Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Nitrogen-containing acyclic, cyclic, and heterocyclic compounds and their derivatives have received increasing attention as a source of therapeutic agents. Oximes are an interesting class of Nitrogen-containing compounds possessing a wide variety of applications. Over the last decade, the interest in oximes and their derivatives has intensified. Many oxime derivatives using several preparation methods have been developed and evaluated for their biological activities. Due to their importance, oximes are subjected to many chemical transformations with the use of different chemicals to obtain numerous new derivatives. As a part of the continuing interest in oxime derivatives, we aim in this review to explore the green chemistry principles for the synthesis of oxime derivatives, as it offers promising pathways to more sustainable synthesis techniques that minimize waste and energy consumption and avoid hazardous methods. Additionally, it could inspire and stimulate researchers from various disciplines, such as chemists, biologists, and materials scientists to explore new applications for oximes derivatives.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461349649241029175504
2024-11-04
2025-05-22
Loading full text...

Full text loading...

References

  1. DonohueJ. The structure of oximes.J. Am. Chem. Soc.195678164172417210.1021/ja01597a089
    [Google Scholar]
  2. (a MeyerV. JannyA. About nitrogen-containing acetone derivatives.Ber. Dtsch. Chem. Ges.18821511164116710.1002/cber.188201501257
    [Google Scholar]
  3. (b MeyerV. JannyA. On the effect of hydroxylamine on acetone.Ber. Dtsch. Chem. Ges.18821511324132610.1002/cber.188201501285
    [Google Scholar]
  4. (c MeyerV. JannyA. Ueber eine neue Bildungsweise der α‐Nitrosopropionsäure und die Wirkungsweise des Hydroxylamins.Ber. Dtsch. Chem. Ges.18821521525152910.1002/cber.18820150217
    [Google Scholar]
  5. (d JannyA. Ueber die Acetoxime.Ber. Dtsch. Chem. Ges.18821522778278310.1002/cber.188201502255
    [Google Scholar]
  6. (a SatoskarD. RegeR.S. NirmalaN. BhandarkarS. Pharmacology and Pharmacotherapeutics.Elsevier2015
    [Google Scholar]
  7. (b TripathiK. Essentials of Medical Pharmacology.JP Medical Ltd2013
    [Google Scholar]
  8. VezmarS. MiljkovicB. VucicevicK. TimotijevicI. ProstranM. TodorovicZ. PokrajacM. Pharmacokinetics and efficacy of fluvoxamine and amitriptyline in depression.J. Pharmacol. Sci.200911019810410.1254/jphs.09013FP 19444001
    [Google Scholar]
  9. APA American Psychological AssociationNational Center for Biotechnology Information. PubChem Compound Summary for CID 129626367, Technetium tc 99m exametazime.2020
    [Google Scholar]
  10. CoreyE.J. ArnettJ.F. WidigerG.N. Simple total synthesis of (+-)-perhydrohistrionicotoxin.J. Am. Chem. Soc.197597243043110.1021/ja00835a039 1169269
    [Google Scholar]
  11. CivitelloE.R. RapoportH. Synthesis of the enantiomeric furobenzofurans, late precursors for the synthesis of (+)- and (-)-aflatoxins B1, B2, G1, and G2.J. Org. Chem.199459143775378210.1021/jo00093a008
    [Google Scholar]
  12. (a WorekF. ThiermannH. WilleT. Oximes in organophosphate poisoning: 60 years of hope and despair.Chem. Biol. Interact.2016259Pt B939810.1016/j.cbi.2016.04.032 27125761
    [Google Scholar]
  13. (b SinghN. KarpichevY. TiwariA.K. KucaK. GhoshK.K. Oxime functionality in surfactant self-assembly: An overview on combating toxicity of organophosphates.J. Mol. Liq.201520823725210.1016/j.molliq.2015.04.010
    [Google Scholar]
  14. (c WorekF. ThiermannH. The value of novel oximes for treatment of poisoning by organophosphorus compounds.Pharmacol. Ther.2013139224925910.1016/j.pharmthera.2013.04.009 23603539
    [Google Scholar]
  15. (d MerceyG. VerdeletT. RenouJ. KliachynaM. BaatiR. NachonF. JeanL. RenardP.Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents.Acc. Chem. Res.201245575676610.1021/ar2002864 22360473
    [Google Scholar]
  16. (e MusilekK. DolezalM. Gunn-MooreF. KucaK. Design, evaluation and structure—Activity relationship studies of the AChE reactivators against organophosphorus pesticides.Med. Res. Rev.201131454857510.1002/med.20192 20027669
    [Google Scholar]
  17. (a LetendreL. HarrimanJ. DragM. MullinsA. MalinskiT. RehbeinS. The intravenous and oral pharmacokinetics of afoxolaner and milbemycin oxime when used as a combination chewable parasiticide for dogs.J. Vet. Pharmacol. Ther.2017401354310.1111/jvp.12332 27604405
    [Google Scholar]
  18. (b NolanT.J. LokJ.B. Macrocyclic lactones in the treatment and control of parasitism in small companion animals.Curr. Pharm. Biotechnol.20121361078109410.2174/138920112800399167 22039798
    [Google Scholar]
  19. Bednarczyk-CwynarB. ZaprutkoL. Recent advances in synthesis and biological activity of triterpenic acylated oximes.Phytochem. Rev.201514220323110.1007/s11101‑014‑9353‑5 25859175
    [Google Scholar]
  20. NikitjukaA. JirgensonsA. Synthesis, chemical and biological properties of aziridine-1-carbaldehyde oximes* (minireview).Chem. Heterocycl. Compd.201449111544155910.1007/s10593‑014‑1407‑5
    [Google Scholar]
  21. (a FylaktakidouK.C. Hadjipavlou-LitinaD.J. LitinasK.E. VarellaE.A. NicolaidesD. (Z)-N-[2-(N′-Hydroxycarbamimidoyl)] phenyl]acetamide.N. Curr. Pharm. Des2008141001104710.2174/138161208784139675
    [Google Scholar]
  22. (b AbeleE. AbeleR. LukevicsE. Oximes of five-membered heterocyclic compounds with three and four heteroatoms 2. Synthesis of derivatives, reactions, and biological activity (Review).Chem. Heterocycl. Compd.200844776979210.1007/s10593‑008‑0110‑9
    [Google Scholar]
  23. (a AbeleE. AbeleR. LukevicsE. Pyridine oximes: Synthesis, reactions, and biological activity.Chem. Heterocycl. Compd.200339782586510.1023/A:1026181918567
    [Google Scholar]
  24. (b ClementB. Reduction of N-hydroxylated compounds: Amidoximes (N-hydroxyamidines) as pro-drugs of amidines.Drug Metab. Rev.200234356557910.1081/DMR‑120005643 12214667
    [Google Scholar]
  25. FylaktakidouK. Hadjipavlou-LitinaD. LitinasK. VarellaE. NicolaidesD. Recent developments in the chemistry and in the biological applications of amidoximes.Curr. Pharm. Des.200814101001104710.2174/138161208784139675 18473852
    [Google Scholar]
  26. BennF.R. CharltonP.T. HarmerG.L.M. Antihistaminic amino acetamidoximes.British Patent 8954951962
  27. ŠindelářK. ŠedivýZ. HrubantováM. ValchářM. MetyšováJ. ProtivaM. Synthesis of (2-(phenylthio)phenyl)acetamidines and related amidoximes as potential antidepressants.Collect. Czech. Chem. Commun.198853238138810.1135/cccc19880381
    [Google Scholar]
  28. ScoteseA.C. SantilliA.A. NelsonG.L. Synthesis and antiarrhythmic activity of substituted (2-pyrimidinylthio)acetamidoximes.J. Med. Chem.197518885285410.1021/jm00242a021 1159705
    [Google Scholar]
  29. (a MullR.P. SchmidtP. DaperoM.R. HigginsJ. WeisbachM.J. Antihypertensively active amidoximes.J. Am. Chem. Soc.195880143769377210.1021/ja01547a076
    [Google Scholar]
  30. (b RehseK. BadeS. HarsdorfA. ClementB. New no-donors with antithrombotic and vasodilating activities, Part 17. arylazoamidoximes and 3-arylazo-1,2,4-oxadiazol-5-ones.Arch. Pharm. Med. Chem.1997392398
    [Google Scholar]
  31. Dat-XuongN. Duchene-MarullazP. VacherJ. Buu-HouiN.P. analgesic activity of the oximes and beta-dialcoyl-aminoethylated derivatives of certain aromatic ketones.Med. Exp. Int. J. Exp. Med.196411137145 14191512
    [Google Scholar]
  32. (a UlrichS. BoturynD. MarraA. RenaudetO. DumyP. Oxime ligation: A chemoselective click-type reaction for accessing multifunctional biomolecular constructs.Chemistry2014201344110.1002/chem.201302426 24302514
    [Google Scholar]
  33. (b LiX.G. HaaparantaM. SolinO. Oxime formation for fluorine-18 labeling of peptides and proteins for positron emission tomography (PET) imaging: A review.J. Fluor. Chem.2012143495610.1016/j.jfluchem.2012.07.005
    [Google Scholar]
  34. (c ChenY.X. TriolaG. WaldmannH. Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins.Acc. Chem. Res.201144976277310.1021/ar200046h 21648407
    [Google Scholar]
  35. (d GilmoreJ.M. ScheckR.A. Esser-KahnA.P. JoshiN.S. FrancisM.B. N-terminal protein modification through a biomimetic transamination reaction.Angew. Chem. Int. Ed.200645325307531110.1002/anie.200600368 16847857
    [Google Scholar]
  36. Sevilla-MoránB. López-GotiC. Alonso-PradosJ.L. Sandín-EspañaP. Degradation of cyclohexanedione oxime herbicides.Herbicides: Advances in ResearchIntech2013
    [Google Scholar]
  37. (a CollinsJ. XiaoZ. MüllnerM. ConnalL.A. The emergence of oxime click chemistry and its utility in polymer science.Polym. Chem.20167233812382610.1039/C6PY00635C
    [Google Scholar]
  38. (b ArnoldR.M. PattonD.L. PopikV.V. LocklinJ. A dynamic duo: Pairing click chemistry and postpolymerization modification to design complex surfaces.Acc. Chem. Res.201447102999300810.1021/ar500191m 25127014
    [Google Scholar]
  39. (c IhaR.K. WooleyK.L. NyströmA.M. BurkeD.J. KadeM.J. HawkerC.J. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials.Chem. Rev.2009109115620568610.1021/cr900138t 19905010
    [Google Scholar]
  40. (a AlyM.M. HamzaM.F. A review: Studies on uranium removal using different techniques: Overview.J. Dispers. Sci. Technol.201334218221310.1080/01932691.2012.657954
    [Google Scholar]
  41. (b ZhaoZ. YangY. XiaoY. FanY. Recovery of gallium from Bayer liquor: A review.Hydrometallurgy2012125-12611512410.1016/j.hydromet.2012.06.002
    [Google Scholar]
  42. (c SaeedK. HaiderS. OhT.J. ParkS.Y. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption.J. Membr. Sci.2008322240040510.1016/j.memsci.2008.05.062
    [Google Scholar]
  43. SandierS.R. KaroW. Organic Functional Group Preparations.San DiegoAcademic Press1989
    [Google Scholar]
  44. DewanS.K. SinghR. KumarA. One pot synthesis of nitriles from aldehydes and hydroxylamine hydrochloride using sodium sulphate (anhyd) and sodium bicarbonate in dry media under microwave irradiation.ARKIVOC2006241e44
    [Google Scholar]
  45. (a DaveP.R. ForoharF. AxenrodT. DasK.K. QiL. WatnickC. YazdekhastiH. Facile preparation of 3,7-diazabicyclo [3.3.0]octane and 3,7,10-triheterocyclic[3.3.3]propellane ring systems from 1,5-diazacyclooctane 3,7-derivatives.J. Org. Chem.199661258897890310.1021/jo9614755 11667870
    [Google Scholar]
  46. (b BallistreniF.P. BarbuzziE. TomaselliG.A. ToscanoR.M. Useful oxidation procedure of oximes to nitro compounds with benz-mo in acetonitrile.Synlett19961110931094
    [Google Scholar]
  47. SmithP.A.S. GloyerS.E. Oxidation of dibenzylhydroxylamines to nitrones. Effects of structure and oxidizing agent on composition of the products.J. Org. Chem.197540172508251210.1021/jo00905a019
    [Google Scholar]
  48. NegiS. MatsukuraM. MizunoM. MiyakeK. MinamiN. Synthesis of (2R)-1-(4-chloro-2-pyridyl)-2-(2-pyridyl)ethylamine: A selective oxime reduction and crystallization-induced asymmetric transformation.Synthesis19961996899199610.1055/s‑1996‑4325
    [Google Scholar]
  49. (a RamalinganC. ParkY.T. Mercury-catalyzed rearrangement of ketoximes into amides and lactams in acetonitrile.J. Org. Chem.200772124536453810.1021/jo070297k 17480096
    [Google Scholar]
  50. (b FuruyaY. IshiharaK. YamamotoH. Cyanuric chloride as a mild and active Beckmann rearrangement catalyst.J. Am. Chem. Soc.200512732112401124110.1021/ja053441x 16089442
    [Google Scholar]
  51. (c WahbiA. TouilS. Synthesis of new phosphonoamide and phosphonocaprolactam derivatives via the diethyl chlorophosphate‐promoted beckmann rearrangement of γ‐phosphonyloximes.Heteroatom Chem.201526639740410.1002/hc.21273
    [Google Scholar]
  52. NarasakaK. Synthesis of azaheterocycles from oxime derivatives.Pure Appl. Chem.2003751192810.1351/pac200375010019
    [Google Scholar]
  53. (a KonidarisK.F. KatsoulakouE. KaplanisM. BekiariV. TerzisA. RaptopoulouC.P. Manessi-ZoupaE. PerlepesS.P. A tetrahedron in a cube: A dodecanuclear ZnII benzoatecluster from the use of 2-pyridinealdoxime.Dalton Trans.201039194492449410.1039/B918885A 20449469
    [Google Scholar]
  54. (b ChaudhuriP. WeyhermüllerT. WagnerR. KhanraS. BiswasB. BotheE. BillE. Tridentate facial ligation of tris(pyridine-2-aldoximato)nickel(II) and tris(imidazole-2-aldoximato)nickel(II) To generate NiIIFeIIINiII, MnIIINiII, NiIINiII, and ZnIINiII and the electrooxidized MnIVNiII, NiIINiIII, and ZnIINiIII species: A magnetostructural, electrochemical, and EPR spectroscopic study.Inorg. Chem.200746219003901610.1021/ic701073j 17718561
    [Google Scholar]
  55. RykaczewskiK.A. WearingE.R. BlackmunD.E. SchindlerC.S. Reactivity of oximes for diverse methodologies and synthetic applications.Nat. Synth.202211243610.1038/s44160‑021‑00007‑y
    [Google Scholar]
  56. DaviesJ. MorcilloS.P. DouglasJ.J. LeonoriD. Hydroxylamine derivatives as nitrogen‐radical precursors in visible‐light photochemistry.Chemistry20182447121541216310.1002/chem.201801655 29787627
    [Google Scholar]
  57. PratleyC. FennerS. MurphyJ.A. Nitrogen-centered radicals in functionalization of sp2 systems: Generation, reactivity, and applications in synthesis.Chem. Rev.202212298181826010.1021/acs.chemrev.1c00831 35285636
    [Google Scholar]
  58. ZhangM. ChenJ. HuangS. XuB. LinJ. SuW. Photocatalytic fluoroalkylations of (hetero)arenes enabled by the acid-triggered reactivity umpolung of acetoxime esters.Chem Catal.2022271793180610.1016/j.checat.2022.05.018
    [Google Scholar]
  59. GopalakrishnanM. ThanusuJ. KanagarajanV. A facile solid-state synthesis and in vitro antimicrobial activities of some 2,6-diarylpiperidin/tetrahydrothiopyran and tetrahydropyran-4-one oximes.J. Enzyme Inhib. Med. Chem.200924366967510.1080/14756360802323902 18830879
    [Google Scholar]
  60. VarmaR.S. DahiyaR. SainiR.K. Solid state regeneration of ketones from oximes on wet silica supported sodium periodate using microwaves.Tetrahedron Lett.199738518819882010.1016/S0040‑4039(97)10521‑4
    [Google Scholar]
  61. RenR.X. OuW. Preparation of cyclic ketoximes using aqueous hydroxylamine in ionic liquids.Tetrahedron Lett.200142488445844610.1016/S0040‑4039(01)01851‑2
    [Google Scholar]
  62. JebliN. HamimedS. Van HeckeK. CavalierJ.F. TouilS. Synthesis, antimicrobial activity and molecular docking study of novel α‐(diphenylphosphoryl)‐ and α‐(diphenylphosphorothioyl) cycloalkanone oximes.Chem. Biodivers.2020178e200021710.1002/cbdv.202000217 32421207
    [Google Scholar]
  63. RobertsonG.M. Comprehensive Organic Functional Group Transformations II.Elsevier Science1995
    [Google Scholar]
  64. PalK. ChakrobortyS. NathN. Limitations of nanomaterials insights in green chemistry sustainable route: Review on novel applications.Green Process. Synth.202211195196410.1515/gps‑2022‑0081
    [Google Scholar]
  65. GuoJ.J. JinT.S. ZhangS.L. LiT.S. TiO2/SO42–: an efficient and convenient catalyst for preparation of aromatic oximes.Green Chem.20013419319510.1039/b102067f
    [Google Scholar]
  66. XiaJ.J. WangG.W. Efficient preparation of aldoximes from arylaldehydes, ethylenediamine and Oxone in water.Molecules200712223123610.3390/12020231 17846573
    [Google Scholar]
  67. ZeynizadehB. AmjadiE. Facile oximation of carbonyl compounds with titanyl acetylacetonate/NH2OH system.Asian J. Chem.20092136113616
    [Google Scholar]
  68. LadU.P. KulkarniM.A. PatilR.S. Synthesis of oximes in aqueous medium using hyamine® as an ecofriendly catalyst at ambient temperature.Rasayan J. Chem.20103425428
    [Google Scholar]
  69. SetamdidehD. KhezriB. EsmaeilzadehS. SetamdidehD. KhezriB. EsmaeilzadehS. Synthesis of oximes with NH2 OH.HCl/DOWEX(R)50WX4 System.J. Chin. Chem. Soc. (Taipei)20125991119112410.1002/jccs.201200011
    [Google Scholar]
  70. Ait TalebM. MamouniR. Ait BenomarM. BakkaA. MounaA. TahaM.L. BenlhachemiA. BakizB. VillainS. Chemically treated eggshell wastes as a heterogeneous and eco-friendly catalyst for oximes preparation.J. Environ. Chem. Eng.2017521341134810.1016/j.jece.2017.02.009
    [Google Scholar]
  71. TalebM.A. MamouniR. SaffajN. MounaA. TahaM.L. BenlhachemiA. BakizB. EzahriM. VillainS. Animal Bone Meal as new recyclable and ecological catalyst for the oximes Synthesis in solvent-Free Conditions.J. Mater. Environ. Sci.2016745804588
    [Google Scholar]
  72. TalebM.A. MamouniR. SaffajN. BenomarM.A. BakkaA. MounaA. BenlhachemiA. Synthesis of oximes with the doped potassium fluoride animal bone meal as a catalyst.Sci. Study Res-Chem. C.201718417426
    [Google Scholar]
  73. KadG.L. BhandariM. KaurJ. RatheeR. SinghJ. Solventless preparation of oximes in the solid state and via microwave irradiation.Green Chem.20013627527710.1039/b107356g
    [Google Scholar]
  74. HajipourA.R. MallakpourS.E. ImanzadehG. A rapid and convenient synthesis of oximes in dry media under microwave irradiation.J. Chem. Res.1999228229
    [Google Scholar]
  75. BandgarB.P. SadavarteV.S. UppallaL.S. GovandeR. Chemoselective preparation of oximes, semicarbazones, and tosylhydrazones without catalyst and solvent.Monatsh. Chem.2001132340340610.1007/s007060170126
    [Google Scholar]
  76. ElmakssoudiA. AbdelouahdiK. ZahouilyM. ClarkJ. SolhyA. Efficient conversion of aldehydes and ketones into oximes using a nanostructured pyrophosphate catalyst in a solvent-free process.Catal. Commun.201229535710.1016/j.catcom.2012.09.017
    [Google Scholar]
  77. SharghiH. SarvariM.H. A mild and versatile method for the preparation of oximes by use of calcium oxide.J. Chem. Res.200020002425
    [Google Scholar]
  78. SharghiH. SarvariM.H. Selective synthesis of E and Z isomers of oximes.Synlett2001200110099010110.1055/s‑2001‑9719
    [Google Scholar]
  79. SharghiH. HosseiniM. Solvent-free and one-step beckmann rearrangement of ketones and aldehydes by zinc oxide.Synthesis2002200281057106010.1055/s‑2002‑31964
    [Google Scholar]
  80. ZeynizadehB. KarimkoshtehM. Magnetic Fe3O4 nanoparticles as recovery catalyst for preparation of oximes under solvent-free condition.J. Nanostructure Chem.2013315710.1186/2193‑8865‑3‑57
    [Google Scholar]
  81. SaikiaL. BaruahJ.M. ThakurA.J. A rapid, convenient, solventless green approach for the synthesis of oximes using grindstone chemistry.Org. Med. Chem. Lett.2011111210.1186/2191‑2858‑1‑12 22373136
    [Google Scholar]
  82. LiJ.T. LiX.L. LiT.S. Synthesis of oximes under ultrasound irradiation.Ultrason. Sonochem.200613320020210.1016/j.ultsonch.2005.11.011 16455283
    [Google Scholar]
  83. MoghadamM. TangestaninejadS. MirkhaniV. Mohammadpoor-BaltorkI. MoosavifarM. Host (nanocavity of dealuminated zeolite Y)–guest (12-molybdophosphoric acid) nanocomposite material: An efficient and reusable catalyst for oximation of aldehydes.Appl. Catal. A Gen.2009358215716310.1016/j.apcata.2009.02.008
    [Google Scholar]
  84. Sloboda-RoznerD. NeumannR. Aqueous biphasic catalysis with polyoxometalates: Oximation of ketones and aldehydes with aqueous ammonia and hydrogen peroxide.Green Chem.20068867968110.1039/b604837d
    [Google Scholar]
  85. YipA.C.K. HuX. Catalytic activity of clay-based titanium silicalite-1 composite in cyclohexanone ammoximation.Ind. Eng. Chem. Res.200948188441845010.1021/ie900731s
    [Google Scholar]
  86. DingJ. XuL. YuY. WuH. HuangS. YangY. WuJ. WuP. Clean synthesis of acetaldehyde oxime through ammoximation on titanosilicate catalysts.Catal. Sci. Technol.20133102587259510.1039/c3cy00471f
    [Google Scholar]
  87. ZhaoS. HuangL. SongY.F. Highly selective and efficient lewis acid–base catalysts based on lanthanide‐containing polyoxometalates for oximation of aldehydes and ketones.Eur. J. Inorg. Chem.2013201310-111659166310.1002/ejic.201200901
    [Google Scholar]
  88. JinH. MengC. HeG. GuoX. YangS. Green synthesis of acetaldehyde oxime using ammonia oxidation in the TS-1/H2O2 system.React. Kinet. Mech. Catal.201812521113112510.1007/s11144‑018‑1440‑y
    [Google Scholar]
  89. XingS. HanQ. ShiZ. WangS. YangP. WuQ. LiM. A hydrophilic inorganic framework based on a sandwich polyoxometalate: Unusual chemoselectivity for aldehydes/ketones with in situ generated hydroxylamine.Dalton Trans.20174635115371154110.1039/C7DT02411H 28812076
    [Google Scholar]
  90. BalliniR. BarboniL. FilipponeP. Amberlyst A-21 an excellent heterogeneous catalyst for the conversion of carbonyl compounds to oximes.Chem. Lett.199726547547610.1246/cl.1997.475
    [Google Scholar]
  91. GentiliP. PedettiS. A remarkably simple α-oximation of aldehydes via organo-SOMO catalysis.Chem. Commun. (Camb.)201248435358536010.1039/c2cc31566a 22523749
    [Google Scholar]
  92. RamanjaneyuluK. Seshagiri-RaoP. RambabuT. JayaraoK. Sundari-DeviCh.B.T. Venkateswara-RaoB. Cupper supported silica promoted one-pot synthesis of aromatic oxime derivatives.Der Pharma. Chem.20124473478
    [Google Scholar]
  93. KimB.R. SungG.H. KimJ.J. YoonY.J. A Development of rapid, practical and selective process for preparation of Z-oximes.J. Korean Chem. Soc.201357229529910.5012/jkcs.2013.57.2.295
    [Google Scholar]
  94. ZeynizadehB. SorkhabiS. Highly efficient method for oximation of aldehydes in the presence of bis-thiourea complexes of cobalt, nickel, copper and zinc chlorides. Current Chem.Letters2020912113010.5267/j.ccl.2019.12.001
    [Google Scholar]
  95. SuzukiK. WatanabeT. MurahashiS.I. Aerobic oxidation of primary amines to oximes catalyzed by DPPH and WO3/Al2O3.Angew. Chem. Int. Ed.200847112079208110.1002/anie.200705002 18256999
    [Google Scholar]
  96. (a OgataY. TomizawaK. MaedaH. Kinetics of the tungstate-catalyzed H2O2 oxidation of amines in aqueous methanol. Acidity effect.Bull. Chem. Soc. Jpn.198053128528610.1246/bcsj.53.285
    [Google Scholar]
  97. (b KidwaiM. BhardwajS. Transformation of amines to oximes using heterogeneous nanocrystalline titanium (IV) oxide as a green catalyst.Synth. Commun.201141182655266210.1080/00397911.2010.515339
    [Google Scholar]
  98. ArmorJ. CarlsonE.J. RiggitanoR. YamanisJ. ZambriP.M. The selective oxidation of cyclohexylamine to its oxime.J. Catal.198383248749010.1016/0021‑9517(83)90076‑3
    [Google Scholar]
  99. RakottyayK. KaszonyiA. Oxidation of cyclohexylamine over modified alumina by molecular oxygen.Appl. Catal., A20093673238
    [Google Scholar]
  100. KlitgaardS.K. EgebladK. MentzelU.V. PopovA.G. JensenT. TaarningE. NielsenI.S. ChristensenC.H. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts.Green Chem.200810441942310.1039/b714232c
    [Google Scholar]
  101. SuzukiK. WatanabeT. MurahashiS.I. Oxidation of primary amines to oximes with molecular oxygen using 1,1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts.J. Org. Chem.20137862301231010.1021/jo302262a 23437775
    [Google Scholar]
  102. YuJ. CaoX. LuM. A novel and efficient catalytic system including TEMPO/acetaldoxime/InCl3 for aerobic oxidation of primary amines to oximes.Tetrahedron Lett.201455425751575510.1016/j.tetlet.2014.08.083
    [Google Scholar]
  103. PatilV.V. GayakwadE.M. ShankarlingG.S. m-CPBA mediated metal free, rapid oxidation of aliphatic amines to oximes.J. Org. Chem.201681378178610.1021/acs.joc.5b01740 26762812
    [Google Scholar]
  104. Méndez-SánchezD. LavanderaI. GotorV. Gotor-FernándezV. Novel chemoenzymatic oxidation of amines into oximes based on hydrolase-catalysed peracid formation.Org. Biomol. Chem.201715153196320110.1039/C7OB00374A 28362446
    [Google Scholar]
  105. KabalkaG.W. PaceR.D. WadgaonkarP.P. The palladium assisted transfer reduction of α, β-unsaturated nitroalkenes to oximes using ammonium formate.Synth. Commun.199020162453245810.1080/00397919008053193
    [Google Scholar]
  106. VarmaR.S. VarmaM. KabalkaG.W. The palladium assisted transfer reduction of α, β-unsaturated nitroalkenes using sodium hypophosphite: A synthesis of oximes.Synth. Commun.1986161919610.1080/00397918608057693
    [Google Scholar]
  107. VarmaR.S. VarmaM. KabalkaG.W. Chromium(II) chloride reduction of α-aryl, α,β-unsaturated nitroalkenes. A facile route to oximes.Synth. Commun.198515141325133210.1080/00397918508077281
    [Google Scholar]
  108. ElomriA. SkaltsounisA.L. MichelS. TillequinF. KochM. RollandY. PierréA. AtassiG. Synthesis and cytotoxic activity of acronycine derivatives modified at the pyran ring.Chem. Pharm. Bull. (Tokyo)199644112165216810.1248/cpb.44.2165 8945782
    [Google Scholar]
  109. TakechiH. MachidaM. Photochemical conversion of aliphatic nitro compounds into oximes.Synthesis19891989320620710.1055/s‑1989‑27199
    [Google Scholar]
  110. (a VarmaR.S. VarmaM. KabalkaG.W. A facile ketoxime preparation via the reduction of α,β-unsaturated nitroalkenes using sodium stannite.Tetrahedron Lett.198526496013601410.1016/S0040‑4039(00)95112‑8
    [Google Scholar]
  111. (b KabalkaG.W. GoudgaonN.M. A facile aldoxime preparation via the reduction of α, β-unsaturated nitroalkenes using tin (II) chloride.Synth. Commun.198818769369710.1080/00397918808077358
    [Google Scholar]
  112. SeraA. YamauchiH. YamadaH. ItohK. A facile synthesis of oximes from 1-nitro-1-alkenes by lead reduction.Synlett19901990847747810.1055/s‑1990‑21133
    [Google Scholar]
  113. LeeS.H. ParkY.J. YoonC.M. Catalytic transfer hydrogenation of conjugated nitroalkenes using decaborane: Synthesis of oximes.Org. Biomol. Chem.2003171099110010.1039/b212746f 12926381
    [Google Scholar]
  114. CormaA. SernaP. GarcíaH. Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of α,β-unsaturated nitrocompounds with H2.J. Am. Chem. Soc.2007129206358635910.1021/ja0704131 17428056
    [Google Scholar]
  115. GolushkoA.A. SandzhievaM.A. IvanovA.Y. BoyarskayaI.A. KhoroshilovaO.V. BarkovA.Y. VasilyevA.V. Reactions of 3,3,3-trihalogeno-1-nitropropenes with arenes in the superacid CF3SO3H: synthesis of (Z)-3,3,3-trihalogeno-1,2-diarylpropan-1-one oximes and study on the reaction mechanism.J. Org. Chem.20188317101421015710.1021/acs.joc.8b01406 30004232
    [Google Scholar]
  116. GissotA. N’GouelaS. MattC. WagnerA. MioskowskiC. NaNO2-mediated transformation of aliphatic secondary nitroalkanes into ketones or oximes under neutral, aqueous conditions: How the nitro derivative catalyzes its own transformation.J. Org. Chem.200469268997900110.1021/jo0489824 15609931
    [Google Scholar]
  117. CaiS. ZhangS. ZhaoY. WangD.Z. New approach to oximes through reduction of nitro compounds enabled by visible light photoredox catalysis.Org. Lett.201315112660266310.1021/ol4009443 23706186
    [Google Scholar]
  118. SalmanF. ParkC. BakerR.T.K. Hydrogenation of crotonaldehyde over graphite nanofiber supported nickel.Catal. Today199953338539410.1016/S0920‑5861(99)00132‑7
    [Google Scholar]
  119. LiaoH.G. XiaoY-J. ZhangH-K. LiuP-L. YouK-Y. WeiC. LuoH. Hydrogenation of nitrocyclohexane to cyclohexanone oxime over Pd/CNT catalyst under mild conditions.Catal. Commun.201219808410.1016/j.catcom.2011.12.027
    [Google Scholar]
  120. ReddyM.K. MallikS. RamakrishnaI. BaidyaM. Nitrosocarbonyl–Henry and Denitration Cascade: Synthesis of α-ketoamides and α-keto oximes.Org. Lett.20171971694169710.1021/acs.orglett.7b00482 28286956
    [Google Scholar]
  121. KitaharaK. TomaT. ShimokawaJ. FukuyamaT. O-TBS-N-tosylhydroxylamine: A reagent for facile conversion of alcohols to oximes.Org. Lett.200810112259226110.1021/ol800677p 18444657
    [Google Scholar]
  122. ZambelliP. PintoA. RomanoD. CrottiE. ContiP. TamboriniL. VillaR. MolinariF. One-pot chemoenzymatic synthesis of aldoximes from primary alcohols in water.Green Chem.20121482158216110.1039/c2gc35764j
    [Google Scholar]
  123. WangH. ZhangL. YangY. FangL. WangY. One-pot synthesis of cyclohexanone oxime from cyclohexanol on a single site multifunctional catalyst: H3PW12O40 incorporated on exfoliated montmorillonite.Catal. Commun.201687273110.1016/j.catcom.2016.07.020
    [Google Scholar]
  124. PrateeptongkumS. JovelI. JackstellR. VoglN. WeckbeckerC. BellerM. First iron-catalyzed synthesis of oximes from styrenes.Chem. Commun. (Camb.)20091990199210.1039/b900326f 19333467
    [Google Scholar]
  125. RayR. ChowdhuryA.D. MaitiD. LahiriG.K. Iron catalysed nitrosation of olefins to oximes.Dalton Trans.2014431384110.1039/C3DT51764K 24158361
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461349649241029175504
Loading
/content/journals/cgc/10.2174/0122133461349649241029175504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test