Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Nanoparticles have emerged as a transformative technology in environmental remediation, addressing the pressing challenges of pollution across air, water, and soil. Nanoparticles, particularly metal oxides, carbon-based materials, and polymers, demonstrate remarkable capabilities in addressing water, air, and soil contamination. Their high surface area to volume ratio enhances their efficiency in pollutant removal while minimizing toxicity, making them suitable alternatives to conventional methods. As traditional remediation methods often carry their environmental risks, there is a pressing need for innovative and sustainable solutions. This review delves into the mechanisms and applications of nanoparticles in various remediation techniques, including photocatalysis, Nano-adsorption, and nanomembranes for water treatment, as well as their effectiveness in soil and air purification. The findings underscore the potential of nanomaterials to enhance remediation efficiency while reducing environmental toxicity. By integrating these innovative solutions into existing environmental management frameworks, nanoparticles can play a crucial role in achieving sustainable environmental practices and mitigating contamination. This review advocates for continued research, development, and application of nanotechnology as a promising avenue for fostering a cleaner, healthier environment and contributing to global sustainability goals.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461351615241104145045
2024-11-08
2025-01-15
Loading full text...

Full text loading...

References

  1. SanthakumariM. SagarN. The environmental threats our world is facing today. Handbook of Environmental Materials Management. HussainC. ChamSpringer202010.1007/978‑3‑319‑58538‑3_180‑1
    [Google Scholar]
  2. ChuE. KarrJ.R. Environmental impact: Concept, consequences, measurement. Reference Module in Life Sciences.AmsterdamElsevier201710.1016/B978‑0‑12‑809633‑8.02380‑3
    [Google Scholar]
  3. ArsenovD. BeljinJ. JovićD. MaletićS. BoriševM. BoriševI. Nanomaterials as endorsed environmental remediation tools for the next generation: Eco-safety and sustainability.J. Geochem. Explor.202325310728310.1016/j.gexplo.2023.107283
    [Google Scholar]
  4. FerreiraM.T. SoldadoE. BorsoiG. MendesM.P. Flores-ColenI. Nanomaterials applied in the construction sector: Environmental, human health, and economic indicators.Appl. Sci. (Basel)202313231289610.3390/app132312896
    [Google Scholar]
  5. NyabadzaA. MakhesanaM. PlouzeA. KumarA. RamirezI. KrishnamurthyS. VazquezM. BrabazonD. Advanced nanomaterials and dendrimers in water treatment and the recycling of nanomaterials: A review.J. Environ. Chem. Eng.202412311264310.1016/j.jece.2024.112643
    [Google Scholar]
  6. TripathyD.B. GuptaA. Nanomembranes-affiliated water remediation: Chronology, properties, classification, challenges and future prospects.Membranes (Basel)202313871310.3390/membranes13080713 37623773
    [Google Scholar]
  7. SharmaS. TiwariS. HasanA. SaxenaV. PandeyL.M. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.3 Biotech.20188421610.1007/s13205‑018‑1237‑829651381
    [Google Scholar]
  8. RaniN.U. SharmaP. SharmaR.K. The role of nanotechnology in environmental remediation opportunities and challenges.African J. Bio. Sci.201461012210.33472/AFJBS.6.10.2024.4359‑4380
    [Google Scholar]
  9. RabinowitzJ. Physics and applications of nanoscale fluid flow.Doctor of Philosophy, Columbia University2021
    [Google Scholar]
  10. RafeeqH. HussainA. AmbreenA. Zill-e-Huma WaqasM. BilalM. IqbalH.M.N. Functionalized nanoparticles and their environmental remediation potential: A review.J. Nanostructure Chem.20221261007103110.1007/s40097‑021‑00468‑9
    [Google Scholar]
  11. JamkhandeP.G. GhuleN.W. BamerA.H. KalaskarM.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.20195310117410.1016/j.jddst.2019.101174
    [Google Scholar]
  12. BhattacharyaR. MukherjeeP. Biological properties of “naked” metal nanoparticles.Adv. Drug Deliv. Rev.200860111289130610.1016/j.addr.2008.03.013 18501989
    [Google Scholar]
  13. LingD. LeeN. HyeonT. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.Acc. Chem. Res.20154851276128510.1021/acs.accounts.5b00038 25922976
    [Google Scholar]
  14. BhuyanT. MishraK. KhanujaM. PrasadR. VarmaA. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications.Mater. Sci. Semicond. Process.201532556110.1016/j.mssp.2014.12.053
    [Google Scholar]
  15. StanM. PopaA. TolomanD. DeheleanA. LungI. KatonaG. Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts.Mater. Sci. Semicond. Process.201539232910.1016/j.mssp.2015.04.038
    [Google Scholar]
  16. VaradavenkatesanT. SelvarajR. VinayagamR. Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye.J. Mol. Liq.20162211063107010.1016/j.molliq.2016.06.064
    [Google Scholar]
  17. ThandapaniK. KathiravanM. NamasivayamE. PadiksanI.A. NatesanG. TiwariM. GiovanniB. PerumalV. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus.Environ. Sci. Pollut. Res. Int.20182511103281033910.1007/s11356‑017‑9177‑0 28537028
    [Google Scholar]
  18. AnnadhasanM. MuthukumarasamyvelT. Sankar BabuV.R. RajendiranN. Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium.ACS Sustain. Chem. Eng.20142488789610.1021/sc400500z
    [Google Scholar]
  19. MaitiS. BarmanG. Konar LahaJ. Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles.Appl. Nanosci.20166452953810.1007/s13204‑015‑0452‑4
    [Google Scholar]
  20. KarthigaD. AnthonyS.P. Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide pH range.RSC Advances2013337167651677410.1039/c3ra42308e
    [Google Scholar]
  21. KumariB. SinghD.P. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons.Ecol. Eng.2016979810510.1016/j.ecoleng.2016.08.006
    [Google Scholar]
  22. ZhongL.S. HuJ.S. LiangH.P. CaoA.M. SongW-G. WanL-J. Self‐Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment.Adv. Mater.200618182426243110.1002/adma.200600504
    [Google Scholar]
  23. YadavM. KhanS. Nanotechnology: A new scientific outlook for bioremediation of dye effluents. Approaches in Bioremediation. PrasadR. ArandaE. ChamSpringer201835536810.1007/978‑3‑030‑02369‑0_16
    [Google Scholar]
  24. GhoshN. DasS. BiswasG. HaldarP.K. Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment.Water Sci. Technol.202285123370339510.2166/wst.2022.153 35771052
    [Google Scholar]
  25. AfreenS. OmarR.A. TalrejaN. ChauhanD. Carbon-based nanostructured materials for energy and environmental remediation applications. Approaches in bioremediation. PrasadR. ArandaE. ChamSpringer201836939210.1007/978‑3‑030‑02369‑0_17
    [Google Scholar]
  26. WuZ.Y. LiC. LiangH.W. ZhangY.N. WangX. ChenJ.F. YuS.H. Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions.Sci. Rep.201441407910.1038/srep04079 24518262
    [Google Scholar]
  27. KotalM. KimJ. OhJ. OhI.K. Recent progress in multifunctional graphene aerogels.Front. Mater.201632910.3389/fmats.2016.00029
    [Google Scholar]
  28. KumarR. KhanM.A. HaqN. Application of carbon nanotubes in heavy metals remediation.Crit. Rev. Environ. Sci. Technol.20144491000103510.1080/10643389.2012.741314
    [Google Scholar]
  29. GuptaV.K. MoradiO. TyagiI. AgarwalS. SadeghH. Shahryari-GhoshekandiR. MakhloufA.S.H. GoodarziM. GarshasbiA. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: A review.Crit. Rev. Environ. Sci. Technol.20164629311810.1080/10643389.2015.1061874
    [Google Scholar]
  30. YadavD.K. SrivastavaS. Carbon nanotubes as adsorbent to remove heavy metal ion (Mn+7) in wastewater treatment.Mater. Today Proc.2017424089409410.1016/j.matpr.2017.02.312
    [Google Scholar]
  31. SunZ. YanZ. YaoJ. BeitlerE. ZhuY. TourJ.M. Growth of graphene from solid carbon sources.Nature2010468732354955210.1038/nature09579 21068724
    [Google Scholar]
  32. SahooT. SahuJ.R. PandaJ. HembramM. SahooS.K. Nanotechnology: An efficient technique of contaminated water treatment. Contaminants in Drinking and Wastewater Sources. KumarM. SnowD. HondaR. MukherjeeS. SingaporeSpringer202125127010.1007/978‑981‑15‑4599‑3_11
    [Google Scholar]
  33. GnanaprakasamP. JeenaS.E. PremnathD. SelvarajuT. Simple and robust green synthesis of Au NPs on reduced graphene oxide for the simultaneous detection of toxic heavy metal ions and bioremediation using bacterium as the scavenger.Electroanalysis20162881885189310.1002/elan.201600002
    [Google Scholar]
  34. LuoB. LiuS. ZhiL. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas.Small20128563064610.1002/smll.201101396 22121112
    [Google Scholar]
  35. RizwanK. RasheedT. BilalM. Chapter 21 - Alginate-based nanobiosorbents for bioremediation of environmental pollutants. Nano-Biosorbents for Decontamination of Water, Air, and Soil Pollution479-502. Elsevier2022; pp10.1016/B978‑0‑323‑90912‑9.00021‑6
    [Google Scholar]
  36. SudhakarM.S. AggarwalA. SahM.K. Engineering biomaterials for the bioremediation: Advances in nanotechnological approaches for heavy metals removal from natural resources. Emerging Technologies in Environmental Bioremediation.Elsevier202032333910.1016/B978‑0‑12‑819860‑5.00014‑6
    [Google Scholar]
  37. RajanC.S.R. Nanotechnology in groundwater remediation.Int. J. Environ. Sci. Dev.2011218218710.7763/IJESD.2011.V2.121
    [Google Scholar]
  38. PakT. ArchilhaN.L. de Lima LuzL.F. Nanotechnology-based remediation of groundwater. Nanotechnology Characterization Tools for Environment, Health, and Safety. KumarC. Berlin, HeidelbergSpringer201910.1007/978‑3‑662‑59600‑5_5
    [Google Scholar]
  39. XuH. HaoZ. FengW. WangT. LiY. Mechanism of photodegradation of organic pollutants in seawater by TiO2-based photocatalysts and improvement in their performance.ACS Omega2021645306983070710.1021/acsomega.1c04604 34805697
    [Google Scholar]
  40. GusainR. GuptaK. JoshiP. KhatriO.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review.Adv. Colloid Interface Sci.201927210200910.1016/j.cis.2019.102009 31445351
    [Google Scholar]
  41. MarschallR. WangL. Non-metal doping of transition metal oxides for visible-light photocatalysis.Catal. Today201422511113510.1016/j.cattod.2013.10.088
    [Google Scholar]
  42. NoorimotlaghZ. KazeminezhadI. JaafarzadehN. AhmadiM. RamezaniZ. Improved performance of immobilized TiO2 under visible light for the commercial surfactant degradation: Role of carbon doped TiO2 and anatase/rutile ratio.Catal. Today202034827728910.1016/j.cattod.2019.08.051
    [Google Scholar]
  43. LiuT. HuangJ. HuangZ. LuoQ. WuH. MengY. HeC. LiH. Full-spectrum photocatalytic treatment and in situ upcycling of organophosphorus wastewater enabled by biomimetic urchin-like Bi2S3/CdS.Chem. Eng. J.202448615020910.1016/j.cej.2024.150209
    [Google Scholar]
  44. MengY. JianY. LiJ. WuH. ZhangH. SaravanamuruganS. YangS. LiH. Surface-active site engineering: Synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution.Chem. Eng. J.2023452313947710.1016/j.cej.2022.139477
    [Google Scholar]
  45. JaiswalR. BharambeJ. PatelN. DashoraA. KothariD.C. MiotelloA. Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity.Appl. Catal. B2015168-16933334110.1016/j.apcatb.2014.12.053
    [Google Scholar]
  46. EtacheriV. Di ValentinC. SchneiderJ. BahnemannD. PillaiS.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments.J. Photochem. Photobiol. Photochem. Rev.20152512910.1016/j.jphotochemrev.2015.08.003
    [Google Scholar]
  47. GaoS. LiW. DaiJ. WangQ. SuoZ. Effect of transition metals doping on electronic structure and optical properties of β-Ga2O3.Mater. Res. Express20218202590410.1088/2053‑1591/abde10
    [Google Scholar]
  48. AoY. XuJ. FuD. YuanC. Synthesis of C,N,S-tridoped mesoporous titania with enhanced visible light-induced photocatalytic activity.Microporous Mesoporous Mater.20091221-31610.1016/j.micromeso.2008.11.010
    [Google Scholar]
  49. NegiC. KandwalP. RawatJ. SharmaM. SharmaH. DalapatiG. DwivediC. Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity.Appl. Surf. Sci.202155414955310.1016/j.apsusc.2021.149553
    [Google Scholar]
  50. AravindM. AmalanathanM. SonyM. Michael MaryS.N. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties.Appl. Sci. (Basel)20213409
    [Google Scholar]
  51. AgarwalA. JoshiH. Application of nanotechnology in the remediation of contaminated groundwater: A short review.Rec. Res. Sci. Technol.2010265157
    [Google Scholar]
  52. XiaoZ. ZhangH. XuY. YuanM. JingX. HuangJ. LiQ. SunD. Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles.Separ. Purif. Tech.201717446647310.1016/j.seppur.2016.10.047
    [Google Scholar]
  53. JainK. PatelA.S. PardhiV.P. FloraS.J.S. Nanotechnology in wastewater management: A new paradigm towards wastewater treatment.Molecules2021266179710.3390/molecules26061797 33806788
    [Google Scholar]
  54. AnjumM. MiandadR. WaqasM. GehanyF. BarakatM.A. Remediation of wastewater using various nano-materials.Arab. J. Chem.20191284897491910.1016/j.arabjc.2016.10.004
    [Google Scholar]
  55. SinghaI. Kumar MishrabP. Nano-membrane filtration a novel application of nanotechnology for waste water treatment.Mater. Today Proc.202029232733210.1016/j.matpr.2020.07.284
    [Google Scholar]
  56. KumarP.S. VenkateshK. GuiE.L. SundaramurthyJ. SinghG. ArthanareeswaranG. Electrospun carbon nanofibers/TiO2-PAN hybrid membranes for effective removal of metal ions and cationic dye.Environ. Nanotechnol. Monit. Manag.20181036637610.1016/j.enmm.2018.08.006
    [Google Scholar]
  57. BaruahA. ChaudharyV. MalikR. TomerV.K. Nanotechnology based solutions for wastewater treatment. Nanotechnology in Water and Wastewater Treatment.Elsevier201933736810.1016/B978‑0‑12‑813902‑8.00017‑4
    [Google Scholar]
  58. YinZ. CuiC. ChenH. Duoni YuX. QianW. The application of carbon nanotube/graphene‐based nanomaterials in wastewater treatment.Small20201615190230110.1002/smll.201902301 31788946
    [Google Scholar]
  59. AroraB. AttriP. Carbon nanotubes (CNTs): A potential nanomaterial for water purification.J. Compos. Sci.20204313510.3390/jcs4030135
    [Google Scholar]
  60. AslamM.M.A. KuoH.W. DenW. UsmanM. SultanM. AshrafH. Functionalized carbon nanotubes (Cnts) for water and wastewater treatment: Preparation to application.Sustainability (Basel)20211310571710.3390/su13105717
    [Google Scholar]
  61. WilsonM.E. RukhM.G. AshrafM.A. The role of nanotechnology, based on carbon nanotubes in water and wastewater treatment.Desalination Water Treat.2021242122110.5004/dwt.2021.27568
    [Google Scholar]
  62. R, J.; Gurunathan, B.; K, S.; Varjani, S.; Ngo, H.H.; Gnansounou, E. Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production.Environ. Res.202220311181510.1016/j.envres.2021.111815 34352231
    [Google Scholar]
  63. PandeyN. ShuklaS.K. SinghN.B. Water purification by polymer nanocomposites: An overview.Nanocomposites201732476610.1080/20550324.2017.1329983
    [Google Scholar]
  64. TliliI. AlkanhalT.A. Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment.J. Water Reuse Desalin.20199323224810.2166/wrd.2019.057
    [Google Scholar]
  65. MadhuraL. SinghS. A review on the advancements of nanomembranes for water treatment. Nanotechnology in Environmental Science. HussainC.M. MishraA.K. 201810.1002/9783527808854.ch12
    [Google Scholar]
  66. Mohamed KhalithS.B. RamalingamR. KaruppannanS.K. DowlathM.J.H. KumarR. VijayalakshmiS. Uma MaheshwariR. ArunachalamK.D. Synthesis and characterization of polyphenols functionalized graphitic hematite nanocomposite adsorbent from an agro waste and its application for removal of Cs from aqueous solution.Chemosphere2022286Pt 113149310.1016/j.chemosphere.2021.131493 34346332
    [Google Scholar]
  67. ManikandanS. SubbaiyaR. SaravananM. PonrajM. SelvamM. PugazhendhiA. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes.Chemosphere202228913286710.1016/j.chemosphere.2021.132867 34774910
    [Google Scholar]
  68. AgarwalR. KatiyarV.K. TewariP. Use of nanofilters for the control of polution from the industrial chimneys.Tech Connect Briefs.20091257261
    [Google Scholar]
  69. SaleemH. ZaidiS.J. IsmailA.F. GohP.S. Advances of nanomaterials for air pollution remediation and their impacts on the environment.Chemosphere2022287Pt 213208310.1016/j.chemosphere.2021.132083 34488054
    [Google Scholar]
  70. SongH.S. ParkM.G. KwonS.J. YiK.B. CroisetE. ChenZ. NamS.C. Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition.Appl. Surf. Sci.201327664665210.1016/j.apsusc.2013.03.147
    [Google Scholar]
  71. SekhavatjouM.S. MoradiR. AlhashemiA.H. HejabiA.T. A new method forsulfur components removal from sour gas through application of zinc and iron oxides nanoparticles.Int. J. Environ. Res.201482273278
    [Google Scholar]
  72. FiliciottoL. LuqueR. Nanocatalysis for green chemistry. Green Chemistry and Chemical Engineering. Encyclopedia of Sustainability Science and Technology Series. HanB. WuT. New YorkSpringer201910.1007/978‑1‑4939‑9060‑3_1007
    [Google Scholar]
  73. SinghS.B. TandonP.K. Catalysis: A brief review on nano-catalyst.J. Energy Chem. Eng.20142106115
    [Google Scholar]
  74. KhanM.M. AdilS.F. Al-MayoufA. Metal oxides as photocatalysts.J. Saudi Chem. Soc.201519546246410.1016/j.jscs.2015.04.003
    [Google Scholar]
  75. DanishM.S.S. EstrellaL.L. AlemaidaI.M.A. LisinA. MoiseevN. AhmadiM. NazariM. WaliM. ZahebH. SenjyuT. Photocatalytic applications of metal oxides for sustainable environmental remediation.Metals20211118010.3390/met11010080
    [Google Scholar]
  76. KadamV.V. WangL. PadhyeR. Electrospun nanofibre materials to filter air pollutants – A review.J. Ind. Text.20184782253228010.1177/1528083716676812
    [Google Scholar]
  77. LyuC. ZhaoP. XieJ. DongS. LiuJ. RaoC. FuJ. Electrospinning of nanofibrous membrane and its applications in air filtration: A review.Nanomaterials (Basel)2021116150110.3390/nano11061501 34204161
    [Google Scholar]
  78. LiangW. XuY. LiX. WangX.X. ZhangH.D. YuM. RamakrishnaS. LongY.Z. Transparent polyurethane nanofiber air filter for high-efficiency PM2.5 capture.Nanoscale Res. Lett.201914136110.1186/s11671‑019‑3199‑0 31792730
    [Google Scholar]
  79. OrlandoR. PolatM. AfshariA. JohnsonM.S. FojanP. Electrospun nanofibre air filters for particles and gaseous pollutants.Sustainability (Basel)20211312655310.3390/su13126553
    [Google Scholar]
  80. SanyalA. Sinha-RayS. Ultrafine PVDF nanofibers for filtration of air-borne particulate matters: A comprehensive review.Polymers (Basel)20211311186410.3390/polym13111864 34205188
    [Google Scholar]
  81. SouzandehH. WangY. ZhongW.H. “Green” nano-filters: Fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases.RSC Advances2016610710594810595610.1039/C6RA24512A
    [Google Scholar]
  82. MuralikrishnanR. SwarnalakshmiM. NakkeeranE. Nanoparticle-membrane filtration of vehicular exhaust to reduce air pollution – A review.Int. Res. J. Environ. Sci.2014348286
    [Google Scholar]
  83. QianY. QinC. ChenM. LinS. Nanotechnology in soil remediation − Applications vs. implications.Ecotoxicol. Environ. Saf.202020111081510.1016/j.ecoenv.2020.110815 32559688
    [Google Scholar]
  84. EyvaziB. Jamshidi-ZanjaniA. Khodadadi DarbanA. Immobilization of hexavalent chromium in contaminated soil using nano-magnetic MnFe2O4.J. Hazard. Mater.201936581381910.1016/j.jhazmat.2018.11.041 30476805
    [Google Scholar]
  85. HuJ. LoI.M. ChenG. Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles.Langmuir20052124111731117910.1021/la051076h 16285787
    [Google Scholar]
  86. RajputV.D. MinkinaT. UpadhyayS.K. KumariA. RanjanA. MandzhievaS. SushkovaS. SinghR.K. VermaK.K. Nanotechnology in the restoration of polluted soil.Nanomaterials (Basel)202212576910.3390/nano12050769 35269257
    [Google Scholar]
  87. SalemT.A. FetianN.A. ElsheeryN.I. Nanotechnology for polluted soil remediation. Nanotechnology for Agriculture. PanpatteD. JhalaY. SingaporeSpringer201910.1007/978‑981‑32‑9370‑0_15
    [Google Scholar]
  88. MejiasJ.H. SalazarF. Pérez AmaroL. HubeS. RodriguezM. AlfaroM. Nanofertilizers: A cutting-edge approach to increase nitrogen use efficiency in grasslands.Front. Environ. Sci.2021963511410.3389/fenvs.2021.635114
    [Google Scholar]
  89. ZulfiqarF. NavarroM. AshrafM. AkramN.A. Munné-BoschS. Nanofertilizer use for sustainable agriculture: Advantages and limitations.Plant Sci.201928911027010.1016/j.plantsci.2019.110270 31623775
    [Google Scholar]
  90. SharmaD. AfzalS. SinghN.K. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds.J. Biotechnol.2021336647510.1016/j.jbiotec.2021.06.014 34116127
    [Google Scholar]
  91. MelanieM. MirantiM. KasmaraH. MaliniD.M. HusodoT. PanataraniC. JoniI.M. HermawanW. Nanotechnology-based bioactive antifeedant for plant protection.Nanomaterials (Basel)202212463010.3390/nano12040630 35214959
    [Google Scholar]
  92. DekaB. BabuA. BaruahC. BarthakurM. Nanopesticides: A systematic review of their prospects with special reference to tea pest management.Front. Nutr.2021868613110.3389/fnut.2021.686131 34447773
    [Google Scholar]
  93. de OliveiraJ.L. CamposE.V.R. CamaraM.C. Della VechiaJ.F. de MatosS.T.S. de AndradeD.J. GonçalvesK.C. NascimentoJ. PolanczykR.A. de AraújoD.R. FracetoL.F. Hydrogels containing botanical repellents encapsulated in zein nanoparticles for crop protection.ACS Appl. Nano Mater.20203120721710.1021/acsanm.9b01917
    [Google Scholar]
  94. JinP. WirajaC. ZhaoJ. ZhangJ. ZhengL. XuC. Nitric oxide nanosensors for predicting the development of osteoarthritis in rat model.ACS Appl. Mater. Interfaces2017930251282513710.1021/acsami.7b06404 28691484
    [Google Scholar]
  95. BaysalA. SayginH. Smart nanosensors and methods for detection of nanoparticles and their potential toxicity in air. Nanomaterials for air remediation.Elsevier2020335910.1016/B978‑0‑12‑818821‑7.00003‑8
    [Google Scholar]
  96. JavaidM. HaleemA. SinghR.P. RabS. SumanR. Exploring the potential of nanosensors: A brief overview.Sens. Int.2021210013010.1016/j.sintl.2021.100130
    [Google Scholar]
  97. VikeslandP.J. Nanosensors for water quality monitoring.Nat. Nanotechnol.201813865166010.1038/s41565‑018‑0209‑9 30082808
    [Google Scholar]
  98. ChenJ. WeiX.D. LiuY.S. YingG.G. LiuS.S. HeL.Y. SuH.C. HuL.X. ChenF.R. YangY.Q. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading.Sci. Total Environ.201656524024810.1016/j.scitotenv.2016.04.176 27173842
    [Google Scholar]
  99. VerdianA. Apta-nanosensors for detection and quantitative determination of acetamiprid – A pesticide residue in food and environment.Talanta201817645646410.1016/j.talanta.2017.08.070 28917776
    [Google Scholar]
  100. BazylewskiP. Van MiddelkoopS. DivigalpitiyaR. FanchiniG. Solid-state chemiresistors from two-dimensional MoS2 nanosheets functionalized with l-Cysteine for In-line sensing of Part-Per-Billion Cd2+ ions in drinking water.ACS Omega20205164364910.1021/acsomega.9b03246 31956813
    [Google Scholar]
  101. ShaR. BhattacharyyaT.K. MoS2-based nanosensors in biomedical and environmental monitoring applications.Electrochim. Acta202034913637010.1016/j.electacta.2020.136370
    [Google Scholar]
  102. SongD. WangY. LuX. GaoY. LiY. GaoF. Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides.Sens. Actuators B Chem.201826751310.1016/j.snb.2018.04.016
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461351615241104145045
Loading
/content/journals/cgc/10.2174/0122133461351615241104145045
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): environment; nanocatalyst; Nanomaterials; pollutants; remediation; sustainability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test