Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Aims

Investigating the impact of stemness-related circadian rhythm disruption (SCRD) on hepatocellular carcinoma (HCC) prognosis and its potential as a predictor for immunotherapy response.

Background

Circadian disruption has been linked to tumor progression through its effect on the stemness of cancer cells.

Objective

Develop a novel signature for SCRD to accurately predict clinical outcomes and immune therapy response in patients with HCC.

Methods

The stemness degree of patients with HCC was assessed based on the stemness index (mRNAsi). The co-expression circadian genes significantly correlated with mRNAsi were identified and defined as stemness- and circadian-related genes (SCRGs). The SCRD scores of samples and cells were calculated based on the SCRGs. Differentially expressed genes with a prognostic value between distinct SCRD groups were identified in bulk and single-cell datasets to develop an SCRD signature.

Results

A higher SCRD score indicates a worse patient survival rate. Analysis of the tumor microenvironment revealed a significant correlation between SCRD and infiltrating immune cells. Heterogeneous expression patterns, functional states, genomic variants, and cell-cell interactions between two SCRD populations were revealed by transcriptomic, genomic, and interaction analyses. The robust SCRD signature for predicting immunotherapy response and prognosis in patients with HCC was developed and validated in multiple independent cohorts.

Conclusion

In summary, distinct tumor immune microenvironment patterns were confirmed under SCRD in bulk and single-cell transcriptomic, and SCRD signature associated with clinical outcomes and immunotherapy response was developed and validated in HCC.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232298240240529131358
2025-04-01
2025-01-18
Loading full text...

Full text loading...

References

  1. LlovetJ.M. CastetF. HeikenwalderM. MainiM.K. MazzaferroV. PinatoD.J. PikarskyE. ZhuA.X. FinnR.S. Immunotherapies for hepatocellular carcinoma.Nat. Rev. Clin. Oncol.202219315117210.1038/s41571‑021‑00573‑234764464
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  4. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.3193730350310
    [Google Scholar]
  5. ShiJ. LiuJ. TuX. LiB. TongZ. WangT. ZhengY. ShiH. ZengX. ChenW. YinW. FangW. Single-cell immune signature for detecting early-stage HCC and early assessing anti-PD-1 immunotherapy efficacy.J. Immunother. Cancer2022101e00313310.1136/jitc‑2021‑00313335101942
    [Google Scholar]
  6. BassJ. TakahashiJ.S. Circadian integration of metabolism and energetics.Science201033060091349135410.1126/science.119502721127246
    [Google Scholar]
  7. KelleherF.C. RaoA. MaguireA. Circadian molecular clocks and cancer.Cancer Lett.2014342191810.1016/j.canlet.2013.09.04024099911
    [Google Scholar]
  8. SulliG. LamM.T.Y. PandaS. Interplay between circadian clock and cancer: New frontiers for cancer treatment.Trends Cancer20195847549410.1016/j.trecan.2019.07.00231421905
    [Google Scholar]
  9. HeL. FanY. ZhangY. TuT. ZhangQ. YuanF. ChengC. Single-cell transcriptomic analysis reveals circadian rhythm disruption associated with poor prognosis and drug-resistance in lung adenocarcinoma.J. Pineal Res.2022731e1280310.1111/jpi.1280335436363
    [Google Scholar]
  10. GeryS. KomatsuN. BaldjyanL. YuA. KooD. KoefflerH.P. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells.Mol. Cell200622337538210.1016/j.molcel.2006.03.03816678109
    [Google Scholar]
  11. HassanS.A. AliA.A.H. YassineM. SohnD. PfefferM. JänickeR.U. KorfH.W. von GallC. Relationship between locomotor activity rhythm and corticosterone levels during HCC development, progression, and treatment in a mouse model.J. Pineal Res.2021703e1272410.1111/jpi.1272433615553
    [Google Scholar]
  12. WuY. ShenC. WangX. ZhaoW. LiY. HeX. ChenY. LiuJ. WuX. ShenA. Development and validation of a novel circadian rhythm-related signature to predict the prognosis of the patients with hepatocellular carcinoma.BioMed Res. Int.2022202211910.1155/2022/426326135993051
    [Google Scholar]
  13. XuanW. KhanF. JamesC.D. HeimbergerA.B. LesniakM.S. ChenP. Circadian regulation of cancer cell and tumor microenvironment crosstalk.Trends Cell Biol.2021311194095010.1016/j.tcb.2021.06.00834272133
    [Google Scholar]
  14. DongZ. ZhangG. QuM. GimpleR.C. WuQ. QiuZ. PragerB.C. WangX. KimL.J.Y. MortonA.R. DixitD. ZhouW. HuangH. LiB. ZhuZ. BaoS. MackS.C. ChavezL. KayS.A. RichJ.N. Targeting glioblastoma stem cells through disruption of the circadian clock.Cancer Discov.20199111556157310.1158/2159‑8290.CD‑19‑021531455674
    [Google Scholar]
  15. PuramR.V. KowalczykM.S. de BoerC.G. SchneiderR.K. MillerP.G. McConkeyM. TothovaZ. TejeroH. HecklD. JäråsM. ChenM.C. LiH. TamayoA. CowleyG.S. Rozenblatt-RosenO. Al-ShahrourF. RegevA. EbertB.L. Core circadian clock genes regulate leukemia stem cells in AML.Cell2016165230331610.1016/j.cell.2016.03.01527058663
    [Google Scholar]
  16. ChenP. HsuW.H. ChangA. TanZ. LanZ. ZhouA. SpringD.J. LangF.F. WangY.A. DePinhoR.A. Circadian regulator clock recruits immune-suppressive microglia into the gbm tumor microenvironment.Cancer Discov.202010337138110.1158/2159‑8290.CD‑19‑040031919052
    [Google Scholar]
  17. KoyanagiS. KuramotoY. NakagawaH. AramakiH. OhdoS. SoedaS. ShimenoH. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells.Cancer Res.200363217277728314612524
    [Google Scholar]
  18. ZhouL. LuoZ. liZ. HuangQ. Circadian clock is associated with tumor microenvironment in kidney renal clear cell carcinoma.Aging20201214146201463210.18632/aging.10350932681792
    [Google Scholar]
  19. RamosC.A. OuyangC. QiY. ChungY. ChengC.T. LaBargeM.A. SeewaldtV.L. AnnD.K. A non-canonical function of bmal1 metabolically limits obesity-promoted triple-negative breast cancer.iScience202023210083910.1016/j.isci.2020.10083932058954
    [Google Scholar]
  20. YangY. YuanG. XieH. WeiT. ZhuD. CuiJ. LiuX. ShenR. ZhuY. YangX. Circadian clock associates with tumor microenvironment in thoracic cancers.Aging20191124118141182810.18632/aging.10245031881010
    [Google Scholar]
  21. ZhaoD. CaiL. LuX. LiangX. LiJ. ChenP. IttmannM. ShangX. JiangS. LiH. MengC. FloresI. SongJ.H. HornerJ.W. LanZ. WuC.J. LiJ. ChangQ. ChenK.C. WangG. DengP. SpringD.J. WangY.A. DePinhoR.A. Chromatin regulator CHD1 remodels the immunosuppressive tumor microenvironment in pten-deficient prostate cancer.Cancer Discov.20201091374138710.1158/2159‑8290.CD‑19‑135232385075
    [Google Scholar]
  22. ChenP. ZhaoD. LiJ. LiangX. LiJ. ChangA. HenryV.K. LanZ. SpringD.J. RaoG. WangY.A. DePinhoR.A. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma.Cancer Cell201935686888410.1016/j.ccell.2019.05.00331185211
    [Google Scholar]
  23. MatsunagaN. OginoT. HaraY. TanakaT. KoyanagiS. OhdoS. Optimized dosing schedule based on circadian dynamics of mouse breast cancer stem cells improves the antitumor effects of aldehyde dehydrogenase inhibitor.Cancer Res.201878133698370810.1158/0008‑5472.CAN‑17‑403429735553
    [Google Scholar]
  24. PizarroA. HayerK. LahensN.F. HogeneschJ.B. CircaDB: a database of mammalian circadian gene expression profiles.Nucleic Acids Res.201341Database issueD1009D101323180795
    [Google Scholar]
  25. SunY. WuL. ZhongY. ZhouK. HouY. WangZ. ZhangZ. XieJ. WangC. ChenD. HuangY. WeiX. ShiY. ZhaoZ. LiY. GuoZ. YuQ. XuL. VolpeG. QiuS. ZhouJ. WardC. SunH. YinY. XuX. WangX. EstebanM.A. YangH. WangJ. DeanM. ZhangY. LiuS. YangX. FanJ. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma.Cell20211842404421.e1610.1016/j.cell.2020.11.04133357445
    [Google Scholar]
  26. HaoY. HaoS. Andersen-NissenE. MauckW.M.III ZhengS. ButlerA. LeeM.J. WilkA.J. DarbyC. ZagerM. HoffmanP. StoeckiusM. PapalexiE. MimitouE.P. JainJ. SrivastavaA. StuartT. FlemingL.M. YeungB. RogersA.J. McElrathJ.M. BlishC.A. GottardoR. SmibertP. SatijaR. Integrated analysis of multimodal single-cell data.Cell20211841335733587.e2910.1016/j.cell.2021.04.04834062119
    [Google Scholar]
  27. MayakondaA. LinD.C. AssenovY. PlassC. KoefflerH.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer.Genome Res.201828111747175610.1101/gr.239244.11830341162
    [Google Scholar]
  28. MaltaT.M. SokolovA. GentlesA.J. BurzykowskiT. PoissonL. WeinsteinJ.N. KamińskaB. HuelskenJ. OmbergL. GevaertO. ColapricoA. CzerwińskaP. MazurekS. MishraL. HeynH. KrasnitzA. GodwinA.K. LazarA.J. StuartJ.M. HoadleyK.A. LairdP.W. NoushmehrH. WiznerowiczM. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbrotE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. GonzalezA.M.A. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. PineroE.M.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. Machine learning identifies stemness features associated with oncogenic dedifferentiation.Cell2018173233835410.1016/j.cell.2018.03.03429625051
    [Google Scholar]
  29. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  30. SmythG.K. MichaudJ. ScottH.S. Use of within-array replicate spots for assessing differential expression in microarray experiments.Bioinformatics20052192067207510.1093/bioinformatics/bti27015657102
    [Google Scholar]
  31. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  32. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  33. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  34. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  35. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  36. QiuX. MaoQ. TangY. WangL. ChawlaR. PlinerH.A. TrapnellC. Reversed graph embedding resolves complex single-cell trajectories.Nat. Methods2017141097998210.1038/nmeth.440228825705
    [Google Scholar]
  37. JinS. Guerrero-JuarezC.F. ZhangL. ChangI. RamosR. KuanC.H. MyungP. PlikusM.V. NieQ. Inference and analysis of cell-cell communication using CellChat.Nat. Commun.2021121108810.1038/s41467‑021‑21246‑933597522
    [Google Scholar]
  38. JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑130127393
    [Google Scholar]
  39. BarretinaJ. CaponigroG. StranskyN. VenkatesanK. MargolinA.A. KimS. WilsonC.J. LehárJ. KryukovG.V. SonkinD. ReddyA. LiuM. MurrayL. BergerM.F. MonahanJ.E. MoraisP. MeltzerJ. KorejwaA. Jané-ValbuenaJ. MapaF.A. ThibaultJ. Bric-FurlongE. RamanP. ShipwayA. EngelsI.H. ChengJ. YuG.K. YuJ. AspesiP.Jr de SilvaM. JagtapK. JonesM.D. WangL. HattonC. PalescandoloE. GuptaS. MahanS. SougnezC. OnofrioR.C. LiefeldT. MacConaillL. WincklerW. ReichM. LiN. MesirovJ.P. GabrielS.B. GetzG. ArdlieK. ChanV. MyerV.E. WeberB.L. PorterJ. WarmuthM. FinanP. HarrisJ.L. MeyersonM. GolubT.R. MorrisseyM.P. SellersW.R. SchlegelR. GarrawayL.A. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity.Nature2012483739160360710.1038/nature1100322460905
    [Google Scholar]
  40. GeeleherP. CoxN. HuangR.S. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  41. Friedmann-MorvinskiD. VermaI.M. Dedifferentiation and reprogramming: Origins of cancer stem cells.EMBO Rep.201415324425310.1002/embr.20133825424531722
    [Google Scholar]
  42. LaddA.D. DuarteS. SahinI. ZarrinparA. Mechanisms of drug resistance in HCC.Hepatology202379492694036680397
    [Google Scholar]
  43. FernandesM. JammeP. CortotA.B. KherroucheZ. TulasneD. When the MET receptor kicks in to resist targeted therapies.Oncogene202140244061407810.1038/s41388‑021‑01835‑034031544
    [Google Scholar]
  44. ZhangZ. ZhangY. LuoF. MaY. FangW. ZhanJ. LiS. YangY. ZhaoY. HongS. ZhouT. ZhangY. ZhaoS. HuangY. ZhaoH. ZhangL. Dual blockade of EGFR and VEGFR pathways: Results from a pilot study evaluating apatinib plus gefitinib as a first-line treatment for advanced EGFR‐mutant non‐small cell lung cancer.Clin. Transl. Med.2020102e3310.1002/ctm2.3332508029
    [Google Scholar]
  45. ChenD. LiuJ. ZangL. XiaoT. ZhangX. LiZ. ZhuH. GaoW. YuX. Integrated machine learning and bioinformatic analyses constructed a novel stemness-related classifier to predict prognosis and immunotherapy responses for hepatocellular carcinoma patients.Int. J. Biol. Sci.202218136037310.7150/ijbs.6691334975338
    [Google Scholar]
  46. KinouchiK. Sassone-CorsiP. Metabolic rivalry: circadian homeostasis and tumorigenesis.Nat. Rev. Cancer2020201164566110.1038/s41568‑020‑0291‑932895495
    [Google Scholar]
  47. JiangY. ShenX. FasaeM.B. ZhiF. ChaiL. OuY. FengH. LiuS. LiuY. YangS. The expression and function of circadian rhythm genes in hepatocellular carcinoma.Oxid. Med. Cell. Longev.2021202111310.1155/2021/404460634697563
    [Google Scholar]
  48. ZhangZ. LiangZ. GaoW. YuS. HouZ. LiK. ZengP. Identification of circadian clock genes as regulators of immune infiltration in Hepatocellular Carcinoma.J. Cancer202213113199320810.7150/jca.7192536118525
    [Google Scholar]
  49. SavvidisC. KoutsilierisM. Circadian rhythm disruption in cancer biology.Mol. Med.20121891249126010.2119/molmed.2012.0007722811066
    [Google Scholar]
  50. LiangQ. YeY. LiE. FanJ. GongJ. YingJ. CaoY. LiR. WangP. A circadian clock gene-related signature for predicting prognosis and its association with sorafenib response in hepatocellular carcinoma.Transl. Cancer Res.202312102493250710.21037/tcr‑23‑21737969365
    [Google Scholar]
  51. WuZ. HuH. ZhangQ. WangT. LiH. QinY. AiX. YiW. WeiX. GaoW. OuyangC. Four circadian rhythm-related genes predict incidence and prognosis in hepatocellular carcinoma.Front. Oncol.20221293740310.3389/fonc.2022.93740336439444
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232298240240529131358
Loading
/content/journals/cgt/10.2174/0115665232298240240529131358
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test