186/s12935‑020‑01599‑933061855
    [Google Scholar]
  40. LavoroA. FalzoneL. TomaselloB. ContiG.N. LibraM. CandidoS. In silico analysis of the solute carrier (SLC) family in cancer indicates a link among DNA methylation, metabolic adaptation, drug response, and immune reactivity.Front. Pharmacol.2023142119126210.3389/fphar.2023.119126237397501
    [Google Scholar]
  41. ChanT.A. YarchoanM. JaffeeE. SwantonC. QuezadaS.A. StenzingerA. PetersS. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic.Ann. Oncol.2019301445610.1093/annonc/mdy49530395155
    [Google Scholar]
  42. ZhangX. ShiM. ChenT. ZhangB. Characterization of the immune cell infiltration landscape in head and neck squamous cell carcinoma to aid immunotherapy.Mol. Ther. Nucleic Acids202022329830910.1016/j.omtn.2020.08.03033230435
    [Google Scholar]
  43. McGrailD.J. PiliéP.G. RashidN.U. VoorwerkL. SlagterM. KokM. JonaschE. KhasrawM. HeimbergerA.B. LimB. UenoN.T. LittonJ.K. FerrarottoR. ChangJ.T. MoulderS.L. LinS.Y. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types.Ann. Oncol.202132566167210.1016/j.annonc.2021.02.00633736924
    [Google Scholar]
  44. KielyM. LordB. AmbsS. Immune response and inflammation in cancer health disparities.Trends Cancer20228431632710.1016/j.trecan.2021.11.01034965905
    [Google Scholar]
  45. DarvinP. ToorS.M. NairS.V. ElkordE. Immune checkpoint inhibitors: Recent progress and potential biomarkers.Exp. Mol. Med.2018501211110.1038/s12276‑018‑0191‑130546008
    [Google Scholar]
  46. HoekstraM.E. VijverS.V. SchumacherT.N. Modulation of the tumor micro-environment by CD8+ T cell-derived cytokines.Curr. Opin. Immunol.20216923657110.1016/j.coi.2021.03.016
    [Google Scholar]
  47. ParkJ. HsuehP.C. LiZ. HoP.C. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity.Immunity2023561324210.1016/j.immuni.2022.12.00836630916
    [Google Scholar]
  48. PhilipM. SchietingerA. CD8+ T cell differentiation and dysfunction in cancer.Nat. Rev. Immunol.202222420922310.1038/s41577‑021‑00574‑334253904
    [Google Scholar]
  49. HanJ. KhatwaniN. SearlesT.G. TurkM.J. AngelesC.V. Memory CD8+ T cell responses to cancer.Semin. Immunol.2020493310143510.1016/j.smim.2020.10143533272898
    [Google Scholar]
  50. GajewskiT.F. SchreiberH. FuY.X. Innate and adaptive immune cells in the tumor microenvironment.Nat. Immunol.201314101014102210.1038/ni.270324048123
    [Google Scholar]
  51. FarhoodB. NajafiM. MortezaeeK. CD8 + cytotoxic T lymphocytes in cancer immunotherapy: A review.J. Cell. Physiol.201923468509852110.1002/jcp.2778230520029
    [Google Scholar]
  52. van der LeunA.M. ThommenD.S. SchumacherT.N. CD8+ T cell states in human cancer: Insights from single-cell analysis.Nat. Rev. Cancer202020421823210.1038/s41568‑019‑0235‑432024970
    [Google Scholar]
  53. LeiX. LeiY. LiJ.K. DuW.X. LiR.G. YangJ. LiJ. LiF. TanH.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.Cancer Lett.202047010212613310.1016/j.canlet.2019.11.00931730903
    [Google Scholar]
  54. SchreiberR.D. OldL.J. SmythM.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion.Science201133160241565157010.1126/science.120348621436444
    [Google Scholar]
  55. MaiorinoL. Daßler-PlenkerJ. SunL. EgebladM. Innate immunity and cancer pathophysiology.Annu. Rev. Pathol.202217142545710.1146/annurev‑pathmechdis‑032221‑11550134788549
    [Google Scholar]
  56. MaoX. XuJ. WangW. LiangC. HuaJ. LiuJ. ZhangB. MengQ. YuX. ShiS. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives.Mol. Cancer202120113115510.1186/s12943‑021‑01428‑134635121
    [Google Scholar]
  57. CaoL.L. KaganJ.C. Targeting innate immune pathways for cancer immunotherapy.Immunity202356102206221710.1016/j.immuni.2023.07.01837703879
    [Google Scholar]
  58. ZaidiM.R. MerlinoG. The two faces of interferon-γ in cancer.Clin. Cancer Res.201117196118612410.1158/1078‑0432.CCR‑11‑048221705455
    [Google Scholar]
  59. BurkeJ.D. YoungH.A. IFN-γ: A cytokine at the right time, is in the right place.Semin. Immunol.2019432210128010.1016/j.smim.2019.05.00231221552
    [Google Scholar]
  60. DhatchinamoorthyK. ColbertJ.D. RockK.L. Cancer immune evasion through loss of MHC class I antigen presentation.Front. Immunol.20211263656810.3389/fimmu.2021.63656833767702
    [Google Scholar]
  61. SariG. RockK.L. Tumor immune evasion through loss of MHC class-I antigen presentation.Curr. Opin. Immunol.2023831610232910.1016/j.coi.2023.10232937130455
    [Google Scholar]
  62. Overacre-DelgoffeA.E. ChikinaM. DadeyR.E. YanoH. BrunazziE.A. ShayanG. HorneW. MoskovitzJ.M. KollsJ.K. SanderC. ShuaiY. NormolleD.P. KirkwoodJ.M. FerrisR.L. DelgoffeG.M. BrunoT.C. WorkmanC.J. VignaliD.A.A. Interferon-γ drives Treg fragility to promote anti-tumor immunity.Cell2017169611301141.e1110.1016/j.cell.2017.05.00528552348
    [Google Scholar]
  63. LiD. LiW. ZhengP. YangY. LiuQ. HuY. HeJ. LongQ. MaY. A “trained immunity” inducer-adjuvanted nanovaccine reverses the growth of established tumors in mice.J. Nanobiotechnology20232117410010.1186/s12951‑023‑01832‑336864424
    [Google Scholar]
  64. CastroF. CardosoA.P. GonçalvesR.M. SerreK. OliveiraM.J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion.Front. Immunol.2018984710.3389/fimmu.2018.0084729780381
    [Google Scholar]
  65. GocherA.M. WorkmanC.J. VignaliD.A.A. Interferon-γ: Teammate or opponent in the tumour microenvironment?Nat. Rev. Immunol.202222315817210.1038/s41577‑021‑00566‑334155388
    [Google Scholar]
  66. MehtaA.K. GraciasD.T. CroftM. TNF activity and T cells.Cytokine201810155141810.1016/j.cyto.2016.08.00327531077
    [Google Scholar]
  67. BalkwillF. TNF-α in promotion and progression of cancer.Cancer Metastasis Rev.200625340941610.1007/s10555‑006‑9005‑316951987
    [Google Scholar]
  68. CruceriuD. BaldasiciO. BalacescuO. NeagoeB.I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches.Cell Oncol.202043111810.1007/s13402‑019‑00489‑131900901
    [Google Scholar]
  69. WangW. GreenM. ChoiJ.E. GijónM. KennedyP.D. JohnsonJ.K. LiaoP. LangX. KryczekI. SellA. XiaH. ZhouJ. LiG. LiJ. LiW. WeiS. VatanL. ZhangH. SzeligaW. GuW. LiuR. LawrenceT.S. LambC. TannoY. CieslikM. StoneE. GeorgiouG. ChanT.A. ChinnaiyanA. ZouW. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy.Nature2019569775527027410.1038/s41586‑019‑1170‑y31043744
    [Google Scholar]
  70. BarronC.C. BilanP.J. TsakiridisT. TsianiE. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment.Metabolism201665212413910.1016/j.metabol.2015.10.00726773935
    [Google Scholar]
  71. RuffinA.T. LiH. VujanovicL. ZandbergD.P. FerrisR.L. BrunoT.C. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment.Nat. Rev. Cancer202323317318810.1038/s41568‑022‑00531‑936456755
    [Google Scholar]
  72. ChenS.M.Y. KrinskyA.L. WoolaverR.A. WangX. ChenZ. WangJ.H. Tumor immune microenvironment in head and neck cancers.Mol. Carcinog.202059776677410.1002/mc.2316232017286
    [Google Scholar]
  73. MasinM. VazquezJ. RossiS. GroeneveldS. SamsonN. SchwalieP.C. DeplanckeB. FrawleyL.E. GouttenoireJ. MoradpourD. OliverT.G. MeylanE. GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer.Cancer Metab.201421113110.1186/2049‑3002‑2‑1125097756
    [Google Scholar]
  74. GökalpF. An investigation into the usage of monosaccharides with GLUT1 and GLUT3 as prognostic indicators for cancer.Nutr. Cancer202274251551910.1080/01635581.2021.189523333724114
    [Google Scholar]
  75. DaiW. XuY. MoS. LiQ. YuJ. WangR. MaY. NiY. XiangW. HanL. ZhangL. CaiS. QinJ. ChenW.L. JiaW. CaiG. GLUT3 induced by AMPK/CREB1 axis is key for withstanding energy stress and augments the efficacy of current colorectal cancer therapies.Signal Transduct. Target. Ther.20205117720010.1038/s41392‑020‑00220‑932873793
    [Google Scholar]
  76. GaoH. HaoY. ZhouX. LiH. LiuF. ZhuH. SongX. NiuZ. NiQ. ChenM.S. LuJ. Prognostic value of glucose transporter 3 expression in hepatocellular carcinoma.Oncol. Lett.201919169169910.3892/ol.2019.1119131885715
    [Google Scholar]
  77. AyalaF.R.R. RochaR.M. CarvalhoK.C. CarvalhoA.L. Da CunhaI.W. LourençoS.V. SoaresF.A. GLUT1 and GLUT3 as potential prognostic markers for oral squamous cell carcinoma.Molecules20101542374238710.3390/molecules1504237420428049
    [Google Scholar]
  78. TsaiT.H. YangC.C. KouT.C. YangC.E. DaiJ.Z. ChenC.L. LinC.W. Overexpression of GLUT3 promotes metastasis of triple-negative breast cancer by modulating the inflammatory tumor microenvironment.J. Cell. Physiol.202123664669468010.1002/jcp.3018933421130
    [Google Scholar]
  79. AnceyP.B. ContatC. MeylanE. Glucose transporters in cancer – from tumor cells to the tumor microenvironment.FEBS J.2018285162926294310.1111/febs.1457729893496
    [Google Scholar]
  80. LabelleM. BegumS. HynesR.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis.Cancer Cell201120557659010.1016/j.ccr.2011.09.00922094253
    [Google Scholar]
  81. ChoiH. NaK.J. Different glucose metabolic features according to cancer and immune cells in the tumor microenvironment.Front. Oncol.2021111176939310.3389/fonc.2021.76939334966676
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232291300240509104344
Loading
/content/journals/cgt/10.2174/0115665232291300240509104344
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test