Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Radiotherapy (RT) is an integral part of treatment management in cancer patients. However, one of the limitations of this treatment method is the resistance of cancer cells to radiotherapy. These restrictions necessitate the introduction of modalities for the radiosensitization of cancer cells. It has been shown that Noncoding RNAs (ncRNAs), along with modifiers, can act as radiosensitivity and radioresistant regulators in a variety of cancers by affecting double strand break (DSB), wnt signaling, glycolysis, irradiation induced apoptosis, ferroptosis and cell autophagy. This review will provide an overview of the latest research on the roles and regulatory mechanisms of ncRNA after RT in and preclinical researches.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232301727240422092311
2025-04-01
2025-01-18
Loading full text...

Full text loading...

References

  1. ZhouT. ZhangL.Y. HeJ.Z. MiaoZ.M. LiY.Y. ZhangY.M. LiuZ.W. ZhangS.Z. ChenY. ZhouG.C. LiuY.Q. Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer.Front. Immunol.202314113389910.3389/fimmu.2023.113389936865554
    [Google Scholar]
  2. FarzipourS. JalaliF. AlvandiM. ShaghaghiZ. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease.Cardiov. Hematol. Age. Med. Chem.202321129
    [Google Scholar]
  3. MayJ.M. BylickyM. ChopraS. ColemanC.N. AryankalayilM.J. Long and short non-coding RNA and radiation response: A review.Transl. Res.202123316217910.1016/j.trsl.2021.02.00533582242
    [Google Scholar]
  4. ZhangX. XieK. ZhouH. WuY. LiC. LiuY. LiuZ. XuQ. LiuS. XiaoD. TaoY. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance.Mol. Cancer20201914710.1186/s12943‑020‑01171‑z32122355
    [Google Scholar]
  5. RaeispourM. Talebpour AmiriF. FarzipourS. GhasemiA. HosseinimehrS.J. Febuxostat, an inhibitor of xanthine oxidase, ameliorates ionizing radiation-induced lung injury by suppressing caspase-3, oxidative stress and NF-κB.Drug Chem. Toxicol.20224562586259310.1080/01480545.2021.197731534538151
    [Google Scholar]
  6. PanwarB. AroraA. RaghavaG.P.S. Prediction and classification of ncRNAs using structural information.BMC Genomics201415112710.1186/1471‑2164‑15‑12724521294
    [Google Scholar]
  7. RattiM. LampisA. GhidiniM. SalatiM. MirchevM.B. ValeriN. HahneJ.C. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside.Target. Oncol.202015326127810.1007/s11523‑020‑00717‑x32451752
    [Google Scholar]
  8. MalekE. JagannathanS. DriscollJ.J. Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer.Oncotarget20145188027803810.18632/oncotarget.246925275300
    [Google Scholar]
  9. SzymanowskaA. Rodriguez-AguayoC. Lopez-BeresteinG. AmeroP. Non-Coding RNAs: Foes or friends for targeting tumor microenvironment.Noncoding RNA2023955210.3390/ncrna905005237736898
    [Google Scholar]
  10. MofedD. OmranJ.I. SabetS. BaiomyA.A. EmaraM. SalemT.Z. The regulatory role of long non- coding RNAs as a novel controller of immune response against cancer cells.Mol. Biol. Rep.20224912117751179310.1007/s11033‑022‑07947‑436207500
    [Google Scholar]
  11. WangJ. ZhuS. MengN. HeY. LuR. YanG.R. ncRNA-encoded peptides or proteins and cancer.Mol. Ther.201927101718172510.1016/j.ymthe.2019.09.00131526596
    [Google Scholar]
  12. YangY. GaoX. ZhangM. YanS. SunC. XiaoF. HuangN. YangX. ZhaoK. ZhouH. HuangS. XieB. ZhangN. Novel Role of FBXW7 circular RNA in repressing glioma tumorigenesis.J. Natl. Cancer Inst.2018110330431510.1093/jnci/djx16628903484
    [Google Scholar]
  13. ZhangM. ZhaoK. XuX. YangY. YanS. WeiP. LiuH. XuJ. XiaoF. ZhouH. YangX. HuangN. LiuJ. HeK. XieK. ZhangG. HuangS. ZhangN. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma.Nat. Commun.201891447510.1038/s41467‑018‑06862‑230367041
    [Google Scholar]
  14. ZhaoL. LuX. CaoY. MicroRNA and signal transduction pathways in tumor radiation response.Cell. Signal.20132571625163410.1016/j.cellsig.2013.04.00423602933
    [Google Scholar]
  15. HuangR.X. ZhouP.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer.Signal Transduct. Target. Ther.2020516010.1038/s41392‑020‑0150‑x32355263
    [Google Scholar]
  16. Xiao-chunW. WeiW. Zhu-BoZ. JingZ. Xiao-GangT. Jian-ChaoL. Overexpression of miRNA-21 promotes radiation-resistance of non-small cell lung cancer.Radiat. Oncol.20138114610.1186/1748‑717X‑8‑14623777591
    [Google Scholar]
  17. JossonS. SungS.Y. LaoK. ChungL.W.K. JohnstoneP.A.S. Radiation modulation of MicroRNA in prostate cancer cell lines.Prostate200868151599160610.1002/pros.2082718668526
    [Google Scholar]
  18. OkazakiR. Role of p53 in regulating radiation responses.Life 2022127109910.3390/life1207109935888186
    [Google Scholar]
  19. WuW. ZhangS. HeJ. The mechanism of long non-coding RNA in cancer radioresistance/radiosensitivity: A systematic review.Front. Pharmacol.20221387970410.3389/fphar.2022.87970435600868
    [Google Scholar]
  20. ZhangS. WangB. XiaoH. DongJ. LiY. ZhuC. JinY. LiH. CuiM. FanS. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR -449b-5p.Thorac. Cancer20201171801181610.1111/1759‑7714.1345032374522
    [Google Scholar]
  21. XiuD. LiuL. ChengM. SunX. MaX. Knockdown of lncRNA TUG1 enhances radiosensitivity of prostate cancer via the TUG1/miR-139-5p/SMC1A Axis.OncoTargets Ther.2020132319233110.2147/OTT.S23686032256083
    [Google Scholar]
  22. GaoZ.Q. WangJ. ChenD.H. MaX.S. YangW. ZheT. DangX.W. Long non-coding RNA GAS5 antagonizes the chemoresistance of pancreatic cancer cells through down-regulation of miR-181c-5p.Biomed. Pharmacother.20189780981710.1016/j.biopha.2017.10.15729112934
    [Google Scholar]
  23. ZhouJ.M. LiangR. ZhuS.Y. WangH. ZouM. ZouW.J. NieS.L. LncRNA WWC2-AS1 functions AS a novel competing endogenous RNA in the regulation of FGF2 expression by sponging miR-16 in radiation-induced intestinal fibrosis.BMC Cancer201919164710.1186/s12885‑019‑5754‑631262262
    [Google Scholar]
  24. BrownmillerT. JuricJ.A. IveyA.D. Y Chromosome LncRNA are involved in radiation response of male non–small cell lung cancer cells.Cancer Res.202480194046405710.1158/0008‑5472.CAN‑19‑4032
    [Google Scholar]
  25. HanD. WangJ. ChengG. LncRNA NEAT1 enhances the radio-resistance of cervical cancer via miR-193b-3p/CCND1 axis.Oncotarget2018922395240910.18632/oncotarget.2341629416780
    [Google Scholar]
  26. LinL.C. LeeH.T. ChienP.J. HuangY.H. ChangM.Y. LeeY.C. ChangW.W. NAD(P)H:quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1.Int. J. Med. Sci.202017142214222410.7150/ijms.4570632922184
    [Google Scholar]
  27. MaX. ZhouJ. LiuJ. WuG. YuY. ZhuH. LiuJ. LncRNA ANCR promotes proliferation and radiation resistance of nasopharyngeal carcinoma by inhibiting PTEN expression.OncoTargets Ther.2018118399840810.2147/OTT.S18257330568463
    [Google Scholar]
  28. ZhangN. ZengX. SunC. GuoH. WangT. WeiL. ZhangY. ZhaoJ. MaX. LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 Expression.Mol. Ther. Nucleic Acids20191887188110.1016/j.omtn.2019.09.03331751910
    [Google Scholar]
  29. GhiamA.F. TaebS. HuangX. HuangV. RayJ. ScarcelloS. HoeyC. JahangiriS. FokasE. LoblawA. BristowR.G. VespriniD. BoutrosP. LiuS.K. Long non-coding RNA urothelial carcinoma associated 1 (UCA1) mediates radiation response in prostate cancer.Oncotarget2017834668468910.18632/oncotarget.1357627902466
    [Google Scholar]
  30. LiuS.J. MalatestaM. LienB.V. SahaP. ThombareS.S. HongS.J. PedrazaL. KoontzM. SeoK. HorlbeckM.A. HeD. BirkH.S. JainM. OlsenH.E. AkesonM. WeissmanJ.S. MonjeM. GuptaN. RaleighD.R. UllianE.M. LimD.A. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma.Genome Biol.20202118310.1186/s13059‑020‑01995‑432234056
    [Google Scholar]
  31. LiY. TongY. LiuJ. LouJ. The role of MicroRNA in DNA damage response.Front. Genet.20221385003810.3389/fgene.2022.85003835591858
    [Google Scholar]
  32. ValentiF. SacconiA. GanciF. GrassoG. StranoS. BlandinoG. Di AgostinoS. The miR-205-5p/BRCA1/RAD17 axis promotes genomic instability in head and neck squamous cell carcinomas.Cancers 2019119134710.3390/cancers1109134731514456
    [Google Scholar]
  33. XuT. XieM. JingX. CuiJ. WuX. ShuY. Crosstalk between environmental inflammatory stimuli and non-coding rna in cancer occurrence and development.Cancers 20211317443610.3390/cancers1317443634503246
    [Google Scholar]
  34. HanT. JingX. BaoJ. ZhaoL. ZhangA. MiaoR. GuoH. ZhouB. ZhangS. SunJ. ShiJ. H. pylori infection alters repair of DNA double-strand breaks via SNHG17.J. Clin. Invest.202013073901391810.1172/JCI12558132538894
    [Google Scholar]
  35. PiottoC. BiscontinA. MillinoC. MognatoM. Functional validation of miRNAs targeting genes of DNA double-strand break repair to radiosensitize non-small lung cancer cells.Biochim. Biophys. Acta. Gene Regul. Mech.20181861121102111810.1016/j.bbagrm.2018.10.01030389599
    [Google Scholar]
  36. DrayE. EtchinJ. WieseC. SaroD. WilliamsG.J. HammelM. YuX. GalkinV.E. LiuD. TsaiM.S. SyS.M.H. SchildD. EgelmanE. ChenJ. SungP. Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2.Nat. Struct. Mol. Biol.201017101255125910.1038/nsmb.191620871616
    [Google Scholar]
  37. RaueR. FrankA.C. SyedS.N. BrüneB. Therapeutic targeting of micrornas in the tumor microenvironment.Int. J. Mol. Sci.2021224221010.3390/ijms2204221033672261
    [Google Scholar]
  38. LalA. PanY. NavarroF. DykxhoornD.M. MoreauL. MeireE. BentwichZ. LiebermanJ. ChowdhuryD. miR-24–mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells.Nat. Struct. Mol. Biol.200916549249810.1038/nsmb.158919377482
    [Google Scholar]
  39. PodralskaM. CiesielskaS. KluiverJ. van den BergA. Dzikiewicz-KrawczykA. Slezak-ProchazkaI. Non-Coding RNAs in cancer radiosensitivity: MicroRNAs and lncRNAs as regulators of radiation-induced signaling pathways.Cancers 2020126166210.3390/cancers1206166232585857
    [Google Scholar]
  40. ZhouS. ZhangM. ZhouC. WangW. YangH. YeW. The role of epithelial-mesenchymal transition in regulating radioresistance.Crit. Rev. Oncol. Hematol.202015010296110.1016/j.critrevonc.2020.10296132361589
    [Google Scholar]
  41. WuZ. WangY. Studies of lncRNAs in DNA double strand break repair: What is new?Oncotarget201786010269010270410.18632/oncotarget.2209029254281
    [Google Scholar]
  42. HuW.L. JinL. XuA. WangY.F. ThorneR.F. ZhangX.D. WuM. GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability.Nat. Cell Biol.201820449250210.1038/s41556‑018‑0066‑729593331
    [Google Scholar]
  43. ZhaoW. WieseC. KwonY. HromasR. SungP. The BRCA tumor suppressor network in chromosome damage repair by homologous recombination.Annu. Rev. Biochem.201988122124510.1146/annurev‑biochem‑013118‑11105830917004
    [Google Scholar]
  44. ZhangM. WangG. ZhuY. WuD. Characterization of BRCA1/2-Directed ceRNA network identifies a novel three-lncRNA signature to predict prognosis and chemo-response in ovarian cancer patients with wild-type BRCA1/2.Front. Cell Dev. Biol.2020868010.3389/fcell.2020.0068032850807
    [Google Scholar]
  45. DurutN. Mittelsten ScheidO. The role of noncoding RNAs in double-strand break repair.Front. Plant Sci.201910115510.3389/fpls.2019.0115531611891
    [Google Scholar]
  46. GoyalA. FiškinE. GutschnerT. Polycarpou-SchwarzM. GroßM. NeugebauerJ. GandhiM. Caudron-HergerM. BenesV. DiederichsS. A cautionary tale of sense-antisense gene pairs: Independent regulation despite inverse correlation of expression.Nucleic Acids Res.20174521124961250810.1093/nar/gkx95229059299
    [Google Scholar]
  47. DaiN. QingY. CunY. ZhongZ. LiC. ZhangS. ShanJ. YangX. DaiX. ChengY. XiaoH. XuC. LiM. WangD. miR-513a-5p regulates radiosensitivity of osteosarcoma by targeting human apurinic/apyrimidinic endonuclease.Oncotarget2018939254142542610.18632/oncotarget.1100329875998
    [Google Scholar]
  48. LópezD.J. RodríguezJ.A. BañuelosS. Molecular mechanisms regulating the DNA Repair Protein APE1: A focus on its flexible n-terminal tail domain.Int. J. Mol. Sci.20212212630810.3390/ijms2212630834208390
    [Google Scholar]
  49. ZhaoH. ZhengG.H. LiG.C. XinL. WangY.S. ChenY. ZhengX.M. Long noncoding RNA LINC00958 regulates cell sensitivity to radiotherapy through RRM2 by binding to microRNA-5095 in cervical cancer.J. Cell. Physiol.201923412233492335910.1002/jcp.2890231169309
    [Google Scholar]
  50. LiuR. ZhangQ. ShenL. ChenS. HeJ. WangD. WangQ. QiZ. ZhouM. WangZ. Long noncoding RNA lnc-RI regulates DNA damage repair and radiation sensitivity of CRC cells through NHEJ pathway.Cell Biol. Toxicol.202036549350710.1007/s10565‑020‑09524‑632279126
    [Google Scholar]
  51. ChenM. LiuP. ChenY. ChenZ. ShenM. LiuX. LiX. LiA. LinY. YangR. NiW. ZhouX. ZhangL. TianY. LiJ. ChenJ. Long Noncoding RNA FAM201A mediates the radiosensitivity of esophageal squamous cell cancer by regulating atm and mtor expression via miR-101.Front. Genet.2018961110.3389/fgene.2018.0061130574162
    [Google Scholar]
  52. ChenW. JiangJ. GongL. ShuZ. XiangD. ZhangX. BiK. DiaoH. Hepatitis B virus P protein initiates glycolytic bypass in HBV-related hepatocellular carcinoma via a FOXO3/miRNA-30b-5p/MINPP1 axis.J. Exp. Clin. Cancer Res.2021401110.1186/s13046‑020‑01803‑833390177
    [Google Scholar]
  53. DeyA. FlajšhansM. PšeničkaM. GazoI. DNA repair genes play a variety of roles in the development of fish embryos.Front. Cell Dev. Biol.202311111922910.3389/fcell.2023.111922936936683
    [Google Scholar]
  54. ZhengR.P. MaD.K. LiZ. ZhangH.F. MiR-145 regulates the chemoresistance of hepatic carcinoma cells against 5-fluorouracil by targeting toll-like receptor 4.Cancer Manag. Res.2020126165617510.2147/CMAR.S25759832801865
    [Google Scholar]
  55. SantosT.G. MartinsV. HajjG. Unconventional secretion of heat shock proteins in cancer.Int. J. Mol. Sci.201718594610.3390/ijms1805094628468249
    [Google Scholar]
  56. LiuL. ZhuY. LiuA.M. FengY. ChenY. Long noncoding RNA LINC00511 involves in breast cancer recurrence and radioresistance by regulating STXBP4 expression via miR-185.Eur. Rev. Med. Pharmacol. Sci.201923177457746810.26355/eurrev_201909_1885531539133
    [Google Scholar]
  57. YangY. BedfordM.T. Protein arginine methyltransferases and cancer.Nat. Rev. Cancer2013131375010.1038/nrc340923235912
    [Google Scholar]
  58. LiL. LinX. XuP. JiaoY. FuP. LncRNA GAS5 sponges miR -362-5p to promote sensitivity of thyroid cancer cells to 131I by upregulating SMG1.IUBMB Life202072112420243110.1002/iub.236532856394
    [Google Scholar]
  59. WangB. ZhengJ. LiR. TianY. LinJ. LiangY. SunQ. XuA. ZhengR. LiuM. JiA. BuJ. YuanY. Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells.Cell Death Dis.2019101076410.1038/s41419‑019‑1996‑031601781
    [Google Scholar]
  60. Aranza-MartínezA. Sánchez-PérezJ. Brito-EliasL. López-CamarilloC. Cantú de LeónD. Pérez-PlasenciaC. López-UrrutiaE. Non- Coding RNAs associated with radioresistance in triple-negative breast cancer.Front. Oncol.20211175227010.3389/fonc.2021.75227034804940
    [Google Scholar]
  61. LiuY. YueP. ZhouT. ZhangF. WangH. ChenX. LncRNA MEG3 enhances 131I sensitivity in thyroid carcinoma via sponging miR-182.Biomed. Pharmacother.20181051232123910.1016/j.biopha.2018.06.08730021359
    [Google Scholar]
  62. ZhangR. XiaT. Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis.Int. J. Oncol.20175151460147010.3892/ijo.2017.412729048648
    [Google Scholar]
  63. ZhangY. ZhuZ. HuangS. ZhaoQ. HuangC. TangY. SunC. ZhangZ. WangL. ChenH. ChenM. JuW. HeX. lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4.Cancer Cell Int.201919119810.1186/s12935‑019‑0909‑831384173
    [Google Scholar]
  64. TangJ. FrascaroliG. LebbinkR.J. OstermannE. BruneW. Human cytomegalovirus glycoprotein B variants affect viral entry, cell fusion, and genome stability.Proc. Natl. Acad. Sci. USA201911636180211803010.1073/pnas.190744711631427511
    [Google Scholar]
  65. WuS.Y. WuA.T.H. LiuS.H. MicroRNA-17-5p regulated apoptosis-related protein expression and radiosensitivity in oral squamous cell carcinoma caused by betel nut chewing.Oncotarget2016732514825149310.18632/oncotarget.985627285985
    [Google Scholar]
  66. MaW. YuJ. QiX. LiangL. ZhangY. DingY. LinX. LiG. DingY. Radiation-induced microrna-622 causes radioresistance in colorectal cancer cells by down-regulating Rb.Oncotarget2015618159841599410.18632/oncotarget.376225961730
    [Google Scholar]
  67. SunD. MuY. PiaoH. MicroRNA-153-3p enhances cell radiosensitivity by targeting BCL2 in human glioma.Biol. Res.20185115610.1186/s40659‑018‑0203‑630537994
    [Google Scholar]
  68. KwonJ.E. KimB.Y. KwakS.Y. BaeI.H. HanY.H. Ionizing radiation-inducible microRNA miR-193a-3p induces apoptosis by directly targeting Mcl-1.Apoptosis201318789690910.1007/s10495‑013‑0841‑723546867
    [Google Scholar]
  69. LeeH.C. HerN.G. KangD. JungS.H. ShinJ. LeeM. BaeI.H. KimY.N. ParkH.J. KoY.G. LeeJ.S. Radiation-inducible miR-770-5p sensitizes tumors to radiation through direct targeting of PDZ-binding kinase.Cell Death Dis.201783e2693e269310.1038/cddis.2017.11628333152
    [Google Scholar]
  70. MaoA. LiuY. ZhangH. DiC. SunC. microRNA expression and biogenesis in cellular response to ionizing radiation.DNA Cell Biol.2014331066767910.1089/dna.2014.240124905898
    [Google Scholar]
  71. YangQ.S. JiangL.P. HeC.Y. TongY.N. LiuY.Y. Up-regulation of MicroRNA-133a inhibits the MEK/ERK signaling pathway to promote cell apoptosis and enhance radio-sensitivity by targeting EGFR in esophageal cancer in vivo and in vitro.J. Cell. Biochem.201711892625263410.1002/jcb.2582927933650
    [Google Scholar]
  72. WangY. ZengG. JiangY. The emerging roles of mir-125b in cancers.Cancer Manag. Res.2020121079108810.2147/CMAR.S23238832104088
    [Google Scholar]
  73. LiuC. XingH. GuoC. YangZ. WangY. WangY. MiR-124 reversed the doxorubicin resistance of breast cancer stem cells through STAT3/HIF-1 signaling pathways.Cell Cycle201918182215222710.1080/15384101.2019.163818231286834
    [Google Scholar]
  74. XuL.M. YuH. YuanY.J. ZhangJ. MaY. CaoX.C. WangJ. ZhaoL.J. WangP. Overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1α-suppression mediated methylation of PTEN.Front. Cell Dev. Biol.2020855373310.3389/fcell.2020.55373333304897
    [Google Scholar]
  75. YangB. KuaiF. ChenZ. FuD. LiuJ. WuY. ZhongJ. miR-634 decreases the radioresistance of human breast cancer cells by targeting STAT3.Cancer Biother. Radiopharm.202035324124810.1089/cbr.2019.322032077744
    [Google Scholar]
  76. WuS.J. ChenJ. WuB. WangY.J. GuoK.Y. MicroRNA-150 enhances radiosensitivity by inhibiting the AKT pathway in NK/T cell lymphoma.J. Exp. Clin. Cancer Res.20183711810.1186/s13046‑017‑0639‑529386059
    [Google Scholar]
  77. LiuH.Y. ZhangY.Y. ZhuB.L. FengF.Z. ZhangH.T. YanH. ZhouB. MiR-203a-3p regulates the biological behaviors of ovarian cancer cells through mediating the Akt/GSK-3β/Snail signaling pathway by targeting ATM.J. Ovarian Res.20191216010.1186/s13048‑019‑0532‑231277702
    [Google Scholar]
  78. LiY. ZhangZ. ZhangX. LinY. LuoT. XiaoZ. ZhouQ. A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma.Am. J. Transl. Res.20168271973127158364
    [Google Scholar]
  79. GaoX. QinT. MaoJ. ZhangJ. FanS. LuY. SunZ. ZhangQ. SongB. LiL. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway.J. Exp. Clin. Cancer Res.201938125610.1186/s13046‑019‑1260‑631196157
    [Google Scholar]
  80. HeX. FanS. hsa-miR-212 modulates the radiosensitivity of glioma cells by targeting BRCA1.Oncol. Rep.201739397798410.3892/or.2017.615629286157
    [Google Scholar]
  81. GaoJ. LiuL. LiG. CaiM. TanC. HanX. HanL. LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis.Int. J. Biol. Macromol.2019126994100110.1016/j.ijbiomac.2018.12.17630579899
    [Google Scholar]
  82. PengF. LiaoM. QinR. ZhuS. PengC. FuL. ChenY. HanB. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies.Signal Transduct. Target. Ther.20227128610.1038/s41392‑022‑01110‑y35963853
    [Google Scholar]
  83. WangB. WangK. JinT. XuQ. HeY. CuiB. WangY. NCK1-AS1 enhances glioma cell proliferation, radioresistance and chemoresistance via miR-22-3p/IGF1R ceRNA pathway.Biomed. Pharmacother.202012911039510.1016/j.biopha.2020.11039532887025
    [Google Scholar]
  84. GouC. HanP. LiJ. GaoL. JiX. DongF. SuQ. ZhangY. LiuX. Knockdown of lncRNA BLACAT1 enhances radiosensitivity of head and neck squamous cell carcinoma cells by regulating PSEN1.Br. J. Radiol.20209311082019015410.1259/bjr.2019015431944856
    [Google Scholar]
  85. JiangH. HuX. ZhangH. LiW. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression.Radiat. Oncol.20171216510.1186/s13014‑017‑0802‑328376901
    [Google Scholar]
  86. SongW. ZhangJ. XiaQ. SunM. RETRACTED ARTICLE: Down-regulated lncRNA TP73-AS1 reduces radioresistance in hepatocellular carcinoma via the PTEN/Akt signaling pathway.Cell Cycle201918223177318810.1080/15384101.2019.167108931564201
    [Google Scholar]
  87. WangX. LiM. WangZ. HanS. TangX. GeY. ZhouL. ZhouC. YuanQ. YangM. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells.J. Biol. Chem.201529073925393510.1074/jbc.M114.59686625538231
    [Google Scholar]
  88. LiK. YaoT. ZhangY. LiW. WangZ. NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: Role, mechanism and therapeutic potential.Int. J. Biol. Sci.202117133428344010.7150/ijbs.6272834512157
    [Google Scholar]
  89. LuY. LiT. WeiG. LiuL. ChenQ. XuL. ZhangK. ZengD. LiaoR. The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma.Tumour Biol.2016379117331174110.1007/s13277‑015‑4773‑427020592
    [Google Scholar]
  90. WangH. ZhangM. SunG. Long non-coding RNA NEAT1 regulates the proliferation, migration and invasion of gastric cancer cells via targeting miR-335-5p/ROCK1 axis.Pharmazie201873315015510.1691/ph.2018.787729544562
    [Google Scholar]
  91. HuangC. LiangJ. LinS. WangD. XieQ. LinZ. YaoT. N6-methyladenosine associated silencing of mir-193b promotes cervical cancer aggressiveness by targeting CCND1.Front. Oncol.20211166659710.3389/fonc.2021.66659734178650
    [Google Scholar]
  92. LiX. ChenW. JiaJ. YouZ. HuC. ZhuangY. LinZ. LiuY. YangC. XuR. The long non-coding RNA-RoR promotes the tumorigenesis of human colorectal cancer by targeting mir-6833-3p through SMC4.OncoTargets Ther.2020132573258110.2147/OTT.S23894732273727
    [Google Scholar]
  93. YuZ. WangG. ZhangC. LiuY. ChenW. WangH. LiuH. LncRNA SBF2-AS1 affects the radiosensitivity of non-small cell lung cancer via modulating microRNA-302a/MBNL3 axis.Cell Cycle202019330031610.1080/15384101.2019.170801631928130
    [Google Scholar]
  94. LuQ. LouJ. CaiR. HanW. PanH. Emerging roles of a pivotal lncRNA SBF2-AS1 in cancers.Cancer Cell Int.202121141710.1186/s12935‑021‑02123‑334372871
    [Google Scholar]
  95. WuY.H. YuB. ChenW.X. AiX. ZhangW. DongW. ShaoY.J. Downregulation of lncRNA SBF2-AS1 inhibits hepatocellular carcinoma proliferation and migration by regulating the miR-361-5p/TGF-β1 signaling pathway.Aging (Albany NY)20211315192601927110.18632/aging.20324834341185
    [Google Scholar]
  96. TanF. ChenJ. WangB. DuZ. MouJ. WuY. LiuY. ZhaoF. YuanC. LncRNA SBF2-AS1: A budding star in various cancers.Curr. Pharm. Des.202228181513152210.2174/138161282866622041813150635440300
    [Google Scholar]
  97. ZhangJ. LiW. Long noncoding RNA CYTOR sponges miR-195 to modulate proliferation, migration, invasion and radiosensitivity in nonsmall cell lung cancer cells.Biosci. Rep.2018386BSR2018159910.1042/BSR2018159930487160
    [Google Scholar]
  98. LaiY. ChenY. LinY. YeL. Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer.Cell Biol. Int.201842222723610.1002/cbin.1089029024383
    [Google Scholar]
  99. GaoL. XiaT. QinM. XueX. JiangL. ZhuX. CircPTK2 suppresses the progression of gastric cancer by targeting the MiR-196a-3p/AATK Axis.Front. Oncol.20211170641510.3389/fonc.2021.70641534604044
    [Google Scholar]
  100. GlickD. BarthS. MacleodK.F. Autophagy: Cellular and molecular mechanisms.J. Pathol.2010221131210.1002/path.269720225336
    [Google Scholar]
  101. VittoV.A.M. BianchinS. ZolondickA.A. PellieloG. RimessiA. ChianeseD. YangH. CarboneM. PintonP. GiorgiC. PatergnaniS. Molecular mechanisms of autophagy in cancer development, progression, and therapy.Biomedicines2022107159610.3390/biomedicines1007159635884904
    [Google Scholar]
  102. ZhangX. ShiH. LinS. BaM. CuiS. MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy.Oncol. Rep.20153431557156410.3892/or.2015.407826134156
    [Google Scholar]
  103. MengC. LiuY. ShenY. LiuS. WangZ. YeQ. LiuH. LiuX. JiaL. MicroRNA-26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation.Oncol. Lett.20171521435144010.3892/ol.2017.745229399189
    [Google Scholar]
  104. YiH. LiangB. JiaJ. LiangN. XuH. JuG. MaS. LiuX. Differential roles of miR-199a-5p in radiation-induced autophagy in breast cancer cells.FEBS Lett.2013587543644310.1016/j.febslet.2012.12.02723337876
    [Google Scholar]
  105. WangP. ZhangJ. ZhangL. ZhuZ. FanJ. ChenL. ZhuangL. LuoJ. ChenH. LiuL. ChenZ. MengZ. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells.Gastroenterology2013145511331143.e1210.1053/j.gastro.2013.07.04823916944
    [Google Scholar]
  106. HuJ.L. HeG.Y. LanX.L. ZengZ.C. GuanJ. DingY. QianX.L. LiaoW.T. DingY.Q. LiangL. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer.Oncogenesis2018721610.1038/s41389‑018‑0028‑829459645
    [Google Scholar]
  107. ChongZ.X. YeapS.K. HoW.Y. Regulation of autophagy by microRNAs in human breast cancer.J. Biomed. Sci.20212812110.1186/s12929‑021‑00715‑933761957
    [Google Scholar]
  108. SunQ. LiuT. YuanY. GuoZ. XieG. DuS. LinX. XuZ. LiuM. WangW. YuanQ. ChenL. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1.Int. J. Cancer201513651003101210.1002/ijc.2906525044403
    [Google Scholar]
  109. ChauhanN. DhasmanaA. JaggiM. ChauhanS.C. YallapuM.M. miR-205: A potential biomedicine for cancer therapy.Cells202099195710.3390/cells909195732854238
    [Google Scholar]
  110. XuC.G. YangM.F. FanJ.X. WangW. MiR-30a and miR-205 are downregulated in hypoxia and modulate radiosensitivity of prostate cancer cells by inhibiting autophagy via TP53INP1.Eur. Rev. Med. Pharmacol. Sci.20162081501150827160121
    [Google Scholar]
  111. FanL. WangJ. CaoQ. DingX. LiB. Aberrant miR-1246 expression promotes radioresistance in non-small cell lung cancer: a potential prognostic biomarker and radiotherapy sensitization target.Am. J. Cancer Res.202010131433532064170
    [Google Scholar]
  112. ShenY. LiuY. SunT. YangW. LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway.Exp. Cell Res.2017358218819810.1016/j.yexcr.2017.06.01628689810
    [Google Scholar]
  113. AshrafizadehM. PaskehM.D.A. MirzaeiS. GholamiM.H. ZarrabiA. HashemiF. HushmandiK. HashemiM. NabaviN. CreaF. RenJ. KlionskyD.J. KumarA.P. WangY. Targeting autophagy in prostate cancer: Preclinical and clinical evidence for therapeutic response.J. Exp. Clin. Cancer Res.202241110510.1186/s13046‑022‑02293‑635317831
    [Google Scholar]
  114. ChenC. WangK. WangQ. WangX. LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells.Braz. J. Med. Biol. Res.2018516e708010.1590/1414‑431x2018708029694502
    [Google Scholar]
  115. WuC. YangL. QiX. WangT. LiM. XuK. Inhibition of long non-coding RNA HOTAIR enhances radiosensitivity via regulating autophagy in pancreatic cancer.Cancer Manag. Res.2018105261527110.2147/CMAR.S17406630464623
    [Google Scholar]
  116. GuoX. XiaoH. GuoS. LiJ. WangY. ChenJ. LouG. Retracted: Long noncoding RNA HOTAIR knockdown inhibits autophagy and epithelial–mesenchymal transition through the Wnt signaling pathway in radioresistant human cervical cancer HeLa cells.J. Cell. Physiol.201923443478348910.1002/jcp.2682830367473
    [Google Scholar]
  117. ZuoY.B. ZhangY.F. ZhangR. TianJ.W. LvX.B. LiR. LiS.P. ChengM.D. ShanJ. ZhaoZ. XinH. Ferroptosis in cancer progression: Role of Noncoding RNAs.Int. J. Biol. Sci.20221851829184310.7150/ijbs.6691735342359
    [Google Scholar]
  118. HeF. ZhangP. LiuJ. WangR. KaufmanR.J. YadenB.C. KarinM. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis.J. Hepatol.202379236237710.1016/j.jhep.2023.03.01636996941
    [Google Scholar]
  119. LiZ. QuZ. WangY. QinM. ZhangH. miR-101-3p sensitizes non-small cell lung cancer cells to irradiation.Open Med.202015141342310.1515/med‑2020‑004433336000
    [Google Scholar]
  120. ShaghaghiZ. SalariA. JalaliF. AlvandiM. FarzipourS. Zarei PolgardaniN. Targeting ferroptosis as a new approach for radiation protection and mitigation.Recent Patents Anticancer Drug Discov.2024191577110.2174/1574892818666230119153247
    [Google Scholar]
  121. DengS. WuD. LiL. LiuT. ZhangT. LiJ. YuY. HeM. ZhaoY.Y. HanR. XuY. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549.Biochem. Biophys. Res. Commun.2021549546010.1016/j.bbrc.2021.02.07733662669
    [Google Scholar]
  122. LuoM. WuL. ZhangK. WangH. ZhangT. GutierrezL. O’ConnellD. ZhangP. LiY. GaoT. RenW. YangY. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma.Cell Death Differ.20182581457147210.1038/s41418‑017‑0053‑829348676
    [Google Scholar]
  123. ZhangQ. FanX. ZhangX. JuS. Ferroptosis in tumors and its relationship to other programmed cell death: Role of non-coding RNAs.J. Transl. Med.202321151410.1186/s12967‑023‑04370‑637516888
    [Google Scholar]
  124. SongZ. JiaG. MaP. CangS. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis.Life Sci.202127611939910.1016/j.lfs.2021.11939933781830
    [Google Scholar]
  125. ChenX. ZhangL. HeY. HuangS. ChenS. ZhaoW. YuD. Regulation of m6A modification on ferroptosis and its potential significance in radiosensitization.Cell Death Discov.20239134310.1038/s41420‑023‑01645‑137714846
    [Google Scholar]
  126. MoG. MoJ. TanX. WangJ. YanZ. LiuY. RETRACTED ARTICLE: Yin Yang 1 (YY1)-induced long intergenic non-protein coding RNA 472 (LINC00472) aggravates sepsis-associated cardiac dysfunction via the micro-RNA-335-3p (miR-335-3p)/Monoamine oxidase A (MAOA) cascade.Bioengineered20221311049106110.1080/21655979.2021.201758935112970
    [Google Scholar]
  127. MaoC. WangX. LiuY. WangM. YanB. JiangY. ShiY. ShenY. LiuX. LaiW. YangR. XiaoD. ChengY. LiuS. ZhouH. CaoY. YuW. MueggeK. YuH. TaoY. A G3BP1-Interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53.Cancer Res.201878133484349610.1158/0008‑5472.CAN‑17‑345429588351
    [Google Scholar]
  128. QiW. LiZ. XiaL. DaiJ. ZhangQ. WuC. XuS. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells.Sci. Rep.2019911618510.1038/s41598‑019‑52837‑831700067
    [Google Scholar]
  129. GaiC. LiuC. WuX. YuM. ZhengJ. ZhangW. LvS. LiW. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells.Cell Death Dis.202011975110.1038/s41419‑020‑02939‑332929075
    [Google Scholar]
  130. ZhangY. GuoS. WangS. LiX. HouD. LiH. WangL. XuY. MaB. WangH. JiangX. LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling.Ecotoxicol. Environ. Saf.202122011237610.1016/j.ecoenv.2021.11237634051661
    [Google Scholar]
  131. WuH. LiuA. Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer.J. Int. Med. Res.202149310.1177/030006052199618333730930
    [Google Scholar]
  132. ZhangZ. YeB. LinY. LiuW. DengJ. JiW. LncRNA OTUD6B-AS1 overexpression promoted GPX4-mediated ferroptosis to suppress radioresistance in colorectal cancer.Clin. Transl. Oncol.202325113217322910.1007/s12094‑023‑03193‑737184781
    [Google Scholar]
  133. YangY. ZhuT. WangX. XiongF. HuZ. QiaoX. YuanX. WangD. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers.Cancers 20221423589610.3390/cancers1423589636497375
    [Google Scholar]
  134. HuQ. HuangT. Regulation of the cell cycle by ncRNAs affects the efficiency of CDK4/6 Inhibition.Int. J. Mol. Sci.20232410893910.3390/ijms2410893937240281
    [Google Scholar]
  135. UtoK. InoueD. ShimutaK. NakajoN. SagataN. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism.EMBO J.200423163386339610.1038/sj.emboj.760032815272308
    [Google Scholar]
  136. ChenY. CuiJ. GongY. WeiS. WeiY. YiL. MicroRNA: A novel implication for damage and protection against ionizing radiation.Environ. Sci. Pollut. Res. Int.20212813155841559610.1007/s11356‑021‑12509‑533533004
    [Google Scholar]
  137. LabbéM. HoeyC. RayJ. PotironV. SupiotS. LiuS.K. FradinD. microRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation.Mol. Cancer20201916310.1186/s12943‑020‑01186‑632293453
    [Google Scholar]
  138. LiuY. XingR. ZhangX. DongW. ZhangJ. YanZ. LiW. CuiJ. LuY. miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells.DNA Repair201312974175010.1016/j.dnarep.2013.06.00223835407
    [Google Scholar]
  139. HeJ. FengX. HuaJ. WeiL. LuZ. WeiW. CaiH. WangB. ShiW. DingN. LiH. ZhangY. WangJ. miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells.Cell Cycle201716201943195310.1080/15384101.2017.136707028895780
    [Google Scholar]
  140. YeC. SunN. MaY. ZhaoQ. ZhangQ. XuC. WangS. SunS. WangF. LiW. MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells.FEBS Lett.2015589670270910.1016/j.febslet.2015.01.03725666710
    [Google Scholar]
  141. ZhengL. ZhangY. LiuY. ZhouM. LuY. YuanL. ZhangC. HongM. WangS. LiX. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer.J. Transl. Med.201513125210.1186/s12967‑015‑0592‑z26238857
    [Google Scholar]
  142. GuptaS. SilveiraD.A. MombachJ.C.M. Modeling the role of microRNA-449a in the regulation of the G2/M cell cycle checkpoint in prostate LNCaP cells under ionizing radiation.PLoS One2018137e020076810.1371/journal.pone.020076830024932
    [Google Scholar]
  143. ZhouY. WangY. LinM. WuD. ZhaoM. LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells.Cancer Cell Int.202121140010.1186/s12935‑021‑02103‑734320988
    [Google Scholar]
  144. HoeferlinL.A. OleinikN.V. KrupenkoN.I. KrupenkoS.A. Activation of p21-Dependent G1/G2 arrest in the absence of dna damage as an antiapoptotic response to metabolic stress.Genes Cancer20112988989910.1177/194760191143249522593801
    [Google Scholar]
  145. LiangT. WangY. JiaoY. CongS. JiangX. DongL. ZhangG. XiaoD. LncRNA MALAT1 accelerates cervical carcinoma proliferation by suppressing mir-124 expression in cervical tumor cells.J. Oncol.2021202111110.1155/2021/883607834221014
    [Google Scholar]
  146. HuM. YangJ. Down-regulation of lncRNA UCA1 enhances radiosensitivity in prostate cancer by suppressing EIF4G1 expression via sponging miR-331-3p.Cancer Cell Int.202020144910.1186/s12935‑020‑01538‑832943997
    [Google Scholar]
  147. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.116080919460998
    [Google Scholar]
  148. EdiriweeraM.K. JayasenaS. The role of reprogrammed glucose metabolism in cancer.Metabolites202313334510.3390/metabo1303034536984785
    [Google Scholar]
  149. CaoK. LiJ. ChenJ. QianL. WangA. ChenX. XiongW. TangJ. TangS. ChenY. ChenY. ChengY. ZhouJ. microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma.Oncotarget2017848836608367210.18632/oncotarget.1901429137372
    [Google Scholar]
  150. LanF. QinQ. YuH. YueX. Effect of glycolysis inhibition by miR-448 on glioma radiosensitivity.J. Neurosurg.202013251456146410.3171/2018.12.JNS18179831003211
    [Google Scholar]
  151. MiY. HeM. LiuB. MiR-133b affect the proliferation and drug sensitivity in A549 lung cancer stem cells by targeting PKM2.Zhongguo Fei Ai Za Zhi201720637638110.3779/j.issn.1009‑3419.2017.06.0228641694
    [Google Scholar]
  152. LiL. LiuH. DuL. XiP. WangQ. LiY. LiuD. miR-449a Suppresses LDHA-mediated glycolysis to enhance the sensitivity of non-small cell lung cancer cells to ionizing radiation.Oncol. Res.201826454755610.3727/096504017X1501633725460528800787
    [Google Scholar]
  153. GuanY. CaoZ. DuJ. LiuT. WangT. Circular RNA circPITX1 knockdown inhibits glycolysis to enhance radiosensitivity of glioma cells by miR-329-3p/NEK2 axis.Cancer Cell Int.20202018010.1186/s12935‑020‑01169‑z32190004
    [Google Scholar]
  154. ZhangX. WangS. LinG. WangD. Down-regulation of circ-PTN suppresses cell proliferation, invasion and glycolysis in glioma by regulating miR-432-5p/RAB10 axis.Neurosci. Lett.202073513515310.1016/j.neulet.2020.13515332629066
    [Google Scholar]
  155. El-SahliS. XieY. WangL. LiuS. Wnt signaling in cancer metabolism and immunity.Cancers 201911790410.3390/cancers1107090431261718
    [Google Scholar]
  156. Trejo-SolisC. Escamilla-RamirezA. Jimenez-FarfanD. Castillo-RodriguezR.A. Flores-NajeraA. Cruz-SalgadoA. Crosstalk of the Wnt/β-catenin signaling pathway in the induction of apoptosis on cancer cells.Pharmaceuticals 202114987110.3390/ph1409087134577571
    [Google Scholar]
  157. YangC.X. ZhangS.M. LiJ. YangB. OuyangW. MeiZ.J. ChenJ. DaiJ. KeS. ZhouF.X. ZhouY.F. XieC.H. MicroRNA-320 regulates the radiosensitivity of cervical cancer cells C33AR by targeting β- catenin.Oncol. Lett.20161264983499010.3892/ol.2016.534028105205
    [Google Scholar]
  158. SuH. WuY. FangY. ShenL. FeiZ. XieC. ChenM. MicroRNA-301a targets WNT1 to suppress cell proliferation and migration and enhance radiosensitivity in esophageal cancer cells.Oncol. Rep.201841159960710.3892/or.2018.679930365079
    [Google Scholar]
  159. LiG. WangY. LiuY. SuZ. LiuC. RenS. DengT. HuangD. TianY. QiuY. miR-185-3p regulates nasopharyngeal carcinoma radioresistance by targeting WNT 2B in vitro .Cancer Sci.2014105121560156810.1111/cas.1255525297925
    [Google Scholar]
  160. LiuC. LiG. YangN. SuZ. ZhangS. DengT. RenS. LuS. TianY. LiuY. QiuY. miR-324-3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma.Cancer Cell Int.2017171210.1186/s12935‑016‑0372‑828053597
    [Google Scholar]
  161. AnL. LiM. JiaQ. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma.Mol. Cancer202322114010.1186/s12943‑023‑01839‑237598158
    [Google Scholar]
  162. JavedZ. KhanK. SadiaH. RazaS. SalehiB. Sharifi-RadJ. ChoW.C. LncRNA & Wnt signaling in colorectal cancer.Cancer Cell Int.202020132610.1186/s12935‑020‑01412‑732699525
    [Google Scholar]
  163. JiangY. LiZ. ZhengS. ChenH. ZhaoX. GaoW. BiZ. YouK. WangY. LiW. LiL. LiuY. ChenR. The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1.Tumour Biol.20163733957396710.1007/s13277‑015‑4234‑026482614
    [Google Scholar]
  164. LiJ. HouS. YeZ. WangW. HuX. HangQ. Long non-coding RNAs in pancreatic cancer: Biologic functions, mechanisms, and clinical significance.Cancers 2022149211510.3390/cancers1409211535565245
    [Google Scholar]
  165. ZhangH. LuoH. HuZ. PengJ. JiangZ. SongT. WuB. YueJ. ZhouR. XieR. ChenT. WuS. Targeting WISP1 to sensitize esophageal squamous cell carcinoma to irradiation.Oncotarget2015686218623410.18632/oncotarget.335825749038
    [Google Scholar]
  166. BandresE. BitarteN. AriasF. AgorretaJ. FortesP. AgirreX. ZarateR. Diaz-GonzalezJ.A. RamirezN. SolaJ.J. JimenezP. RodriguezJ. Garcia-FoncillasJ. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells.Clin. Cancer Res.20091572281229010.1158/1078‑0432.CCR‑08‑181819318487
    [Google Scholar]
  167. WangG. LiZ. ZhaoQ. ZhuY. ZhaoC. LiX. MaZ. LiX. ZhangY. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway.Oncol. Rep.20143141839184510.3892/or.2014.304724573322
    [Google Scholar]
  168. ZhangY. ZhengL. HuangJ. GaoF. LinX. HeL. LiD. LiZ. DingY. ChenL. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1.PLoS One201494e9391710.1371/journal.pone.009391724705396
    [Google Scholar]
  169. WanL.Y. DengJ. XiangX.J. ZhangL. YuF. ChenJ. SunZ. FengM. XiongJ.P. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy In Vitro by targeting FOXM1.Biochem. Biophys. Res. Commun.2015457212513210.1016/j.bbrc.2014.11.03925446103
    [Google Scholar]
  170. ZhangY. YuJ. LiuH. MaW. YanL. WangJ. LiG. Novel Epigenetic CREB-miR-630 signaling axis regulates radiosensitivity in colorectal cancer.PLoS One2015108e013387010.1371/journal.pone.013387026263387
    [Google Scholar]
  171. ZhuY. WangC. BeckerS.A. HurstK. NogueiraL.M. FindlayV.J. CampE.R. miR-145 Antagonizes SNAI1-mediated stemness and radiation resistance in colorectal cancer.Mol. Ther.201826374475410.1016/j.ymthe.2017.12.02329475734
    [Google Scholar]
  172. ShenY.N. BaeI.S. ParkG.H. ChoiH.S. LeeK.H. KimS.H. MicroRNA-196b enhances the radiosensitivity of SNU-638 gastric cancer cells by targeting RAD23B.Biomed. Pharmacother.201810536236910.1016/j.biopha.2018.05.11129864624
    [Google Scholar]
  173. ZouY. YaoS. ChenX. LiuD. WangJ. YuanX. RaoJ. XiongH. YuS. YuanX. ZhuF. HuG. WangY. XiongH. LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells.Eur. J. Cell Biol.201897536937810.1016/j.ejcb.2018.04.00529773344
    [Google Scholar]
  174. LiH. JinX. LiuB. ZhangP. ChenW. LiQ. CircRNA CBL.11 suppresses cell proliferation by sponging miR-6778-5p in colorectal cancer.BMC Cancer201919182610.1186/s12885‑019‑6017‑231438886
    [Google Scholar]
  175. SuF. DuanJ. ZhuJ. FuH. ZhengX. GeC. Long non-coding RNA nuclear paraspeckle assembly transcript 1 regulates ionizing radiation-induced pyroptosis via microRNA-448/gasdermin E in colorectal cancer cells.Int. J. Oncol.20215947910.3892/ijo.2021.525934476497
    [Google Scholar]
  176. SamadiP. AfsharS. AminiR. NajafiR. MahdavinezhadA. Sedighi PashakiA. GholamiM.H. SaidijamM. Let-7e enhances the radiosensitivity of colorectal cancer cells by directly targeting insulin-like growth factor 1 receptor.J. Cell. Physiol.20192347107181072510.1002/jcp.2774230515804
    [Google Scholar]
  177. GeY. TuW. LiJ. ChenX. ChenY. XuY. XuY. WangY. LiuY. MiR-122-5p increases radiosensitivity and aggravates radiation-induced rectal injury through CCAR1.Toxicol. Appl. Pharmacol.202039911505410.1016/j.taap.2020.11505432422326
    [Google Scholar]
  178. LiaoF. ChenX. PengP. DongW. RWR-algorithm-based dissection of microRNA-506-3p and microRNA-140-5p as radiosensitive biomarkers in colorectal cancer.Aging20201220205122052210.18632/aging.10390733033230
    [Google Scholar]
  179. YangX.D. XuH.T. XuX.H. RuG. LiuW. ZhuJ.J. WuY.Y. ZhaoK. WuY. XingC.G. ZhangS.Y. CaoJ.P. LiM. Knockdown of long non-coding RNA HOTAIR inhibits proliferation and invasiveness and improves radiosensitivity in colorectal cancer.Oncol. Rep.201635147948710.3892/or.2015.439726549670
    [Google Scholar]
  180. YangX. LiuW. XuX. ZhuJ. WuY. ZhaoK. HeS. LiM. WuY. ZhangS. CaoJ. YeZ. XingC. Downregulation of long non‑coding RNA UCA1 enhances the radiosensitivity and inhibits migration via suppression of epithelial-mesenchymal transition in colorectal cancer cells.Oncol. Rep.20184031554156410.3892/or.2018.657330015983
    [Google Scholar]
  181. KangZ. JifuE. GuoK. MaX. ZhangY. YuE. Knockdown of long non-coding RNA TINCR decreases radioresistance in colorectal cancer cells.Pathol. Res. Pract.20192151115262210.1016/j.prp.2019.15262231540772
    [Google Scholar]
  182. ZhouY. ShaoY. HuW. ZhangJ. ShiY. KongX. JiangJ. A novel long noncoding RNA SP100-AS1 induces radioresistance of colorectal cancer via sponging miR-622 and stabilizing ATG3.Cell Death Differ.202330111112410.1038/s41418‑022‑01049‑135978049
    [Google Scholar]
  183. LeeJ. KimD.Y. KimY. ShinU.S. KimK.S. KimE.J. IGFL2-AS1, a Long Non-Coding RNA, is associated with radioresistance in colorectal cancer.Int. J. Mol. Sci.202324297810.3390/ijms2402097836674495
    [Google Scholar]
  184. TroschelF.M. BöhlyN. BorrmannK. BraunT. SchwickertA. KieselL. EichH.T. GötteM. GreveB. miR-142-3p attenuates breast cancer stem cell characteristics and decreases radioresistance In Vitro.Tumour Biol.201840810.1177/101042831879188730091683
    [Google Scholar]
  185. FabrisL. BertonS. CitronF. D’AndreaS. SegattoI. NicolosoM.S. MassarutS. ArmeniaJ. ZafaranaG. RossiS. IvanC. PerinT. VaidyaJ.S. AvanzoM. RoncadinM. SchiappacassiM. BristowR.G. CalinG. BaldassarreG. BellettiB. Radiotherapy-induced miR-223 prevents relapse of breast cancer by targeting the EGF pathway.Oncogene201635374914492610.1038/onc.2016.2326876200
    [Google Scholar]
  186. LuoJ. ChenJ. HeL. mir-129-5p attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1.Med. Sci. Monit.2015214122412910.12659/MSM.89666126720492
    [Google Scholar]
  187. ZhangJ. CuiY. LinX. ZhangG. LiZ. MiR-122-3p sensitizes breast cancer cells to ionizing radiation via controlling of cell apoptosis, migration and invasion.Int. J. Clin. Exp. Pathol.2017101215223
    [Google Scholar]
  188. WolfeA.R. BambhroliyaA. ReddyJ.P. DebebB.G. HuoL. LarsonR. LiL. UenoN.T. WoodwardW.A. MiR-33a decreases high-density lipoprotein-induced radiation sensitivity in breast cancer.Int. J. Radiat. Oncol. Biol. Phys.201695279179910.1016/j.ijrobp.2016.01.02527055396
    [Google Scholar]
  189. LuoM. DingL. LiQ. YaoH. miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα.Breast Cancer201724567368210.1007/s12282‑017‑0756‑128138801
    [Google Scholar]
  190. ZhangX. LiY. WangD. WeiX. miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1.Biol. Res.20175012710.1186/s40659‑017‑0133‑828882183
    [Google Scholar]
  191. TanX. LiZ. RenS. RezaeiK. PanQ. GoldsteinA.T. MacriC.J. CaoD. BremR.F. FuS.W. Dynamically decreased miR-671-5p expression is associated with oncogenic transformation and radiochemoresistance in breast cancer.Breast Cancer Res.20192118910.1186/s13058‑019‑1173‑531391072
    [Google Scholar]
  192. ZhangP. WangL. Rodriguez-AguayoC. YuanY. DebebB.G. ChenD. SunY. YouM.J. LiuY. DeanD.C. WoodwardW.A. LiangH. YangX. Lopez-BeresteinG. SoodA.K. HuY. AngK.K. ChenJ. MaL. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13.Nat. Commun.201451567110.1038/ncomms667125476932
    [Google Scholar]
  193. PajicM. FroioD. DalyS. DocularaL. MillarE. GrahamP.H. DruryA. SteinmannA. de BockC.E. BoulghourjianA. ZaratzianA. CarrollS. TooheyJ. O’TooleS.A. HarrisA.L. BuffaF.M. GeeH.E. HollwayG.E. MolloyT.J. miR-139-5p modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of dna repair and ros defense.Cancer Res.201878250151510.1158/0008‑5472.CAN‑16‑310529180477
    [Google Scholar]
  194. WuJ. ChenH. YeM. WangB. ZhangY. ShengJ. MengT. ChenH. Corrigendum to “Downregulation of long noncoding RNA HCP5 contributes to cisplatin resistance in human triple-negative breast cancer via regulation of PTEN expression” [Biomed. Pharmacother. 115 (2019) 108869].Biomed. Pharmacother.202012210978910.1016/j.biopha.2019.10978931864836
    [Google Scholar]
  195. WangY. LiuM. LiuX. GuoX. LINC00963-FOSB-mediated transcription activation of UBE3C enhances radioresistance of breast cancer cells by inducing ubiquitination-dependent protein degradation of TP73.J. Transl. Med.202321132110.1186/s12967‑023‑04153‑z37173692
    [Google Scholar]
  196. TaoZ. XuS. RuanH. WangT. SongW. QianL. ChenK. MiR-195/-16 family enhances radiotherapy via T cell activation in the tumor microenvironment by blocking the PD-L1 immune checkpoint.Cell. Physiol. Biochem.201848280181410.1159/00049190930032144
    [Google Scholar]
  197. RayJ. HaugheyC. HoeyC. JeonJ. MurphyR. Dura-PerezL. McCabeN. DownesM. JainS. BoutrosP.C. MillsI.G. LiuS.K. miR-191 promotes radiation resistance of prostate cancer through interaction with RXRA.Cancer Lett.202047310711710.1016/j.canlet.2019.12.02531874245
    [Google Scholar]
  198. XuZ. ZhangY. DingJ. HuW. TanC. WangM. TangJ. XuY. miR-17-3p downregulates mitochondrial antioxidant enzymes and enhances the radiosensitivity of prostate cancer cells.Mol. Ther. Nucleic Acids201813647710.1016/j.omtn.2018.08.00930240971
    [Google Scholar]
  199. WangW. LiuJ. WuQ. MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1.Eur. Rev. Med. Pharmacol. Sci.20162019210026813458
    [Google Scholar]
  200. SongC.L. LiuB. DiaoH.Y. ShiY.F. ZhangJ.C. LiY.X. LiuN. YuY.P. WangG. WangJ.P. LiQ. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1.Oncotarget2016726397403975710.18632/oncotarget.924027175593
    [Google Scholar]
  201. YuT. DuH. SunC. Circ-ABCC4 contributes to prostate cancer progression and radioresistance by mediating miR-1253/SOX4 cascade.Anticancer Drugs202334115516510.1097/CAD.000000000000136136539368
    [Google Scholar]
  202. ChangJ.H. HwangY.H. LeeD.J. KimD.H. ParkJ.M. WuH.G. KimI.A. MicroRNA-203 Modulates the radiation sensitivity of human malignant glioma cells.Int. J. Radiat. Oncol. Biol. Phys.201694241242010.1016/j.ijrobp.2015.10.00126678661
    [Google Scholar]
  203. YueX. LanF. XiaT. Hypoxic glioma cell-secreted exosomal mir-301a activates wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7.Mol. Ther.201927111939194910.1016/j.ymthe.2019.07.01131402274
    [Google Scholar]
  204. KwakS.Y. YangJ.S. KimB.Y. BaeI.H. HanY.H. Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B RhoGAP.Biochim. Biophys. Acta Mol. Cell Res.20141843350851610.1016/j.bbamcr.2013.11.02124316134
    [Google Scholar]
  205. UpraityS. KaziS. PadulV. ShirsatN.V. MiR-224 expression increases radiation sensitivity of glioblastoma cells.Biochem. Biophys. Res. Commun.2014448222523010.1016/j.bbrc.2014.04.09524785373
    [Google Scholar]
  206. LiW. LiuY. YangW. HanX. LiS. LiuH. GerweckL.E. FukumuraD. LoefflerJ.S. YangB.B. JainR.K. HuangP. MicroRNA-378 enhances radiation response in ectopic and orthotopic implantation models of glioblastoma.J. Neurooncol.20181361637110.1007/s11060‑017‑2646‑y29081036
    [Google Scholar]
  207. FanH. YuanR. ChengS. XiongK. ZhuX. ZhangY. Overexpressed miR-183 promoted glioblastoma radioresistance via down-regulating LRIG1.Biomed. Pharmacother.2018971554156310.1016/j.biopha.2017.11.05029793318
    [Google Scholar]
  208. ZhengC. WeiY. ZhangQ. SunM. WangY. HouJ. ZhangP. LvX. SuD. JiangY. GuminJ. SahniN. HuB. WangW. ChenX. McGrailD.J. ZhangC. HuangS. XuH. ChenJ. LangF.F. HuJ. ChenY. Multiomics analyses reveal DARS1-AS1 /YBX1–controlled posttranscriptional circuits promoting glioblastoma tumorigenesis/radioresistance.Sci. Adv.2023931eadf398410.1126/sciadv.adf398437540752
    [Google Scholar]
  209. HuangD. BianG. PanY. HanX. SunY. WangY. ShenG. ChengM. FangX. HuS. MiR–20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells.Cancer Cell Int.20171713210.1186/s12935‑017‑0389‑728265202
    [Google Scholar]
  210. YangF. LiuQ. HuC.M. Epstein-Barr virus-encoded LMP1 increases miR-155 expression, which promotes radioresistance of nasopharyngeal carcinoma via suppressing UBQLN1.Eur. Rev. Med. Pharmacol. Sci.201519234507451526698246
    [Google Scholar]
  211. KongL. WeiQ. HuX. ChenL. LiJ. miR-193a-3p promotes radio-resistance of nasopharyngeal cancer cells by targeting srsf2 gene and hypoxia signaling pathway.Med. Sci. Monit. Basic Res.201925536210.12659/MSMBR.91457230773530
    [Google Scholar]
  212. WangT. DongX.M. ZhangF.L. ZhangJ.R. miR-206 enhances nasopharyngeal carcinoma radiosensitivity by targeting IGF1.Kaohsiung J. Med. Sci.201733942743210.1016/j.kjms.2017.05.01528865599
    [Google Scholar]
  213. FengX. LvW. WangS. HeQ. miR-495 enhances the efficacy of radiotherapy by targeting GRP78 to regulate EMT in nasopharyngeal carcinoma cells.Oncol. Rep.20184031223123210.3892/or.2018.653830015969
    [Google Scholar]
  214. HanY.Y. LiuK. XieJ. LiF. WangY. YanB. LINC00114 promoted nasopharyngeal carcinoma progression and radioresistance in vitro and in vivo through regulating ERK/JNK signaling pathway via targeting miR-203.Eur. Rev. Med. Pharmacol. Sci.20202452491250410.26355/eurrev_202003_2051732196600
    [Google Scholar]
  215. JiangL.P. ZhuZ.T. ZhangY. HeC.Y. Downregulation of MicroRNA-330 correlates with the radiation sensitivity and prognosis of patients with brain metastasis from lung cancer.Cell. Physiol. Biochem.20174262220222910.1159/00047999628817811
    [Google Scholar]
  216. YuanD. XuJ. WangJ. PanY. FuJ. BaiY. ZhangJ. ShaoC. Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5.Oncotarget2016722327073272210.18632/oncotarget.901727129166
    [Google Scholar]
  217. GuoY. JiangY. SangM. XuC. RETRACTED: Down-regulation of miR-373 increases the radiosensitivity of lung cancer cells by targeting TIMP2.Int. J. Biochem. Cell Biol.20189920321010.1016/j.biocel.2018.04.01429673878
    [Google Scholar]
  218. ChenG. YuL. DongH. LiuZ. SunY. MiR-182 enhances radioresistance in non-small cell lung cancer cells by regulating FOXO 3.Clin. Exp. Pharmacol. Physiol.201946213714310.1111/1440‑1681.1304130307642
    [Google Scholar]
  219. SongY. ZuoY. QianX.L. ChenZ.P. WangS.K. SongL. PengL.P. Inhibition of MicroRNA-21-5p promotes the radiation sensitivity of non-small cell lung cancer through HMSH2.Cell. Physiol. Biochem.20174331258127210.1159/00048183929024929
    [Google Scholar]
  220. ZhuL. XueF. CuiY. LiuS. LiG. LiJ. GuanB. ZengH. BianW. YangC. ZhaoC. miR-155-5p and miR-760 mediate radiation therapy suppressed malignancy of non-small cell lung cancer cells.Biofactors201945339340010.1002/biof.150030901121
    [Google Scholar]
  221. HeX. YangA. McDonaldD.G. RiemerE.C. VanekK.N. SchulteB.A. WangG.Y. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells.Oncotarget2017841697976980710.18632/oncotarget.1926729050242
    [Google Scholar]
  222. HouJ. WangY. ZhangH. HuY. XinX. LiX. Silencing of LINC00461 enhances radiosensitivity of lung adenocarcinoma cells by down-regulating HOXA10 via microRNA-195.J. Cell. Mol. Med.20202452879289010.1111/jcmm.1485931967713
    [Google Scholar]
  223. ChenJ. ShenZ. ZhengY. WangS. MaoW. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR.Int. J. Clin. Exp. Pathol.2015877878788626339352
    [Google Scholar]
  224. WangJ. ZhaoH. YuJ. XuX. LiuW. JingH. LiN. TangY. LiY. CaiJ. JinJ. MiR-92b targets p57kip2 to modulate the resistance of hepatocellular carcinoma (HCC) to ionizing radiation (IR) -based radiotherapy.Biomed. Pharmacother.201911064665510.1016/j.biopha.2018.11.08030544064
    [Google Scholar]
  225. ZhengJ. LuoJ. ZengH. GuoL. ShaoG. 125I suppressed the Warburg effect via regulating miR-338/PFKL axis in hepatocellular carcinoma.Biomed. Pharmacother.201911910940210.1016/j.biopha.2019.10940231514072
    [Google Scholar]
  226. ZhangY. ZhengL. DingY. LiQ. WangR. LiuT. SunQ. YangH. PengS. WangW. ChenL. MiR-20a induces cell radioresistance by activating the PTEN/PI3K/Akt signaling pathway in hepatocellular carcinoma.Int. J. Radiat. Oncol. Biol. Phys.20159251132114010.1016/j.ijrobp.2015.04.00726031366
    [Google Scholar]
  227. DengP. WuY. Knockdown of miR-106a suppresses migration and invasion and enhances radiosensitivity of hepatocellular carcinoma cells by upregulating FBXW7.Int. J. Clin. Exp. Pathol.20191241184119331933933
    [Google Scholar]
  228. LiX. LuP. LiB. YangR. ChuY. ZhangZ. WanH. NiuC. WangC. LuoK. Sensitization of hepatocellular carcinoma cells to irradiation by miR-34a through targeting lactate dehydrogenase-A.Mol. Med. Rep.20161343661366710.3892/mmr.2016.497426956717
    [Google Scholar]
  229. ChenX. ZhangN. Downregulation of lncRNA NEAT1_2 radiosensitizes hepatocellular carcinoma cells through regulation of miR-101-3p/WEE1 axis.Cell Biol. Int.2019431445510.1002/cbin.1107730488993
    [Google Scholar]
  230. JinQ. HuH. YanS. JinL. PanY. LiX. PengY. CaoP. lncRNA MIR22HG-Derived miR-22-5p enhances the radiosensitivity of hepatocellular carcinoma by increasing histone acetylation through the inhibition of HDAC2 Activity.Front. Oncol.20211157258510.3389/fonc.2021.57258533718133
    [Google Scholar]
  231. MaH. YuanL. LiW. XuK. YangL. The LncRNA H19/miR-193a-3p axis modifies the radio-resistance and chemotherapeutic tolerance of hepatocellular carcinoma cells by targeting PSEN1.J. Cell. Biochem.2018119108325833510.1002/jcb.2688329968942
    [Google Scholar]
  232. ZhangX. YangJ. Role of Non-coding RNAs on the radiotherapy sensitivity and resistance of head and neck cancer: from basic research to clinical application.Front. Cell Dev. Biol.2021863743510.3389/fcell.2020.63743533644038
    [Google Scholar]
  233. ChenL. WenY. ZhangJ. SunW. LuiV.W.Y. WeiY. ChenF. WenW. Prediction of radiotherapy response with a 5-microRNA signature-based nomogram in head and neck squamous cell carcinoma.Cancer Med.20187372673510.1002/cam4.136929473326
    [Google Scholar]
  234. PiotrowskiI. ZhuX. SacconT.D. AshiquealiS. SchneiderA. de Carvalho NunesA.D. NoureddineS. SobeckaA. BarczakW. SzewczykM. GolusińskiW. MasternakM.M. GolusińskiP. miRNAs as biomarkers for diagnosing and predicting survival of head and neck squamous cell carcinoma patients.Cancers 20211316398010.3390/cancers1316398034439138
    [Google Scholar]
  235. GuoZ. WangY.H. XuH. YuanC.S. ZhouH.H. HuangW.H. WangH. ZhangW. LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma.Cell Death Dis.20211216910.1038/s41419‑020‑03302‑233431817
    [Google Scholar]
  236. Garrido-PalaciosA. Rojas CarvajalA.M. Núñez-NegrilloA.M. Cortés-MartínJ. Sánchez-GarcíaJ.C. Aguilar-CorderoM.J. MicroRNA dysregulation in early breast cancer diagnosis: A systematic review and meta-analysis.Int. J. Mol. Sci.2023249827010.3390/ijms2409827037175974
    [Google Scholar]
  237. van SchooneveldE. WildiersH. VergoteI. VermeulenP.B. DirixL.Y. Van LaereS.J. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management.Breast Cancer Res.20151712110.1186/s13058‑015‑0526‑y25849621
    [Google Scholar]
  238. ZhangZ. LiW. JiangD. LiuC. LaiZ. MicroRNA-139-5p inhibits cell viability, migration and invasion and suppresses tumor growth by targeting HDGF in non-small cell lung cancer.Oncol. Lett.20201931806181410.3892/ol.2020.1129632194674
    [Google Scholar]
  239. ItoM. MiyataY. OkadaM. Current clinical trials with non-coding RNA-based therapeutics in malignant diseases: A systematic review.Transl. Oncol.20233110163410.1016/j.tranon.2023.10163436841158
    [Google Scholar]
  240. SetoA.G. BeattyX. LynchJ.M. HermreckM. TetzlaffM. DuvicM. JacksonA.L. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma.Br. J. Haematol.2018183342844410.1111/bjh.1554730125933
    [Google Scholar]
  241. ViteriS. RosellR. An innovative mesothelioma treatment based on miR-16 mimic loaded EGFR targeted minicells (TargomiRs).Transl. Lung Cancer Res.20187S1S1S410.21037/tlcr.2017.12.0129531894
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232301727240422092311
Loading
/content/journals/cgt/10.2174/0115665232301727240422092311
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; longer ncRNA; miRNA; Non-coding RNA; radioresistance; radiosensivity; radiotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test