Skip to content
2000
image of Current Applications of Organocatalysis in Total Synthesis of Natural Products at Room Temperature

Abstract

Molecules of natural origin play a profound role in drug discovery and development since natural products derived from Mother Nature, particularly from plants are employed as satisfactory precursors for important medicines. The total synthesis of complex natural products endures as a dynamic field of chemical research as the demand for bioactive natural products and secondary metabolites is gradually enhancing owing to their great application in the area of synthetic organic chemistry and the biological community. It is very useful in ascertaining the hypothetical complex structure of such molecules in the laboratory since different biologically potent secondary metabolites are derived in small quantities frequently. The total synthesis of natural products using organocatalysis as the key step(s) has earned momentum recently because of high chemical efficiency, low toxicity, simple accessibility, low cost, and eco-friendly of organocatalysts due to the absence of a metal atom as well as the popularity of asymmetric catalysis research. This greener strategy is capable enough to execute the transformations at ambient temperature as per the sixth principle of green chemistry which is dedicated to the “Design for Energy Efficiency”. Cinchona alkaloids, chiral secondary and primary amines, guanidine and guanidiniums, -heterocyclic carbenes, . are important organocatalysts in the field of the total synthesis of natural products and related compounds. Thus, the present review aims to deal with the total synthesis of natural products at room temperature as crucial intermediate(s) and it also offers an overview of natural sources, structures, and biological activities of natural products for the first time modishly.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461340116241020175907
2024-10-30
2024-11-26
Loading full text...

Full text loading...

References

  1. Xiang S.H. Tan B. Advances in asymmetric organocatalysis over the last 10 years. Nat. Commun. 2020 11 1 3786 10.1038/s41467‑020‑17580‑z 32728115
    [Google Scholar]
  2. Aukland M.H. List B. Organocatalysis emerging as a technology. Pure Appl. Chem. 2021 93 12 1371 1381 10.1515/pac‑2021‑0501
    [Google Scholar]
  3. Antenucci A. Dughera S. Renzi P. Green chemistry meets asymmetric organocatalysis: A critical overview on catalysts synthesis. ChemSusChem 2021 14 14 2785 2853 10.1002/cssc.202100573 33984187
    [Google Scholar]
  4. Vetica F. Chauhan P. Dochain S. Enders D. Asymmetric organocatalytic methods for the synthesis of tetrahydropyrans and their application in total synthesis. Chem. Soc. Rev. 2017 46 6 1661 1674 10.1039/C6CS00757K 28262863
    [Google Scholar]
  5. von Liebig J. Ueber die bildung des oxamids aus cyan. Justus Liebigs Ann. Chem. 1860 113 2 246 247 10.1002/jlac.18601130213
    [Google Scholar]
  6. Langenbeck W. On organic catalysts. III. The formation of oxamide from dicyanogen in the presence of aldehydes. Justus Liebigs Ann. Chem. 1929 469 1 16 25 10.1002/jlac.19294690103
    [Google Scholar]
  7. García Mancheño O. Waser M. Recent developments and trends in asymmetric organocatalysis. Eur. J. Org. Chem. 2023 26 1 e202200950 10.1002/ejoc.202200950 37065706
    [Google Scholar]
  8. Sahoo B.M. Banik B.K. Organocatalysis: Trends of drug synthesis in medicinal chemistry. Curr. Organocatal. 2019 6 2 92 105 10.2174/2213337206666190405144423
    [Google Scholar]
  9. Parella R. Jakkampudi S. Zhao J.C.G. Recent applications of asymmetric organocatalytic methods in total synthesis. ChemistrySelect 2021 6 9 2252 2280 10.1002/slct.202004196
    [Google Scholar]
  10. Baran P.S. Natural product total synthesis: As exciting as ever and here to stay. J. Am. Chem. Soc. 2018 140 14 4751 4755 10.1021/jacs.8b02266 29635919
    [Google Scholar]
  11. Majhi S. Mandal B. Modern Sustainable Techniques in Total Synthesis of Bioactive Natural Products. Singapore World Scientific 2023 10.1142/13210
    [Google Scholar]
  12. Majhi S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrason. Sonochem. 2021 77 105665 10.1016/j.ultsonch.2021.105665 34298310
    [Google Scholar]
  13. Majhi S. Applications of Norrish type I and II reactions in the total synthesis of natural products: A review. Photochem. Photobiol. Sci. 2021 20 10 1357 1378 10.1007/s43630‑021‑00100‑3 34537894
    [Google Scholar]
  14. Majhi S. Applications of flow chemistry in total synthesis of natural products. Curr. Org. Chem. 2023 27 12 1072 1089 10.2174/1385272827666230809094232
    [Google Scholar]
  15. Majhi S. The art of total synthesis of bioactive natural products via microwaves. Curr. Org. Chem. 2021 25 9 1047 1069 10.2174/1385272825666210303112302
    [Google Scholar]
  16. Majhi S. Applications of Yamaguchi method to esterification and macrolactonization in total synthesis of bioactive natural products. ChemistrySelect 2021 6 17 4178 4206 10.1002/slct.202100206
    [Google Scholar]
  17. Majhi S. Sivakumar M. Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2023
    [Google Scholar]
  18. Atanasov A.G. Zotchev S.B. Dirsch V.M. Supuran C.T. International Natural Product Sciences Taskforce Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  19. Sinha K. Chowdhury S. Banerjee S. Mandal B. Mandal M. Majhi S. Brahmachari G. Ghosh J. Sil P.C. Lupeol alters viability of SK-RC-45 (Renal cell carcinoma cell line) by modulating its mitochondrial dynamics. Heliyon 2019 5 8 e02107 10.1016/j.heliyon.2019.e02107 31417967
    [Google Scholar]
  20. Majhi S. Das D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update. Tetrahedron 2021 78 131801 10.1016/j.tet.2020.131801
    [Google Scholar]
  21. Majhi S. Discovery, development and design of anthocyanins-inspired anticancer agents: A comprehensive review. Anticancer. Agents Med. Chem. 2022 22 19 3219 3238 10.2174/1871520621666211015142310 34779372
    [Google Scholar]
  22. Majhi S. Manickam S. Preliminary concept of semisynthesis and its importance, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 1 23
    [Google Scholar]
  23. Majhi S. Diterpenoids: Natural distribution, semisynthesis at room temperature and pharmacological aspects‐a decade update. ChemistrySelect 2020 5 40 12450 12464 10.1002/slct.202002836
    [Google Scholar]
  24. Majhi S. Manickam S. Semisynthesis of antibiotics, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 25 54 10.1016/B978‑0‑443‑15269‑6.00007‑9
    [Google Scholar]
  25. Majhi S. Recent developments in the synthesis and anti-cancer activity of acridine and xanthine-based molecules. Phys. Sci. Rev. 2023 8 9 2405 2439 10.1515/psr‑2021‑0216
    [Google Scholar]
  26. Majhi S. Manickam S. Semisynthesis of alkaloids, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 55 112 10.1016/B978‑0‑443‑15269‑6.00008‑0
    [Google Scholar]
  27. Brahmachari G. Majhi S. Mandal B. Mandal M. Kumar A. Srivastava A.K. Singh R.B. Misra N. Stigmasterol from the flowers of Peltophorum pterocarpum (DC) Backer Ex K. Heyne (Fabaceae)-isolation, spectral properties and quantum chemical studies. J. Indian Chem. Soc. 2018 95 1231 1244
    [Google Scholar]
  28. Majhi S. Jash S.K. Recent developments of nanocatalysts for Stille coupling reaction. Synth. Commun. 2023 53 2061 2087 10.1080/00397911.2023.2269585
    [Google Scholar]
  29. Majhi S. Manickam S. Semisynthesis of flavones, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 113 179 10.1016/B978‑0‑443‑15269‑6.00004‑3
    [Google Scholar]
  30. Majhi S. Semisynthesis of lignans, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 181 208
    [Google Scholar]
  31. Gorai D. Jash S.K. Singh R.K. Sarkar A. Majhi S. Chemical and pharmacological aspects of Limnophila rugosa: An update. Int. J. Nat. Prod. Res. 2013 3 120 124
    [Google Scholar]
  32. Brahmachari G. Mandal L.C. Roy R. Jash S.K. Mondal A. Majhi S. Gorai D. Lupeol, a pharmaceutically potent triterpenoid, from the ripe fruits of Rauvolfia tetraphylla L. (Apocynaceae). J. Indian Chem. Soc. 2011 88 303 305
    [Google Scholar]
  33. Majhi S. Saha I. Visible Light-promoted Synthesis of Bioactive N, N-heterocycles. Curr. Green Chem. 2022 9 3 127 144 10.2174/2213346110666221223141323
    [Google Scholar]
  34. Majhi S. Manickam S. Semisynthesis of phenolic comounds, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 209 242 10.1016/B978‑0‑443‑15269‑6.00010‑9
    [Google Scholar]
  35. Majhi S. Semisynthesis of anthocyanins, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 243 277
    [Google Scholar]
  36. Majhi S. Manickam S. Semisynthesis of natural products at room temperature, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 279 308 10.1016/B978‑0‑443‑15269‑6.00006‑7
    [Google Scholar]
  37. Dey A.K. Majhi S. Samarium(III) triflate in organic synthesis: A mild and efficient catalyst. ChemistrySelect 2023 8 18 e202300156 10.1002/slct.202300156
    [Google Scholar]
  38. Majhi S. Synthesis of bioactive natural products and their analogs at room temperature – An update. Phys. Sci. Rev. 2023 8 10 3447 3473 10.1515/psr‑2021‑0094
    [Google Scholar]
  39. Majhi S. Manickam S. Semisynthesis of natural products under greener conditions, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 309 328 10.1016/B978‑0‑443‑15269‑6.00003‑1
    [Google Scholar]
  40. Majhi S. Manickam S. Semisynthesis of natural products through the insertion of oxygen atom under metal-free conditions, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 329 351 10.1016/B978‑0‑443‑15269‑6.00012‑2
    [Google Scholar]
  41. Majhi S. Manickam S. Adaptation of organic reactions in the industrial production of bioactive compounds, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 353 380 10.1016/B978‑0‑443‑15269‑6.00002‑X
    [Google Scholar]
  42. Dey A.K. Majhi S. 7 Role of samarium in organic synthesis. Rare Earth Elements: Processing, Catalytic Applications and Environmental Impact, Berlin, Boston De Gruyter 2023 119 140
    [Google Scholar]
  43. Majhi S. Manickam S. New derivatives as nutraceuticals: Regulatory considerations, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 381 393 10.1016/B978‑0‑443‑15269‑6.00001‑8
    [Google Scholar]
  44. Majhi S. Manickam S. Computational chemistry of natural product analogues, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 395 437 10.1016/B978‑0‑443‑15269‑6.00009‑2
    [Google Scholar]
  45. Majhi S. Manickam S. Developing semisynthesis methods for neglected tropical diseases, Semisynthesis of Bioactive Compounds and their Biological Activities. Amsterdam Elsevier 2024 439 458 10.1016/B978‑0‑443‑15269‑6.00005‑5
    [Google Scholar]
  46. Majhi S. Mondal P.K. Microwave-assisted synthesis of heterocycles and their anti-cancer activities. Curr. Microw. Chem. 2023 10 2 135 154 10.2174/0122133356264446230925173123
    [Google Scholar]
  47. Majhi S. Chapter 10 - Applications of nanoparticles in organic synthesis under ultrasonication. Nanoparticles in Green Organic Synthesis Strategy Towards Sustainability Elsevier Science Amsterdam 2023 279 315
    [Google Scholar]
  48. Murauer A. Ganzera M. Quantitative determination of major alkaloids in Cinchona bark by supercritical fluid chromatography. J. Chromatogr. A 2018 1554 117 122 10.1016/j.chroma.2018.04.038 29699870
    [Google Scholar]
  49. Boratyński P.J. Zielińska-Błajet M. Skarżewski J. Cinchona alkaloids-derivatives and applications. Alkaloids Chem. Biol. 2019 82 29 145 10.1016/bs.alkal.2018.11.001 30850032
    [Google Scholar]
  50. Haeusler I.L. Chan X.H.S. Guérin P.J. White N.J. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: A systematic review. BMC Med. 2018 16 1 200 10.1186/s12916‑018‑1188‑2 30400791
    [Google Scholar]
  51. Lodhi L. Yadav J.P. Yamazaki T. Duong N.T. Poojary S.L. Dey K.K. Nishiyama Y. Ghosh M. NMR crystallographic approach to study the variation of the dynamics of quinine and its quasienantiomer quinidine. J. Phys. Chem. C 2022 126 40 17291 17305 10.1021/acs.jpcc.2c04470
    [Google Scholar]
  52. Jiang Y. Deiana L. Zhang K. Total asymmetric synthesis of qunine, quinidine and analogues via catalytic enantioselective cascade transformations. Eur. J. Org. Chem. 2019 6016 6023 10.1002/ejoc.201901003
    [Google Scholar]
  53. Zhang J. Morris-Natschke S.L. Ma D. Shang X.F. Yang C.J. Liu Y.Q. Lee K.H. Biologically active indolizidine alkaloids. Med. Res. Rev. 2021 41 2 928 960 10.1002/med.21747 33128409
    [Google Scholar]
  54. Guengerich F.P. DiMari S.J. Broquist H.P. Isolation and characterization of a l-pyrindine fungal alkaloid. J. Am. Chem. Soc. 1973 95 6 2055 2056 10.1021/ja00787a080
    [Google Scholar]
  55. Dorling P.R. Huxtable C.R. Colegate S.M. Inhibition of lysosomal α-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens. Biochem. J. 1980 191 2 649 651 10.1042/bj1910649 6786280
    [Google Scholar]
  56. Trajkovic M. Balanac V. Ferjancic Z. Saicic R.N. Total synthesis of (+)-swainsonine and (+)-8-epi-swainsonine. RSC Advances 2014 4 96 53722 53724 10.1039/C4RA11978A
    [Google Scholar]
  57. Kubota T. Kurimoto S.I. Kobayashi J. The manzamine alkaloids. Alkaloids Chem. Biol. 2020 84 1 124 10.1016/bs.alkal.2020.03.001 32416951
    [Google Scholar]
  58. Kobayashi J. Watanabe D. Kawasaki N. Tsuda M. Nakadomarin A, a novel hexacyclic manzamine-related alkaloid from Amphimedon sponge. J. Org. Chem. 1997 62 26 9236 9239 10.1021/jo9715377
    [Google Scholar]
  59. Jana S. Mekonnen H.G. Recent developments on the total synthesis of Nakadomarin A. ChemistrySelect 2018 3 18 5198 5206 10.1002/slct.201800183
    [Google Scholar]
  60. Boeckman R.K. Jr Wang H. Rugg K.W. Genung N.E. Chen K. Ryder T.R. A scalable total synthesis of (-)-Nakadomarin A. Org. Lett. 2016 18 23 6136 6139 10.1021/acs.orglett.6b03137 27934385
    [Google Scholar]
  61. Desgagné-Penix I. Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem. Rev. 2021 20 2 409 431 10.1007/s11101‑020‑09678‑5
    [Google Scholar]
  62. Pettit G.R. Cragg G.M. Singh S.B. Duke J.A. Doubek D.L. Antineoplastic agents, 162. Zephyranthes candida. J. Nat. Prod. 1990 53 1 176 178 10.1021/np50067a026 2348199
    [Google Scholar]
  63. Pettit G.R. Melody N. Antineoplastic agents. 527. Synthesis of 7-deoxynarcistatin, 7-deoxy-trans-dihydronarcistatin, and trans-dihydronarcistatin 1(1). J. Nat. Prod. 2005 68 2 207 211 10.1021/np0304518 15730244
    [Google Scholar]
  64. Gabrielsen B. Monath T.P. Huggins J.W. Kefauver D.F. Pettit G.R. Groszek G. Hollingshead M. Kirsi J.J. Shannon W.M. Schubert E.M. DaRe J. Ugarkar B. Ussery M.A. Phelan M.J. Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. J. Nat. Prod. 1992 55 11 1569 1581 10.1021/np50089a003 1336040
    [Google Scholar]
  65. Revu O. Zepeda-Velázquez C. Nielsen A.J. McNulty J. Yolken R.H. Jones-Brando L. Total synthesis of the natural product (+)-trans-dihydronarciclasine via an asymmetric organocatalytic [3+3]-Cylcloaddition and discovery of its potent anti-zika virus (ZIKV) activity. ChemistrySelect 2016 1 18 5895 5899 10.1002/slct.201601536
    [Google Scholar]
  66. Varró G. Hegedűs L. Simon A. Balogh A. Grün A. Leveles I. Vértessy B.G. Kádas I. The first enantioselective total synthesis of (-)-trans-dihydronarciclasine. J. Nat. Prod. 2017 80 6 1909 1917 10.1021/acs.jnatprod.7b00208 28581297
    [Google Scholar]
  67. Chen Q.B. Gao J. Zou G.A. Xin X.L. Aisa H.A. Piperidine alkaloids with diverse skeletons from Anacyclus pyrethrum. J. Nat. Prod. 2018 81 6 1474 1482 10.1021/acs.jnatprod.8b00239 29775308
    [Google Scholar]
  68. Tang Y. Zhu L. Hong R. Madangamine alkaloids: Madness and tranquility. Tetrahedron Chem 2022 3 100025 10.1016/j.tchem.2022.100025
    [Google Scholar]
  69. Kong F. Andersen R.J. Allen T.M. Madangamine A, a novel cytotoxic alkaloid from the marine sponge Xestospongia ingens. J. Am. Chem. Soc. 1994 116 13 6007 6008 10.1021/ja00092a077
    [Google Scholar]
  70. Kong F. Graziani E.I. Andersen R.J. Madangamines B-E, pentacyclic alkaloids from the marine sponge Xestospongia ingens. J. Nat. Prod. 1998 61 2 267 271 10.1021/np970377r 9548859
    [Google Scholar]
  71. Miura K. Kawano S. Suto T. Sato T. Chida N. Simizu S. Identification of madangamine A as a novel lysosomotropic agent to inhibit autophagy. Bioorg. Med. Chem. 2021 34 116041 10.1016/j.bmc.2021.116041 33549907
    [Google Scholar]
  72. Shiomi S. Shennan B.D.A. Yamazaki K. Fuentes de Arriba Á.L. Vasu D. Hamlin T.A. Dixon D.J. A new organocatalytic desymmetrization reaction enables the enantioselective total synthesis of Madangamine E. J. Am. Chem. Soc. 2022 144 3 1407 1415 10.1021/jacs.1c12040 35037758
    [Google Scholar]
  73. Rother A. Schwarting A.E. A new phenylquinolizidol of Heimia salicifolia. Experientia 1974 30 3 222 10.1007/BF01934789 4824580
    [Google Scholar]
  74. Fuji K. Yamada T. Fujita E. Murata H. Lythraceous alkaloids. X. Alkaloids of Lagerstroemia subcostata and L. favriei: A contribution to the chemotaxonomy. Chem. Pharm. Bull. 1978 26 8 2515 2521 10.1248/cpb.26.2515
    [Google Scholar]
  75. Virk S. Pansare S.V. Biomimetic organocatalytic approach to 4-arylquinolizidine alkaloids and application in the synthesis of (-)-Lasubine II and (+)-Subcosine II. Org. Lett. 2019 21 14 5524 5528 10.1021/acs.orglett.9b01840 31246480
    [Google Scholar]
  76. Santos M.M.M. Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron 2014 70 52 9735 9757 10.1016/j.tet.2014.08.005
    [Google Scholar]
  77. Klas K.R. Kato H. Frisvad J.C. Yu F. Newmister S.A. Fraley A.E. Sherman D.H. Tsukamoto S. Williams R.M. Structural and stereochemical diversity in prenylated indole alkaloids containing the bicyclo[2.2.2]diazaoctane ring system from marine and terrestrial fungi. Nat. Prod. Rep. 2018 35 6 532 558 10.1039/C7NP00042A 29632911
    [Google Scholar]
  78. Angenot L. New oxindole alkaloids from Strychnos usambarensis GILG. Plant. Med. Phytother. 1978 12 123 129
    [Google Scholar]
  79. Bassleer R. Depauw-Gillet M.C. Massart B. Marnette J-M. Wiliquet P. Caprasse M. Angenot L. Effects of three alkaloids isolated from Strychnos usambarensis on cancer cells in culture (author’s transl). Planta Med. 1982 45 2 123 126 10.1055/s‑2007‑971260 7111480
    [Google Scholar]
  80. Yu Q. Guo P. Jian J. Chen Y. Xu J. Nine-step total synthesis of (-)-strychnofoline. Chem. Commun. 2018 54 9 1125 1128 10.1039/C7CC08938D 29334094
    [Google Scholar]
  81. Wang Y.S. Li B.T. Liu S.X. Wen Z.Q. Yang J.H. Zhang H.B. Hao X.J. Anisucoumaramide, a bioactive coumarin from Clausena anisum-olens. J. Nat. Prod. 2017 80 4 798 804 10.1021/acs.jnatprod.6b00391 28368606
    [Google Scholar]
  82. Misra R. Tritch H.R. III Pandey R.C. Defucogilvocarcin V. Defucogilvocarcin V, a new antibiotic from Streptomyces arenae 2064: Isolation, characterization, partial synthesis and biological activity. J. Antibiot. 1985 38 9 1280 1283 10.7164/antibiotics.38.1280 3917241
    [Google Scholar]
  83. Huang X. Zhu T. Huang Z. Zhang Y. Jin Z. Zanoni G. Chi Y.R. Carbene-catalyzed formal [5 + 5] reaction for coumarin construction and total synthesis of defucogilvocarcins. Org. Lett. 2017 19 22 6188 6191 10.1021/acs.orglett.7b03102 29111757
    [Google Scholar]
  84. Srikrishna D. Godugu C. Dubey P.K. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem. 2018 18 2 113 141 27488585
    [Google Scholar]
  85. Kamperdick C. Phuong N.M. Sung T.V. Schmidt J. Adam G. Coumarins and dihydrocinnamic acid derivatives from Micromelum falcatum. Phytochemistry 1999 52 8 1671 1676 10.1016/S0031‑9422(99)00243‑5
    [Google Scholar]
  86. Rahmani M. Hin Taufiq-Yap Y. Ismail H.B.M. Sukari A. Waterman P.G. New coumarin and dihydrocinnamic acid derivatives from two malaysian populations of Micromelum minutum. Phytochemistry 1994 37 2 561 564 10.1016/0031‑9422(94)85100‑X
    [Google Scholar]
  87. Huang W.L. Raja A. Hong B.C. Lee G.H. Organocatalytic enantioselective michael-acetalization-reduction-nef reaction for a one-pot entry to the functionalized aflatoxin system. Total synthesis of (-)- dihydroaflatoxin D2 and (-)- and (+)-microminutinin. Org. Lett. 2017 19 13 3494 3497 10.1021/acs.orglett.7b01473 28608693
    [Google Scholar]
  88. Hoffmann D. Medical Herbalism: The Science Principles and Practices of Herbal Medicine. Rochester, Vermont Healing Arts Press 2003
    [Google Scholar]
  89. Lemmich J. Havelund S. Thastrup O. Dihydrofurocoumarin glucosides from Angelica archangelica and Angelica silvestris. Phytochemistry 1983 22 2 553 555 10.1016/0031‑9422(83)83044‑1
    [Google Scholar]
  90. Moss G.P. Smith P.A.S. Tavernier D. Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995). Pure Appl. Chem. 1995 67 8-9 1307 1375 10.1351/pac199567081307
    [Google Scholar]
  91. Ngameni B. Kuete V. Simo I.K. Mbaveng A.T. Awoussong P.K. Patnam R. Roy R. Ngadjui B.T. Antibacterial and antifungal activities of the crude extract and compounds from Dorstenia turbinata (Moraceae). S. Afr. J. Bot. 2009 75 2 256 261 10.1016/j.sajb.2008.11.006
    [Google Scholar]
  92. Enders D. Fronert J. Bisschops T. Boeck F. Asymmetric total synthesis of smyrindiol employing an organocatalytic aldol key step. Beilstein J. Org. Chem. 2012 8 1112 1117 10.3762/bjoc.8.123 23019438
    [Google Scholar]
  93. Yue Z. He S. Wang J. Jiang Q. Wang H. Wu J. Li C. Wang Z. He X. Jia N. Glyceollins from soybean: Their pharmacological effects and biosynthetic pathways. Heliyon 2023 9 11 e21874 10.1016/j.heliyon.2023.e21874 38034638
    [Google Scholar]
  94. Jahan M.A. Kovinich N. Acidity stress for the systemic elicitation of glyceollin phytoalexins in soybean plants. Plant Signal. Behav. 2019 14 7 1604018 10.1080/15592324.2019.1604018 30985226
    [Google Scholar]
  95. Goel A. Kumar A. Raghuvanshi A. Synthesis, stereochemistry, structural classification, and chemical reactivity of natural pterocarpans. Chem. Rev. 2013 113 3 1614 1640 10.1021/cr300219y 23214501
    [Google Scholar]
  96. Boué S.M. Isakova I.A. Burow M.E. Cao H. Bhatnagar D. Sarver J.G. Shinde K.V. Erhardt P.W. Heiman M.L. Glyceollins, soy isoflavone phytoalexins, improve oral glucose disposal by stimulating glucose uptake. J. Agric. Food Chem. 2012 60 25 6376 6382 10.1021/jf301057d 22655912
    [Google Scholar]
  97. Khupse R.S. Sarver J.G. Trendel J.A. Bearss N.R. Reese M.D. Wiese T.E. Boué S.M. Burow M.E. Cleveland T.E. Bhatnagar D. Erhardt P.W. Biomimetic syntheses and antiproliferative activities of racemic, natural (-), and unnnatural (+) glyceollin I. J. Med. Chem. 2011 54 10 3506 3523 10.1021/jm101619e 21513275
    [Google Scholar]
  98. Malik N. Zhang Z. Erhardt P. Total synthesis of (±)-Glyceollin II and a dihydro derivative. J. Nat. Prod. 2015 78 12 2940 2947 10.1021/acs.jnatprod.5b00607 26654660
    [Google Scholar]
  99. Ayres D.C. Loike J.D. Lignans: Chemical, biological and clinical properties. Cambridge University Press 1990 10.1017/CBO9780511983665
    [Google Scholar]
  100. Hughes G.K. Ritchie E. The chemical constituents of Himantandra species. I. The Lignins of Himantandra baccata Bail. and H. belgraveana F. Muell. Aust. J. Chem. 1954 7 1 104 10.1071/CH9540104
    [Google Scholar]
  101. Hong B.C. Hsu C.S. Lee G.H. Enantioselective total synthesis of (+)-galbulin via organocatalytic domino Michael-Michael-aldol condensation. Chem. Commun. 2012 48 18 2385 2387 10.1039/C2CC16682H 22179766
    [Google Scholar]
  102. Ekwomadu T.I. Akinola S.A. Mwanza M. Fusarium mycotoxins, their metabolites (free, emerging, and masked), food safety concerns, and health impacts. Int. J. Environ. Res. Public Health 2021 18 22 11741 10.3390/ijerph182211741 34831498
    [Google Scholar]
  103. Gerber N.N. Volatile lactones from Streptomyces. Tetrahedron Lett. 1973 14 10 771 774 10.1016/S0040‑4039(01)95708‑9
    [Google Scholar]
  104. Rodríguez A.D. Ramírez C. Further butenolides from the Caribbean octocoral Pterogorgia citrina. J. Nat. Prod. 1994 57 3 339 347 10.1021/np50105a002 7911157
    [Google Scholar]
  105. Degli Esposti M. Ghelli A. Ratta M. Cortes D. Estornell E. Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). Biochem. J. 1994 301 Pt 1 161 167 10.1042/bj3010161 8037664
    [Google Scholar]
  106. Schmitz F.J. Lorance E.D. Ciereszko L.S. Chemistry of coelenterates. XII. Hydroxyancepsenolide, a dilactone from the octocoral, Pterogorgia anceps. J. Org. Chem. 1969 34 6 1989 1990 10.1021/jo01258a110
    [Google Scholar]
  107. Durán A.G. Gutiérrez M.T. Mejías F.J.R. Molinillo J.M.G. Macías F.A. An overview of the chemical characteristics, bioactivity and achievements regarding the therapeutic usage of acetogenins from Annona cherimola Mill. Molecules 2021 26 10 2926 10.3390/molecules26102926 34069113
    [Google Scholar]
  108. Madhavachary R. Mallik R. Ramachary D.B. Organocatalytic enantiospecific total synthesis of butenolides. Molecules 2021 26 14 4320 10.3390/molecules26144320 34299595
    [Google Scholar]
  109. Ivanova O.M. Anufrieva K.S. Kazakova A.N. Malyants I.K. Shnaider P.V. Lukina M.M. Shender V.O. Non-canonical functions of spliceosome components in cancer progression. Cell Death Dis. 2023 14 2 77 10.1038/s41419‑022‑05470‑9 36732501
    [Google Scholar]
  110. Kakeya H. Kaida D. Sekiya H. Nagai K. Yoshida M. Osada H. RQN-18690A (18-deoxyherboxidiene) targets SF3b, a spliceosome component, and inhibits angiogenesis. J. Antibiot. 2016 69 2 121 123 10.1038/ja.2015.94 26350783
    [Google Scholar]
  111. Matsumoto Y. Hibino K. Yonaga M. Kakeya H. Hayashi Y. Enantioselective total synthesis of RQN-18690A (18-Deoxyherboxidiene). Org. Lett. 2016 18 14 3382 3385 10.1021/acs.orglett.6b01524 27377811
    [Google Scholar]
  112. Zhao H. Sun L. Kong C. Mei W. Dai H. Xu F. Huang S. Phytochemical and pharmacological review of diterpenoids from the genus Euphorbia Linn (2012-2021). J. Ethnopharmacol. 2022 298 115574 10.1016/j.jep.2022.115574 35944737
    [Google Scholar]
  113. Cheng H. Zeng F.H. Yang X. Meng Y.J. Xu L. Wang F.P. Collective total syntheses of atisane-type diterpenes and atisinetype diterpenoid alkaloids: (±)-spiramilactone B, (±)-spiraminol, (±)-dihydroajaconine, and (±)-spiramines C and D. Angew. Chem. Int. Ed. Engl. 2016 55 1 392 396 10.1002/anie.201508996 26545636
    [Google Scholar]
  114. Tang P. Chen Q.H. Wang F.P. Atropurpuran, a novel diterpene with an unprecedented pentacyclic cage skeleton, from Aconitum hemsleyanum var. atropurpureum. Tetrahedron Lett. 2009 50 4 460 462 10.1016/j.tetlet.2008.11.028
    [Google Scholar]
  115. Gong J. Chen H. Liu X.Y. Wang Z.X. Nie W. Qin Y. Total synthesis of atropurpuran. Nat. Commun. 2016 7 1 12183 10.1038/ncomms12183 27387707
    [Google Scholar]
  116. Fathallah N. Tamer A. Ibrahim R. kamal M. Kes M.E. The marine sponge genus Dysidea sp: The biological and chemical aspects—a review. Future J. Pharm. Sci. 2023 9 1 98 10.1186/s43094‑023‑00550‑9
    [Google Scholar]
  117. Patil A.D. Freyer A.J. Killmer L. Offen P. Carte B. Jurewicz A.J. Johnson R.K. Frondosins, five new sesquiterpene hydroquinone derivatives with novel skeletons from the sponge Dysidea frondosa: Inhibitors of interleukin-8 receptors. Tetrahedron 1997 53 14 5047 5060 10.1016/S0040‑4020(97)00205‑6
    [Google Scholar]
  118. Hallock Y.F. Cardellina J.H. II Boyd M.R. (-)-Frondosins A and D, HIV-inhibitory sesquiterpene hydroquinone derivatives from Euryspongia sp. Nat. Prod. Lett. 1998 11 2 153 160 10.1080/10575639808041212
    [Google Scholar]
  119. Reiter M. Torssell S. Lee S. Macmillan D.W.C. The organocatalytic three-step total synthesis of (+)-frondosin B. Chem. Sci. 2010 1 1 37 42 10.1039/c0sc00204f 22299067
    [Google Scholar]
  120. Cornforth J.W. Terpenoid biosynthesis. Chem. Br. 1968 4 3 102 106 5640876
    [Google Scholar]
  121. Kikuchi H. Kawai K. Nakashiro Y. Yonezawa T. Kawaji K. Kodama E.N. Oshima Y. Construction of a meroterpenoid-like compounds library based on diversity-enhanced extracts. Chemistry 2019 25 4 1106 1112 10.1002/chem.201805417 30379362
    [Google Scholar]
  122. Garrido L. Zubía E. Ortega M.J. Salvá J. New meroterpenoids from the Ascidian Aplidium conicum. J. Nat. Prod. 2002 65 9 1328 1331 10.1021/np020176+ 12350158
    [Google Scholar]
  123. Simon-Levert A. Arrault A. Bontemps-Subielos N. Canal C. Banaigs B. Meroterpenes from the ascidian Aplidium aff. densum. J. Nat. Prod. 2005 68 9 1412 1415 10.1021/np050110p 16180826
    [Google Scholar]
  124. Carroll A.R. Bowden B.F. Coll J.C. Studies of Australian Ascidians. III. A new tetrahydrocannabinol derivative from the ascidian Synoicum castellatum. Aust. J. Chem. 1993 46 7 1079 1083 10.1071/CH9931079
    [Google Scholar]
  125. Hong B.C. Kotame P. Tsai C.W. Liao J.H. Enantioselective total synthesis of (+)-conicol via cascade three-component organocatalysis. Org. Lett. 2010 12 4 776 779 10.1021/ol902840x 20078081
    [Google Scholar]
  126. Mohsin N.U.A. Current strategies in development of new chromone derivatives with diversified pharmacological activities. Pharm. Chem. J. 2020 54 241 257 10.1007/s11094‑020‑02187‑x 32836513
    [Google Scholar]
  127. Soares J.X. Loureiro D.R.P. Dias A.L. Reis S. Pinto M.M.M. Afonso C.M.M. Bioactive marine xanthones: A review. Mar. Drugs 2022 20 1 58 10.3390/md20010058 35049913
    [Google Scholar]
  128. Shagufta Ahmad I. Recent insight into the biological activities of synthetic xanthone derivatives. Eur. J. Med. Chem. 2016 116 267 280 10.1016/j.ejmech.2016.03.058 27111599
    [Google Scholar]
  129. Ito S. Kitamura T. Arulmozhiraja S. Manabe K. Tokiwa H. Suzuki Y. Total synthesis of termicalcicolanone a via organocatalysis and regioselective claisen rearrangement. Org. Lett. 2019 21 8 2777 2781 10.1021/acs.orglett.9b00731 30958681
    [Google Scholar]
  130. Cao S. Brodie P.J. Miller J.S. Randrianaivo R. Ratovoson F. Birkinshaw C. Andriantsiferana R. Rasamison V.E. Kingston D.G.I. Antiproliferative xanthones of Terminalia calcicola from the Madagascar rain forest. J. Nat. Prod. 2007 70 4 679 681 10.1021/np060627g 17323994
    [Google Scholar]
  131. Velázquez-Jiménez R. Torres-Valencia J.M. Cerda-García-Rojas C.M. Hernández-Hernández J.D. Román-Marín L.U. Manríquez-Torres J.J. Gómez-Hurtado M.A. Valdez-Calderón A. Motilva V. García-Mauriño S. Talero E. Ávila J. Joseph-Nathan P. Joseph-Nathan P. Absolute configuration of podophyllotoxin related lignans from Bursera fagaroides using vibrational circular dichroism. Phytochemistry 2011 72 17 2237 2243 10.1016/j.phytochem.2011.07.017 21840559
    [Google Scholar]
  132. Rojas-Sepúlveda A.M. Mendieta-Serrano M. Mojica M.Y.A. Salas-Vidal E. Marquina S. Villarreal M.L. Puebla A.M. Delgado J.I. Alvarez L. Cytotoxic podophyllotoxin type-lignans from the steam bark of Bursera fagaroides var. fagaroides. Molecules 2012 17 8 9506 9519 10.3390/molecules17089506 22878225
    [Google Scholar]
  133. Rattanaburee T. Thongpanchang T. Wongma K. Tedasen A. Sukpondma Y. Graidist P. Anticancer activity of synthetic (±)-kusunokinin and its derivative (±)-bursehernin on human cancer cell lines. Biomed. Pharmacother. 2019 117 109115 10.1016/j.biopha.2019.109115 31220743
    [Google Scholar]
  134. Pitre S.P. Overman L.E. Strategic use of visible-light photoredox catalysis in natural product synthesis. Chem. Rev. 2022 122 2 1717 1751 10.1021/acs.chemrev.1c00247 34232019
    [Google Scholar]
  135. Welin E.R. Warkentin A.A. Conrad J.C. MacMillan D.W.C. Enantioselective α-alkylation of aldehydes by photoredox organocatalysis: Rapid access to pharmacophore fragments from β-cyanoaldehydes. Angew. Chem. Int. Ed. Engl. 2015 54 33 9668 9672 10.1002/anie.201503789 26130043
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461340116241020175907
Loading
/content/journals/cgc/10.2174/0122133461340116241020175907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test