Skip to content
2000
image of Innovative Techniques for Pharmaceutical Waste Management: Enhancing Drug Recovery and Environmental Sustainability

Abstract

The pharmaceutical sector is a major component of current healthcare, manufacturing and distributing drugs, biological substances, and medical equipment. Despite its advantages, the sector creates enormous waste, including materials for packaging, production by-products, expired or unused drugs, and other residues, creating health and environmental issues. Appropriate pharmaceutical waste handling and medication recovery strategies are vital for limiting these problems. This article aims to investigate and evaluate multiple techniques for recovering pharmaceuticals from pharmaceutical waste, highlighting the significance of sustainable waste management in the pharmaceutical sector. The paper emphasizes the need to use modern methods such as liquid-liquid extraction, membrane crystallization, solid-liquid extraction, and adsorption to recover drugs from pharmaceutical waste. Liquid-liquid extraction exhibits excellent adaptability and efficiency for varied Active Pharmaceutical Ingredients (APIs), whereas membrane crystallization provides low-energy solutions for thermally sensitive compounds. Solid-liquid extraction is useful for recovering APIs from solid dosage forms, while adsorption approaches exploit substances like activated carbon for organic component recovery. Each process has particular benefits and disadvantages, with the selection of methodology based on waste properties and recovery objectives. It emphasizes the promise of these technologies for high extraction yields, purity, and environmental sustainability, supporting effective pharmaceutical waste management procedures. Additionally, difficulties such as cost-effectiveness, scalability, and regulatory compliance are addressed, pointing to opportunities for future research and development to improve the efficacy of drug recovery procedures. In conclusion, using advanced techniques to recover pharmaceuticals from pharmaceutical waste offers a viable way to implement sustainable waste recovery procedures and lessen the pharmaceutical industry's negative environmental effects.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461322762240926072018
2024-10-08
2024-11-23
Loading full text...

Full text loading...

References

  1. Sharma D. Patel P. Shah M. A comprehensive study on Industry 4.0 in the pharmaceutical industry for sustainable development. Environ. Sci. Pollut. Res. Int. 2023 30 39 90088 90098 10.1007/s11356‑023‑26856‑y 37129827
    [Google Scholar]
  2. Patneedi C.B. Prasadu K.D. Impact of pharmaceutical wastes on human life and environment. Rasayan J. Chem. 2015 8 1 67 70
    [Google Scholar]
  3. e Silva F.A. Sintra T. Ventura S.P.M. Coutinho J.A.P. Recovery of paracetamol from pharmaceutical wastes. Separ. Purif. Tech. 2014 122 315 322 10.1016/j.seppur.2013.11.018
    [Google Scholar]
  4. Bronstein A.C. Spyker D.A. Cantilena L.R. Jr Green J.L. Rumack B.H. Heard S.E. E. 2007 Annual report of the American Association of Poison Control Centers’ National poison data system (NPDS): 25th annual report. Clin. Toxicol. (Phila.) 2008 46 10 927 1057 10.1080/15563650802559632 19065310
    [Google Scholar]
  5. Cantrell L. Suchard J.R. Wu A. Gerona R.R. Stability of active ingredients in long-expired prescription medications. Arch. Intern. Med. 2012 172 21 1685 1687 10.1001/archinternmed.2012.4501 23045150
    [Google Scholar]
  6. Lyon R.C. Taylor J.S. Porter D.A. Prasanna H.R. Hussain A.S. Stability profiles of drug products extended beyond labeled expiration dates. J. Pharm. Sci. 2006 95 7 1549 1560 10.1002/jps.20636 16721796
    [Google Scholar]
  7. Pratama D.E. Hsieh W.C. Elmaamoun A. Lee H.L. Lee T. Recovery of active pharmaceutical ingredients from unused solid dosage-form drugs. ACS Omega 2020 5 45 29147 29157 10.1021/acsomega.0c03878 33225146
    [Google Scholar]
  8. Jaseem M. Kumar P. John R.M. An overview of waste management in the pharmaceutical industry. Pharma Innov. 2017 6 3, Part C 158
    [Google Scholar]
  9. Nyaga M.N. Nyagah D.M. Njagi A. Pharmaceutical waste: Overview, management, and impact of improper disposal.
    [Google Scholar]
  10. Hsieh D.S. Lindrud M. Lu X. Zordan C. Tang L. Davies M. A process for active pharmaceutical ingredient recovery from tablets using green engineering technology. Org. Process Res. Dev. 2017 21 9 1272 1285 10.1021/acs.oprd.7b00146
    [Google Scholar]
  11. Alidina M. Hoppe-Jones C. Yoon M. Hamadeh A.F. Li D. Drewes J.E. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia. Sci. Total Environ. 2014 478 152 162 10.1016/j.scitotenv.2014.01.093 24531125
    [Google Scholar]
  12. Bijlsma L. Pitarch E. Fonseca E. Ibáñez M. Botero A.M. Claros J. Pastor L. Hernández F. Investigation of pharmaceuticals in a conventional wastewater treatment plant: Removal efficiency, seasonal variation and impact of a nearby hospital. J. Environ. Chem. Eng. 2021 9 4 105548 10.1016/j.jece.2021.105548
    [Google Scholar]
  13. Čelić M. Gros M. Farré M. Barceló D. Petrović M. Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain). Sci. Total Environ. 2019 652 952 963 10.1016/j.scitotenv.2018.10.290 30380500
    [Google Scholar]
  14. Vione D. Encinas A. Fabbri D. Calza P. A model assessment of the potential of river water to induce the photochemical attenuation of pharmaceuticals downstream of a wastewater treatment plant (Guadiana River, Badajoz, Spain). Chemosphere 2018 198 473 481 10.1016/j.chemosphere.2018.01.156 29425948
    [Google Scholar]
  15. Dai G. Wang B. Huang J. Dong R. Deng S. Yu G. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere 2015 119 1033 1039 10.1016/j.chemosphere.2014.08.056 25303665
    [Google Scholar]
  16. Comber S. Gardner M. Sörme P. Ellor B. The removal of pharmaceuticals during wastewater treatment: Can it be predicted accurately? Sci. Total Environ. 2019 676 222 230 10.1016/j.scitotenv.2019.04.113 31048154
    [Google Scholar]
  17. Prasse C. Wagner M. Schulz R. Ternes T.A. Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: Kinetics and identification of oxidation products. Environ. Sci. Technol. 2012 46 4 2169 2178 10.1021/es203712z 22300376
    [Google Scholar]
  18. Angeles L.F. Mullen R.A. Huang I.J. Wilson C. Khunjar W. Sirotkin H.I. McElroy A.E. Aga D.S. Assessing pharmaceutical removal and reduction in toxicity provided by advanced wastewater treatment systems. Environ. Sci. Water Res. Technol. 2020 6 1 62 77 10.1039/C9EW00559E
    [Google Scholar]
  19. Samal K. Mahapatra S. Hibzur Ali M. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus 2022 6 100076 10.1016/j.nexus.2022.100076
    [Google Scholar]
  20. Obotey Ezugbe E. Rathilal S. Membrane technologies in wastewater treatment: A review. Membranes (Basel) 2020 10 5 89 10.3390/membranes10050089 32365810
    [Google Scholar]
  21. Khalidi-Idrissi A. Souabi S. Madinzi A. Aysegul P. Chatoui M. Mouhir L. Kadmi Y. Kurniawan T.A. Anouzla A. Recent advances in the treatment of wastewater contaminated with pharmaceutical pollutants: A critical review. EuroMediterr. J. Environ. Integr. 2024 9 1 23 47 10.1007/s41207‑023‑00422‑x
    [Google Scholar]
  22. Mohammed S.A. Kahissay M.H. Hailu A.D. Pharmaceuticals wastage and pharmaceuticals waste management in public health facilities of Dessie town, North East Ethiopia. PLoS One 2021 16 10 e0259160 10.1371/journal.pone.0259160 34710189
    [Google Scholar]
  23. Pratyusha K. Gaikwad N.M. Phatak A.A. Chaudhari P.D. Review on: Waste material management in pharmaceutical industry. Int. J. Pharm. Sci. Rev. Res. 2012 16 2 121 129
    [Google Scholar]
  24. Rushton L. Health hazards and waste management. Br. Med. Bull. 2003 68 1 183 197 10.1093/bmb/ldg034 14757717
    [Google Scholar]
  25. Shalini S. Harsh M. Mathur B.P. Evaluation of bio-medical waste management practices in a government medical college and hospital. Natl. J. Community Med. 2012 3 01 80 84
    [Google Scholar]
  26. Amin R. Gul R. Mehrab A. Hospital waste management; Practices in different hospitals of Distt. Peshawar. Prof. Med. J. 2013 20 06 988 994 10.29309/TPMJ/2013.20.06.1684
    [Google Scholar]
  27. Ashiwaju B.I. Orikpete O.F. Fawole A.A. Alade E.Y. Odogwu C. A step toward sustainability: A review of biodegradable packaging in the pharmaceutical industry. Matrix Science Pharma 2023 7 3 73 84 10.4103/mtsp.mtsp_22_23
    [Google Scholar]
  28. Pereira J.F.B. Santos V.C. Johansson H.O. Teixeira J.A.C. Pessoa A. Jr A stable liquid–liquid extraction system for clavulanic acid using polymer-based aqueous two-phase systems. Separ. Purif. Tech. 2012 98 441 450 10.1016/j.seppur.2012.08.008
    [Google Scholar]
  29. Barbosa J.M.P. Souza R.L. Fricks A.T. Zanin G.M. Soares C.M.F. Lima Á.S. Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011 879 32 3853 3858 10.1016/j.jchromb.2011.10.035 22100550
    [Google Scholar]
  30. Viana Marques D.A. Pessoa-Júnior A. Lima-Filho J.L. Converti A. Perego P. Porto A.L.F. Extractive fermentation of clavulanic acid by Streptomyces DAUFPE 3060 using aqueous two‐phase system. Biotechnol. Prog. 2011 27 1 95 103 10.1002/btpr.526 21312359
    [Google Scholar]
  31. Freire M.G. Neves C.M.S.S. Marrucho I.M. Canongia Lopes J.N. Rebelo L.P.N. Coutinho J.A.P. High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem. 2010 12 10 1715 1718 10.1039/c0gc00179a
    [Google Scholar]
  32. Jiang Y. Xia H. Yu J. Guo C. Liu H. Hydrophobic ionic liquids-assisted polymer recovery during penicillin extraction in aqueous two-phase system. Chem. Eng. J. 2009 147 1 22 26 10.1016/j.cej.2008.11.012
    [Google Scholar]
  33. Zafarani-Moattar M.T. Hamzehzadeh S. Partitioning of amino acids in the aqueous biphasic system containing the water‐miscible ionic liquid 1‐butyl‐3‐methylimidazolium bromide and the water‐structuring salt potassium citrate. Biotechnol. Prog. 2011 27 4 986 997 10.1002/btpr.613 21509956
    [Google Scholar]
  34. Ventura S.P.M. de Barros R.L.F. de Pinho Barbosa J.M. Soares C.M.F. Lima Á.S. Coutinho J.A.P. Production and purification of an extracellular lipolytic enzyme using ionic liquid-based aqueous two-phase systems. Green Chem. 2012 14 3 734 740 10.1039/c2gc16428k
    [Google Scholar]
  35. Ventura S.P.M. Sousa S.G. Freire M.G. Serafim L.S. Lima Á.S. Coutinho J.A.P. Design of ionic liquids for lipase purification. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011 879 26 2679 2687 10.1016/j.jchromb.2011.07.022 21852207
    [Google Scholar]
  36. Pereira J.F.B. Vicente F. Santos-Ebinuma V.C. Araújo J.M. Pessoa A. Freire M.G. Coutinho J.A.P. Extraction of tetracycline from fermentation broth using aqueous two-phase systems composed of polyethylene glycol and cholinium-based salts. Process Biochem. 2013 48 4 716 722 10.1016/j.procbio.2013.02.025
    [Google Scholar]
  37. Passos H. Sousa A.C.A. Pastorinho M.R. Nogueira A.J.A. Rebelo L.P.N. Coutinho J.A.P. Freire M.G. Ionic-liquid-based aqueous biphasic systems for improved detection of bisphenol A in human fluids. Anal. Methods 2012 4 9 2664 2667 10.1039/c2ay25536g
    [Google Scholar]
  38. Shahriari S. Tomé L.C. Araújo J.M.M. Rebelo L.P.N. Coutinho J.A.P. Marrucho I.M. Freire M.G. Aqueous biphasic systems: A benign route using cholinium-based ionic liquids. RSC Advances 2013 3 6 1835 1843 10.1039/C2RA22972B
    [Google Scholar]
  39. Mallakpour S. Rafiee Z. Tetrabutylammonium bromide: An efficient, green and novel media for polycondensation of 4-(4-dimethylaminophenyl)-1,2,4-triazolidine-3,5-dione with diisocyanates. Eur. Polym. J. 2007 43 4 1510 1515 10.1016/j.eurpolymj.2007.01.006
    [Google Scholar]
  40. Attri P. Venkatesu P. Ammonium ionic liquids as convenient co-solvents for the structure and stability of succinylated Con A. J. Chem. Thermodyn. 2012 52 78 88 10.1016/j.jct.2012.02.013
    [Google Scholar]
  41. Mersmann A. Attrition and attrition-controlled secondary nucleation. Crystallization technology handbook. CRC press 2001 10.1201/9780203908280
    [Google Scholar]
  42. Mullin J.W. Crystallization. Elsevier 2001
    [Google Scholar]
  43. Myerson A. Handbook of industrial crystallization. Butterworth-Heinemann 2002
    [Google Scholar]
  44. Lakerveld R. Kramer H.J. Jansens P.J. Grievink J. A task based design approach for solution crystallization. 15th International workshop on industrial crystallization 2008 95 102
    [Google Scholar]
  45. Curcio E. Profio G.D. Drioli E. A new membrane-based crystallization technique: tests on lysozyme. J. Cryst. Growth 2003 247 1-2 166 176 10.1016/S0022‑0248(02)01794‑3
    [Google Scholar]
  46. Lawson K.W. Lloyd D.R. Membrane distillation. J. Membr. Sci. 1997 124 1 1 25 10.1016/S0376‑7388(96)00236‑0
    [Google Scholar]
  47. Drioli E. Di Profio G. Curcio E. Progress in membrane crystallization. Curr. Opin. Chem. Eng. 2012 1 2 178 182 10.1016/j.coche.2012.03.005
    [Google Scholar]
  48. Fujiwara M. Nagy Z.K. Chew J.W. Braatz R.D. First-principles and direct design approaches for the control of pharmaceutical crystallization. J. Process Contr. 2005 15 5 493 504 10.1016/j.jprocont.2004.08.003
    [Google Scholar]
  49. Brito Martínez M. Jullok N. Rodríguez Negrín Z. Van der Bruggen B. Luis P. Membrane crystallization for the recovery of a pharmaceutical compound from waste streams. Chem. Eng. Res. Des. 2014 92 2 264 272 10.1016/j.cherd.2013.07.029
    [Google Scholar]
  50. Rogers R.D. Seddon K.R. Chemistry. Ionic liquids--solvents of the future? Science 2003 302 5646 792 793 10.1126/science.1090313 14593156
    [Google Scholar]
  51. Wilkes J. Properties of ionic liquid solvents for catalysis. J. Mol. Catal. Chem. 2004 214 1 11 17 10.1016/j.molcata.2003.11.029
    [Google Scholar]
  52. Olivier-Bourbigou H. Magna L. Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen. 2010 373 1-2 1 56 10.1016/j.apcata.2009.10.008
    [Google Scholar]
  53. Chiappe C. Pieraccini D. Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem. 2005 18 4 275 297 10.1002/poc.863
    [Google Scholar]
  54. Poole C.F. Poole S.K. Extraction of organic compounds with room temperature ionic liquids. J. Chromatogr. A 2010 1217 16 2268 2286 10.1016/j.chroma.2009.09.011 19766228
    [Google Scholar]
  55. Yang Q. Xing H. Su B. Bao Z. Wang J. Yang Y. Ren Q. The essential role of hydrogen‐bonding interaction in the extractive separation of phenolic compounds by ionic liquid. AIChE J. 2013 59 5 1657 1667 10.1002/aic.13939
    [Google Scholar]
  56. e Silva F.A. Caban M. Stepnowski P. Coutinho J.A.P. Ventura S.P.M. Recovery of ibuprofen from pharmaceutical wastes using ionic liquids. Green Chem. 2016 18 13 3749 3757 10.1039/C6GC00261G
    [Google Scholar]
  57. Dąbrowski A. Adsorption — From theory to practice. Adv. Colloid Interface Sci. 2001 93 1-3 135 224 10.1016/S0001‑8686(00)00082‑8 11591108
    [Google Scholar]
  58. Rouquerol J. Sing K.S. Llewellyn P. Adsorption by powders and porous solids: Principle, methodology and applications. Mew Yor Academic Press 2013 393 465
    [Google Scholar]
  59. Snyder S.A. Adham S. Redding A.M. Cannon F.S. DeCarolis J. Oppenheimer J. Wert E.C. Yoon Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007 202 1-3 156 181 10.1016/j.desal.2005.12.052
    [Google Scholar]
  60. Zhang X. Guo W. Ngo H.H. Wen H. Li N. Wu W. Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. J. Environ. Manage. 2016 172 193 200 10.1016/j.jenvman.2016.02.038 26946168
    [Google Scholar]
  61. Sotelo J.L. Rodríguez A. Álvarez S. García J. Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chem. Eng. Res. Des. 2012 90 7 967 974 10.1016/j.cherd.2011.10.012
    [Google Scholar]
  62. Ahmed M.B. Zhou J.L. Ngo H.H. Guo W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015 532 112 126 10.1016/j.scitotenv.2015.05.130 26057999
    [Google Scholar]
  63. Babel S. Kurniawan T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003 97 1-3 219 243 10.1016/S0304‑3894(02)00263‑7 12573840
    [Google Scholar]
  64. Putra E.K. Pranowo R. Sunarso J. Indraswati N. Ismadji S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res. 2009 43 9 2419 2430 10.1016/j.watres.2009.02.039 19327813
    [Google Scholar]
  65. Genç N. Can Dogan E. Yurtsever M. Bentonite for ciprofloxacin removal from aqueous solution. Water Sci. Technol. 2013 68 4 848 855 10.2166/wst.2013.313 23985515
    [Google Scholar]
  66. Roca Jalil M.E. Baschini M. Sapag K. Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Appl. Clay Sci. 2015 114 69 76 10.1016/j.clay.2015.05.010
    [Google Scholar]
  67. Çalışkan Salihi E. Mahramanlıoğlu M. Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect. Appl. Clay Sci. 2014 101 381 389 10.1016/j.clay.2014.06.015
    [Google Scholar]
  68. Khazri H. Ghorbel-Abid I. Kalfat R. Trabelsi-Ayadi M. Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: Equilibrium, kinetics, and thermodynamic study. Appl. Water Sci. 2017 7 6 3031 3040 10.1007/s13201‑016‑0414‑3
    [Google Scholar]
  69. de Andrade J.R. Oliveira M.F. da Silva M.G.C. Vieira M.G.A. Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: A review. Ind. Eng. Chem. Res. 2018 57 9 3103 3127 10.1021/acs.iecr.7b05137
    [Google Scholar]
  70. Gracia-Lor E. Sancho J.V. Serrano R. Hernández F. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere 2012 87 5 453 462 10.1016/j.chemosphere.2011.12.025 22221664
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461322762240926072018
Loading
/content/journals/cgc/10.2174/0122133461322762240926072018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test