Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Introduction

Benzimidazole derivatives hold a crucial place in medicinal chemistry due to their wide-ranging therapeutic applications. However, traditional synthesis methods having inefficiencies, such as the need for catalysts and prolonged reaction times, in addition to being environmentally unfriendly. This has necessitated the development of alternative synthetic methodologies that are more efficient and eco-friendly.

Objective

To establish a novel, efficient, and eco-friendly methodology for the synthesis of benzimidazole derivatives, utilizing microwave irradiation without the use of a catalyst, thereby reducing reaction times and improving yields.

Methods

A microwave-assisted approach was employed for the synthesis of various benzimidazole derivatives. The reactions were carried out without the use of any catalyst, significantly optimizing the synthesis process. Reaction times were reduced to a range of 5 to 10 min. The identity and purity of the synthesized derivatives were confirmed through spectral analysis.

Results

The newly developed microwave-assisted methodology facilitated the efficient synthesis of benzimidazole derivatives. The approach achieved notable yields ranging from 94% to 98%, with significantly shortened reaction times of 5 to 10 min and its purity confirmed through physicochemical and spectral analysis.

Conclusion

This study presents a significant advancement in the synthesis of benzimidazole derivatives, offering a rapid, high-yielding, and eco-friendly alternative to traditional methods. The catalyst-free, microwave-assisted methodology not only reduces reaction times but also enhances overall efficiency, representing a valuable contribution to the field of organic chemistry.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461335908240920060520
2024-10-01
2025-01-15
Loading full text...

Full text loading...

References

  1. GawandeM.B. ShelkeS.N. ZborilR. VarmaR.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics.Acc. Chem. Res.20144741338134810.1021/ar400309b 24666323
    [Google Scholar]
  2. KumarA. KuangY. LiangZ. SunX. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review.Materials Today Nano20201110007610.1016/j.mtnano.2020.100076
    [Google Scholar]
  3. ShahD. BambharoliyaT. PatelD. PatelK. PatelN. NaganiA. BhavsarV. MahavarA. PatelA. Sustainable synthesis of phenazines: A review of green approaches.Curr. Org. Chem.202327131143116310.2174/0113852728257006230921091216
    [Google Scholar]
  4. WangH. ZhuW. LiuY. ZengL. SunL. The microwave-assisted green synthesis of TiC powders.Materials201691190410.3390/ma9110904 28774025
    [Google Scholar]
  5. BhimaniB. PatelA. ShahD. An update on recent green synthetic approaches to coumarins.Mini Rev. Org. Chem.2024211223910.2174/1570193X19666220701111051
    [Google Scholar]
  6. StrekalovaA.A. ShesterkinaA.A. KustovA.L. KustovL.M. Recent studies on the application of microwave-assisted method for the preparation of heterogeneous catalysts and catalytic hydrogenation processes.Int. J. Mol. Sci.2023249827210.3390/ijms24098272 37175978
    [Google Scholar]
  7. PatelD. ShahD. PatelK. PatelA. BambharoliyaT. MahavarA. PatelA. Recent progress for the synthesis of pyrrole derivatives – An update.Mini Rev. Org. Chem.202421771774110.2174/1570193X20666230530161009
    [Google Scholar]
  8. AlbuquerqueH.M.T. PintoD.C.G.A. SilvaA.M.S. Microwave irradiation: Alternative heating process for the synthesis of biologically applicable chromones, quinolones, and their precursors.Molecules20212620629310.3390/molecules26206293 34684877
    [Google Scholar]
  9. GrewalA.S. KumarK. RedhuS. BhardwajS. Microwave assisted synthesis: A green chemistry approach.Int. J. Chemtech Res.201331466470
    [Google Scholar]
  10. LiL. YangJ. LiJ. HanP. WangJ. ZhaoY. WangJ. LuJ. YinD. ZhangY. Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwave-assisted heating.J. Membr. Sci.2016512839210.1016/j.memsci.2016.03.056
    [Google Scholar]
  11. LiL. LiJ. ChengL. WangJ. YangJ. Microwave synthesis of high-quality mordenite membrane by a two-stage varying heating-rate procedure.J. Membr. Sci.202061211847910.1016/j.memsci.2020.118479
    [Google Scholar]
  12. AlzhraniZ.M.M. AlamM.M. NazreenS. Recent advancements on benzimidazole: A versatile scaffold in medicinal chemistry.Mini Rev. Med. Chem.202222236538610.2174/1389557521666210331163810 33797365
    [Google Scholar]
  13. ZhanP. LiD. LiJ. ChenX. LiuX. Benzimidazole heterocycle as a privileged scaffold in antiviral agents.Mini Rev. Org. Chem.20129439741010.2174/157019312804699456
    [Google Scholar]
  14. LeeY.T. TanY.J. OonC.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine.Acta Pharm. Sin. B202313247849710.1016/j.apsb.2022.09.010 36873180
    [Google Scholar]
  15. RzeszotarskiW.J. GibsonR.E. EckelmanW.C. SimmsD.A. JagodaE.M. FerreiraN.L. RebaR.C. Analogs of 3-quinuclidinyl benzilate.J. Med. Chem.19822591103110610.1021/jm00351a020 7131491
    [Google Scholar]
  16. BrishtyS.R. HossainM.J. KhandakerM.U. FaruqueM.R.I. OsmanH. RahmanS.M.A. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives.Front. Pharmacol.20211276280710.3389/fphar.2021.762807 34803707
    [Google Scholar]
  17. Di̇kB. CoşkunD. Bahçi̇vanE. ÜneyK. Potential antidiabetic activity of benzimidazole derivative albendazole and lansoprazole drugs in different doses in experimental type 2 diabetic rats.Turk. J. Med. Sci.20215131578158510.3906/sag‑2004‑38 33641315
    [Google Scholar]
  18. MartinaK. CravottoG. VarmaR.S. Impact of microwaves on organic synthesis and strategies toward flow processes and scaling up.J. Org. Chem.20218620138571387210.1021/acs.joc.1c00865 34125541
    [Google Scholar]
  19. PatelM. BambharoliyaT. ShahD. PatelK. PatelM. ShahU. PatelS. MahavarA. PatelA. Emerging green synthetic routes for thiazole and its derivatives: Current perspectives.Arch. Pharm.20243572230042010.1002/ardp.202300420 38013395
    [Google Scholar]
  20. HenaryM. KanandaC. RotoloL. SavinoB. OwensE.A. CravottoG. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry.RSC Advances20201024141701419710.1039/D0RA01378A 35498463
    [Google Scholar]
  21. BhattK. PatelD. RathodM. PatelA. ShahD. An update on the recent green synthetic approaches for imidazo[1,2-a] pyridine: a privileged scaffold.Curr. Org. Chem.202326222016205410.2174/1385272827666230123124441
    [Google Scholar]
  22. LinS.Y. IsomeY. StewartE. LiuJ.F. YohannesD. YuL. Microwave-assisted one step high-throughput synthesis of benzimidazoles.Tetrahedron Lett.200647172883288610.1016/j.tetlet.2006.02.127
    [Google Scholar]
  23. MenteşeE. BektaşH. ÜlkerS. BekircanO. KahveciB. Microwave-assisted synthesis of new benzimidazole derivatives with lipase inhibition activity.J. Enzyme Inhib. Med. Chem.2014291646810.3109/14756366.2012.753880 23327641
    [Google Scholar]
  24. SharmaP. ReddyT.S. KumarN.P. SenwarK.R. BhargavaS.K. ShankaraiahN. Conventional and microwave-assisted synthesis of new 1 H -benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold.Eur. J. Med. Chem.201713823424510.1016/j.ejmech.2017.06.035 28668476
    [Google Scholar]
  25. BhavsarZ.A. AcharyaP.T. JethavaD.J. PatelD.B. VasavaM.S. RajaniD.P. PithawalaE. PatelH.D. Microwave assisted synthesis, biological activities, and in silico investigation of some benzimidazole derivatives.J. Heterocycl. Chem.202057124215423810.1002/jhet.4129
    [Google Scholar]
  26. ShiY. JiangK. ZhengR. FuJ. YanL. GuQ. ZhangY. LinF. Design, microwave-assisted synthesis and in vitro antibacterial and antifungal activity of 2,5-disubstituted benzimidazole.Chem. Biodivers.2019163e180051010.1002/cbdv.201800510 30447139
    [Google Scholar]
  27. NardiM. BonacciS. Herrera CanoN. OliverioM. ProcopioA. The highly efficient synthesis of 1,2-disubstituted benzimidazoles using microwave irradiation.Molecules2022275175110.3390/molecules27051751 35268852
    [Google Scholar]
  28. TayadeA.P. PawarR.P. The microwave assisted and efficient synthesis of 2-substituted benzimidazole mono-condensation of O-phenylenediamines and aldehyde.Polycycl. Aromat. Compd.20224241474147810.1080/10406638.2020.1781204
    [Google Scholar]
  29. MohammadiR. Magnetic copper ferrite nanoparticles catalyzed synthesis of benzimidazole, benzoxazole and benzothiazole derivatives.J. Synth. Chem.202211222610.22034/jsc.2022.149220
    [Google Scholar]
  30. BonacciS. IritiG. MancusoS. NovelliP. PaonessaR. TallaricoS. NardiM. Montmorillonite K10: An efficient organo-heterogeneous catalyst for synthesis of benzimidazole derivatives.Catalysts202010884510.3390/catal10080845
    [Google Scholar]
  31. DeyM. DebK. DharS.S. VO(acac)2 catalyzed condensation of o-phenylenediamine with aromatic carboxylic acids/aldehydes under microwave radiation affording benzimidazoles.Chin. Chem. Lett.201122329629910.1016/j.cclet.2010.10.031
    [Google Scholar]
  32. HussainS. TahaM. RahimF. HayatS. ZamanK. IqbalN. SelvarajM. SajidM. BangeshM.A. KhanF. KhanK.M. UddinN. ShahS.A.A. AliM. Synthesis of benzimidazole derivatives as potent inhibitors for α-amylase and their molecular docking study in management of type-II diabetes.J. Mol. Struct.2021123213002910.1016/j.molstruc.2021.130029
    [Google Scholar]
  33. DasS. MallickS. De SarkarS. Cobalt-catalyzed sustainable synthesis of benzimidazoles by redox-economical coupling of o -nitroanilines and alcohols.J. Org. Chem.20198418121111211910.1021/acs.joc.9b02090 31429563
    [Google Scholar]
  34. BiswasI.H. BiswasS. IslamM.S. RiyajuddinS. SarkarP. GhoshK. IslamS.M. Catalytic synthesis of benzimidazoles and organic carbamates using a polymer supported zinc catalyst through CO2 fixation.New J. Chem.20194336146431465210.1039/C9NJ03015H
    [Google Scholar]
  35. QinM. FuY. WangX. ZhangY. MaW. Green synthesis of benzimidazole derivatives catalyzed by ionic liquid under microwave irradiation.J. Indian Chem. Soc.20141161553155910.1007/s13738‑014‑0426‑6
    [Google Scholar]
  36. FaghihZ. KhabnadidehS. ZamaniL. ZomorodianK. MirjaliliB.B.F. JalilianA. Nano-SnCl4.SiO2, an efficient catalyst for synthesis of benzimidazole drivatives as antifungal and cytotoxic agents.Res. Pharm. Sci.201914649650310.4103/1735‑5362.272536 32038729
    [Google Scholar]
  37. AzeezS. SureshbabuP. ChaudharyP. SabiahS. KandasamyJ. tert-Butyl nitrite catalyzed synthesis of benzimidazoles from o-phenylenediamine and aldehydes at room temperature.Tetrahedron Lett.2020611415173510.1016/j.tetlet.2020.151735
    [Google Scholar]
  38. MahalingamS. MurugesanA. ThiruppathirajaT. LakshmipathiS. MakhanyaT.R. GenganR.M. Green synthesis of benzimidazole derivatives by using zinc boron nitride catalyst and their application from DFT (B3LYP) study.Heliyon2022811e1148010.1016/j.heliyon.2022.e11480 36387572
    [Google Scholar]
  39. ShaibunaM. HibaK. ShebithaA.M. Kariyottu KuniyilM.J. Sherly moleP.B. SreekumarK. Sustainable and selective synthesis of benzimidazole scaffolds using deep eutectic solvents.Curr. Res. Green Sustain. Chem.2022510028510.1016/j.crgsc.2022.100285
    [Google Scholar]
  40. RajabiF. DeS. LuqueR. An efficient and green synthesis of benzimidazole derivatives using SBA-15 supported cobalt nanocatalysts.Catal. Lett.201514581566157010.1007/s10562‑015‑1546‑z
    [Google Scholar]
  41. NagaP. KumarR. A green synthesis of benzimidazole derivatives: An overview of bulk drug synthesis.Int. J. Pharm. Tech. Res.2015896068
    [Google Scholar]
  42. RekhaM. HamzaA. VenugopalB.R. NagarajuN. Synthesis of 2-substituted benzimidazoles and 1,5-disubstituted benzodiazepines on alumina and zirconia catalysts.Chin. J. Catal.2012332-343944610.1016/S1872‑2067(11)60338‑0
    [Google Scholar]
  43. KumarV. KhandareD.G. ChatterjeeA. BanerjeeM. DBSA mediated chemoselective synthesis of 2-substituted benzimidazoles in aqueous media.Tetrahedron Lett.201354405505550910.1016/j.tetlet.2013.07.147
    [Google Scholar]
  44. PatilV.D. PatilJ. RegeP. DereG. Mild and efficient synthesis of benzimidazole using lead peroxide under solvent-free conditions.Synth. Commun.2010411586210.1080/00397910903531789
    [Google Scholar]
  45. GhoshP. SubbaR. MgCl2·6H2O catalyzed highly efficient synthesis of 2-substituted-1H-benzimidazoles.Tetrahedron Lett.201556212691269410.1016/j.tetlet.2015.04.001
    [Google Scholar]
  46. BalaM. VermaP.K. SharmaD. KumarN. SinghB. Highly efficient water-mediated approach to access benzazoles: Metal catalyst and base-free synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles.Mol. Divers.201519226327210.1007/s11030‑015‑9572‑8 25758538
    [Google Scholar]
  47. KhanA.T. ParvinT. ChoudhuryL.H. A simple and convenient one-pot synthesis of benzimidazole derivatives using cobalt(II) chloride hexahydrate as catalyst.Synth. Commun.200939132339234610.1080/00397910802654815
    [Google Scholar]
  48. BrahmachariG. LaskarS. BarikP. Magnetically separable MnFe2O4 nano-material: An efficient and reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles and the extended synthesis of quinoxalines at room temperature under aerobic conditions.RSC Advances2013334142451425310.1039/c3ra41457d
    [Google Scholar]
  49. MahireV.N. MahulikarP.P. Facile one-pot clean synthesis of benzimidazole motifs: Exploration on bismuth nitrate accelerated subtle catalysis.Chin. Chem. Lett.201526898398710.1016/j.cclet.2015.04.012
    [Google Scholar]
  50. GhafuriH. EsmailiE. TalebiM. Fe3O4@SiO2/collagen: An efficient magnetic nanocatalyst for the synthesis of benzimidazole and benzothiazole derivatives.C. R. Chim.201619894295010.1016/j.crci.2016.05.003
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461335908240920060520
Loading
/content/journals/cgc/10.2174/0122133461335908240920060520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test