Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

The pharmaceutical sector is a major component of current healthcare, manufacturing and distributing drugs, biological substances, and medical equipment. Despite its advantages, the sector creates enormous waste, including materials for packaging, production by-products, expired or unused drugs, and other residues, creating health and environmental issues. Appropriate pharmaceutical waste handling and medication recovery strategies are vital for limiting these problems. This article aims to investigate and evaluate multiple techniques for recovering pharmaceuticals from pharmaceutical waste, highlighting the significance of sustainable waste management in the pharmaceutical sector. The paper emphasizes the need to use modern methods such as liquid-liquid extraction, membrane crystallization, solid-liquid extraction, and adsorption to recover drugs from pharmaceutical waste. Liquid-liquid extraction exhibits excellent adaptability and efficiency for varied Active Pharmaceutical Ingredients (APIs), whereas membrane crystallization provides low-energy solutions for thermally sensitive compounds. Solid-liquid extraction is useful for recovering APIs from solid dosage forms, while adsorption approaches exploit substances like activated carbon for organic component recovery. Each process has particular benefits and disadvantages, with the selection of methodology based on waste properties and recovery objectives. It emphasizes the promise of these technologies for high extraction yields, purity, and environmental sustainability, supporting effective pharmaceutical waste management procedures. Additionally, difficulties such as cost-effectiveness, scalability, and regulatory compliance are addressed, pointing to opportunities for future research and development to improve the efficacy of drug recovery procedures. In conclusion, using advanced techniques to recover pharmaceuticals from pharmaceutical waste offers a viable way to implement sustainable waste recovery procedures and lessen the pharmaceutical industry's negative environmental effects.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461322762240926072018
2024-10-08
2025-01-31
Loading full text...

Full text loading...

References

  1. SharmaD. PatelP. ShahM. A comprehensive study on Industry 4.0 in the pharmaceutical industry for sustainable development.Environ. Sci. Pollut. Res. Int.20233039900889009810.1007/s11356‑023‑26856‑y 37129827
    [Google Scholar]
  2. PatneediC.B. PrasaduK.D. Impact of pharmaceutical wastes on human life and environment.Rasayan J. Chem.2015816770
    [Google Scholar]
  3. e SilvaF.A. SintraT. VenturaS.P.M. CoutinhoJ.A.P. Recovery of paracetamol from pharmaceutical wastes.Separ. Purif. Tech.201412231532210.1016/j.seppur.2013.11.018
    [Google Scholar]
  4. BronsteinA.C. SpykerD.A. CantilenaL.R.Jr GreenJ.L. RumackB.H. HeardS.E. E. 2007 Annual report of the American Association of Poison Control Centers’ National poison data system (NPDS): 25th annual report.Clin. Toxicol. (Phila.)20084610927105710.1080/15563650802559632 19065310
    [Google Scholar]
  5. CantrellL. SuchardJ.R. WuA. GeronaR.R. Stability of active ingredients in long-expired prescription medications.Arch. Intern. Med.2012172211685168710.1001/archinternmed.2012.4501 23045150
    [Google Scholar]
  6. LyonR.C. TaylorJ.S. PorterD.A. PrasannaH.R. HussainA.S. Stability profiles of drug products extended beyond labeled expiration dates.J. Pharm. Sci.20069571549156010.1002/jps.20636 16721796
    [Google Scholar]
  7. PratamaD.E. HsiehW.C. ElmaamounA. LeeH.L. LeeT. Recovery of active pharmaceutical ingredients from unused solid dosage-form drugs.ACS Omega2020545291472915710.1021/acsomega.0c03878 33225146
    [Google Scholar]
  8. JaseemM. KumarP. JohnR.M. An overview of waste management in the pharmaceutical industry.Pharma Innov.201763, Part C158
    [Google Scholar]
  9. NyagaM.N. NyagahD.M. NjagiA. Pharmaceutical waste: Overview, management, and impact of improper disposal.J. Peer Sci.202032e1000028
    [Google Scholar]
  10. HsiehD.S. LindrudM. LuX. ZordanC. TangL. DaviesM. A process for active pharmaceutical ingredient recovery from tablets using green engineering technology.Org. Process Res. Dev.20172191272128510.1021/acs.oprd.7b00146
    [Google Scholar]
  11. AlidinaM. Hoppe-JonesC. YoonM. HamadehA.F. LiD. DrewesJ.E. The occurrence of emerging trace organic chemicals in wastewater effluents in Saudi Arabia.Sci. Total Environ.201447815216210.1016/j.scitotenv.2014.01.093 24531125
    [Google Scholar]
  12. BijlsmaL. PitarchE. FonsecaE. IbáñezM. BoteroA.M. ClarosJ. PastorL. HernándezF. Investigation of pharmaceuticals in a conventional wastewater treatment plant: Removal efficiency, seasonal variation and impact of a nearby hospital.J. Environ. Chem. Eng.20219410554810.1016/j.jece.2021.105548
    [Google Scholar]
  13. ČelićM. GrosM. FarréM. BarcelóD. PetrovićM. Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain).Sci. Total Environ.201965295296310.1016/j.scitotenv.2018.10.290 30380500
    [Google Scholar]
  14. VioneD. EncinasA. FabbriD. CalzaP. A model assessment of the potential of river water to induce the photochemical attenuation of pharmaceuticals downstream of a wastewater treatment plant (Guadiana River, Badajoz, Spain).Chemosphere201819847348110.1016/j.chemosphere.2018.01.156 29425948
    [Google Scholar]
  15. DaiG. WangB. HuangJ. DongR. DengS. YuG. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China.Chemosphere20151191033103910.1016/j.chemosphere.2014.08.056 25303665
    [Google Scholar]
  16. ComberS. GardnerM. SörmeP. EllorB. The removal of pharmaceuticals during wastewater treatment: Can it be predicted accurately?Sci. Total Environ.201967622223010.1016/j.scitotenv.2019.04.113 31048154
    [Google Scholar]
  17. PrasseC. WagnerM. SchulzR. TernesT.A. Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: Kinetics and identification of oxidation products.Environ. Sci. Technol.20124642169217810.1021/es203712z 22300376
    [Google Scholar]
  18. AngelesL.F. MullenR.A. HuangI.J. WilsonC. KhunjarW. SirotkinH.I. McElroyA.E. AgaD.S. Assessing pharmaceutical removal and reduction in toxicity provided by advanced wastewater treatment systems.Environ. Sci. Water Res. Technol.202061627710.1039/C9EW00559E
    [Google Scholar]
  19. SamalK. MahapatraS. Hibzur AliM. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health.Energy Nexus2022610007610.1016/j.nexus.2022.100076
    [Google Scholar]
  20. Obotey EzugbeE. RathilalS. Membrane technologies in wastewater treatment: A review.Membranes (Basel)20201058910.3390/membranes10050089 32365810
    [Google Scholar]
  21. Khalidi-IdrissiA. SouabiS. MadinziA. AysegulP. ChatouiM. MouhirL. KadmiY. KurniawanT.A. AnouzlaA. Recent advances in the treatment of wastewater contaminated with pharmaceutical pollutants: A critical review. EuroMediterr.J. Environ. Integr.202491234710.1007/s41207‑023‑00422‑x
    [Google Scholar]
  22. MohammedS.A. KahissayM.H. HailuA.D. Pharmaceuticals wastage and pharmaceuticals waste management in public health facilities of Dessie town, North East Ethiopia.PLoS One20211610e025916010.1371/journal.pone.0259160 34710189
    [Google Scholar]
  23. PratyushaK. GaikwadN.M. PhatakA.A. ChaudhariP.D. Review on: Waste material management in pharmaceutical industry.Int. J. Pharm. Sci. Rev. Res.2012162121129
    [Google Scholar]
  24. RushtonL. Health hazards and waste management.Br. Med. Bull.200368118319710.1093/bmb/ldg034 14757717
    [Google Scholar]
  25. ShaliniS. HarshM. MathurB.P. Evaluation of bio-medical waste management practices in a government medical college and hospital.Natl. J. Community Med.2012318084
    [Google Scholar]
  26. AminR. GulR. MehrabA. Hospital waste management; Practices in different hospitals of Distt. Peshawar.Prof. Med. J.2013200698899410.29309/TPMJ/2013.20.06.1684
    [Google Scholar]
  27. AshiwajuB.I. OrikpeteO.F. FawoleA.A. AladeE.Y. OdogwuC. A step toward sustainability: A review of biodegradable packaging in the pharmaceutical industry.Matrix Sci. Pharma202373738410.4103/mtsp.mtsp_22_23
    [Google Scholar]
  28. PereiraJ.F.B. SantosV.C. JohanssonH.O. TeixeiraJ.A.C. PessoaA.Jr A stable liquid–liquid extraction system for clavulanic acid using polymer-based aqueous two-phase systems.Separ. Purif. Tech.20129844145010.1016/j.seppur.2012.08.008
    [Google Scholar]
  29. BarbosaJ.M.P. SouzaR.L. FricksA.T. ZaninG.M. SoaresC.M.F. LimaÁ.S. Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2011879323853385810.1016/j.jchromb.2011.10.035 22100550
    [Google Scholar]
  30. Viana MarquesD.A. Pessoa-JúniorA. Lima-FilhoJ.L. ConvertiA. PeregoP. PortoA.L.F. Extractive fermentation of clavulanic acid by Streptomyces DAUFPE 3060 using aqueous two-phase system.Biotechnol. Prog.20112719510310.1002/btpr.526 21312359
    [Google Scholar]
  31. FreireM.G. NevesC.M.S.S. MarruchoI.M. Canongia LopesJ.N. RebeloL.P.N. CoutinhoJ.A.P. High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids.Green Chem.201012101715171810.1039/c0gc00179a
    [Google Scholar]
  32. JiangY. XiaH. YuJ. GuoC. LiuH. Hydrophobic ionic liquids-assisted polymer recovery during penicillin extraction in aqueous two-phase system.Chem. Eng. J.20091471222610.1016/j.cej.2008.11.012
    [Google Scholar]
  33. Zafarani-MoattarM.T. HamzehzadehS. Partitioning of amino acids in the aqueous biphasic system containing the water-miscible ionic liquid 1-butyl-3-methylimidazolium bromide and the water-structuring salt potassium citrate.Biotechnol. Prog.201127498699710.1002/btpr.613 21509956
    [Google Scholar]
  34. VenturaS.P.M. de BarrosR.L.F. de Pinho BarbosaJ.M. SoaresC.M.F. LimaÁ.S. CoutinhoJ.A.P. Production and purification of an extracellular lipolytic enzyme using ionic liquid-based aqueous two-phase systems.Green Chem.201214373474010.1039/c2gc16428k
    [Google Scholar]
  35. VenturaS.P.M. SousaS.G. FreireM.G. SerafimL.S. LimaÁ.S. CoutinhoJ.A.P. Design of ionic liquids for lipase purification.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2011879262679268710.1016/j.jchromb.2011.07.022 21852207
    [Google Scholar]
  36. PereiraJ.F.B. VicenteF. Santos-EbinumaV.C. AraújoJ.M. PessoaA. FreireM.G. CoutinhoJ.A.P. Extraction of tetracycline from fermentation broth using aqueous two-phase systems composed of polyethylene glycol and cholinium-based salts.Process Biochem.201348471672210.1016/j.procbio.2013.02.025
    [Google Scholar]
  37. PassosH. SousaA.C.A. PastorinhoM.R. NogueiraA.J.A. RebeloL.P.N. CoutinhoJ.A.P. FreireM.G. Ionic-liquid-based aqueous biphasic systems for improved detection of bisphenol A in human fluids.Anal. Methods2012492664266710.1039/c2ay25536g
    [Google Scholar]
  38. ShahriariS. ToméL.C. AraújoJ.M.M. RebeloL.P.N. CoutinhoJ.A.P. MarruchoI.M. FreireM.G. Aqueous biphasic systems: A benign route using cholinium-based ionic liquids.RSC Advances2013361835184310.1039/C2RA22972B
    [Google Scholar]
  39. MallakpourS. RafieeZ. Tetrabutylammonium bromide: An efficient, green and novel media for polycondensation of 4-(4-dimethylaminophenyl)-1,2,4-triazolidine-3,5-dione with diisocyanates.Eur. Polym. J.20074341510151510.1016/j.eurpolymj.2007.01.006
    [Google Scholar]
  40. AttriP. VenkatesuP. Ammonium ionic liquids as convenient co-solvents for the structure and stability of succinylated Con A.J. Chem. Thermodyn.201252788810.1016/j.jct.2012.02.013
    [Google Scholar]
  41. MersmannA. Attrition and attrition-controlled secondary nucleation. Crystallization technology handbook.CRC press200110.1201/9780203908280
    [Google Scholar]
  42. MullinJ.W. Crystallization.Elsevier2001
    [Google Scholar]
  43. MyersonA. Handbook of industrial crystallization.Butterworth-Heinemann2002
    [Google Scholar]
  44. LakerveldR. KramerH.J. JansensP.J. GrievinkJ. A task based design approach for solution crystallization.15th International workshop on industrial crystallization200895102
    [Google Scholar]
  45. CurcioE. ProfioG.D. DrioliE. A new membrane-based crystallization technique: Tests on lysozyme.J. Cryst. Growth20032471-216617610.1016/S0022‑0248(02)01794‑3
    [Google Scholar]
  46. LawsonK.W. LloydD.R. Membrane distillation.J. Membr. Sci.1997124112510.1016/S0376‑7388(96)00236‑0
    [Google Scholar]
  47. DrioliE. Di ProfioG. CurcioE. Progress in membrane crystallization.Curr. Opin. Chem. Eng.20121217818210.1016/j.coche.2012.03.005
    [Google Scholar]
  48. FujiwaraM. NagyZ.K. ChewJ.W. BraatzR.D. First-principles and direct design approaches for the control of pharmaceutical crystallization.J. Process Contr.200515549350410.1016/j.jprocont.2004.08.003
    [Google Scholar]
  49. Brito MartínezM. JullokN. Rodríguez NegrínZ. Van der BruggenB. LuisP. Membrane crystallization for the recovery of a pharmaceutical compound from waste streams.Chem. Eng. Res. Des.201492226427210.1016/j.cherd.2013.07.029
    [Google Scholar]
  50. RogersR.D. SeddonK.R. Ionic liquids--solvents of the future?Science2003302564679279310.1126/science.1090313 14593156
    [Google Scholar]
  51. WilkesJ. Properties of ionic liquid solvents for catalysis.J. Mol. Catal. Chem.20042141111710.1016/j.molcata.2003.11.029
    [Google Scholar]
  52. Olivier-BourbigouH. MagnaL. MorvanD. Ionic liquids and catalysis: Recent progress from knowledge to applications.Appl. Catal. A Gen.20103731-215610.1016/j.apcata.2009.10.008
    [Google Scholar]
  53. ChiappeC. PieracciniD. Ionic liquids: Solvent properties and organic reactivity.J. Phys. Org. Chem.200518427529710.1002/poc.863
    [Google Scholar]
  54. PooleC.F. PooleS.K. Extraction of organic compounds with room temperature ionic liquids.J. Chromatogr. A20101217162268228610.1016/j.chroma.2009.09.011 19766228
    [Google Scholar]
  55. YangQ. XingH. SuB. BaoZ. WangJ. YangY. RenQ. The essential role of hydrogen-bonding interaction in the extractive separation of phenolic compounds by ionic liquid.AIChE J.20135951657166710.1002/aic.13939
    [Google Scholar]
  56. e SilvaF.A. CabanM. StepnowskiP. CoutinhoJ.A.P. VenturaS.P.M. Recovery of ibuprofen from pharmaceutical wastes using ionic liquids.Green Chem.201618133749375710.1039/C6GC00261G
    [Google Scholar]
  57. DąbrowskiA. Adsorption — From theory to practice.Adv. Colloid Interface Sci.2001931-313522410.1016/S0001‑8686(00)00082‑8 11591108
    [Google Scholar]
  58. RouquerolJ. SingK.S. LlewellynP. Adsorption by powders and porous solids: Principle, methodology and applicationsAcademic PressMew Yor2013393465
    [Google Scholar]
  59. SnyderS.A. AdhamS. ReddingA.M. CannonF.S. DeCarolisJ. OppenheimerJ. WertE.C. YoonY. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals.Desalination20072021-315618110.1016/j.desal.2005.12.052
    [Google Scholar]
  60. ZhangX. GuoW. NgoH.H. WenH. LiN. WuW. Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water.J. Environ. Manage.201617219320010.1016/j.jenvman.2016.02.038 26946168
    [Google Scholar]
  61. SoteloJ.L. RodríguezA. ÁlvarezS. GarcíaJ. Removal of caffeine and diclofenac on activated carbon in fixed bed column.Chem. Eng. Res. Des.201290796797410.1016/j.cherd.2011.10.012
    [Google Scholar]
  62. AhmedM.B. ZhouJ.L. NgoH.H. GuoW. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges.Sci. Total Environ.201553211212610.1016/j.scitotenv.2015.05.130 26057999
    [Google Scholar]
  63. BabelS. KurniawanT.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review.J. Hazard. Mater.2003971-321924310.1016/S0304‑3894(02)00263‑7 12573840
    [Google Scholar]
  64. PutraE.K. PranowoR. SunarsoJ. IndraswatiN. IsmadjiS. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics.Water Res.20094392419243010.1016/j.watres.2009.02.039 19327813
    [Google Scholar]
  65. GençN. Can DoganE. YurtseverM. Bentonite for ciprofloxacin removal from aqueous solution.Water Sci. Technol.201368484885510.2166/wst.2013.313 23985515
    [Google Scholar]
  66. Roca JalilM.E. BaschiniM. SapagK. Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite.Appl. Clay Sci.2015114697610.1016/j.clay.2015.05.010
    [Google Scholar]
  67. SalihiÇ.E. MahramanlıoğluM. Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect.Appl. Clay Sci.201410138138910.1016/j.clay.2014.06.015
    [Google Scholar]
  68. KhazriH. Ghorbel-AbidI. KalfatR. Trabelsi-AyadiM. Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: Equilibrium, kinetics, and thermodynamic study.Appl. Water Sci.2017763031304010.1007/s13201‑016‑0414‑3
    [Google Scholar]
  69. de AndradeJ.R. OliveiraM.F. da SilvaM.G.C. VieiraM.G.A. Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: A review.Ind. Eng. Chem. Res.20185793103312710.1021/acs.iecr.7b05137
    [Google Scholar]
  70. Gracia-LorE. SanchoJ.V. SerranoR. HernándezF. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia.Chemosphere201287545346210.1016/j.chemosphere.2011.12.025 22221664
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461322762240926072018
Loading
/content/journals/cgc/10.2174/0122133461322762240926072018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test