Skip to content
2000
image of Current Progress in Visible Light-induced Synthesis and Functionalization of N- and S-Heterocycles: A Sustainable Perspective

Abstract

Heterocycles are of much importance as the majority of the existing drugs contain one or more heterocyclic units in their structures. Among all the heterocycles, nitrogen, and sulphur-containing ones occupy major space, and they have special properties which make them suitable for the textile, cosmetic, and paint industries other than pharmaceutical. Recently, visible light has emerged as a powerful tool for performing various reactions at ambient temperatures and mild conditions and thus it has been used for the key step in the synthesis of many molecules. In addition, visible light assisted methods are usually cost and time effective. Thus, this review highlighted the recent developments in visible light induced methods for the synthesis of some selected biologically active - and - containing heterocycles such as benzothiazoles, indoles and triazoles and their functionalization. The advantages, green aspects and limitations of these methods have also been discussed.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461344399241001071524
2024-10-17
2024-11-26
Loading full text...

Full text loading...

References

  1. Talley J.J. Bertenshaw S.R. Brown D.L. Carter J.S. Graneto M.J. Koboldt C.M. Masferrer J.L. Norman B.H. Rogier D.J. Zweifel B.S. Seibert K. 4,5-Diaryloxazole inhibitors of cyclooxygenase-2 (COX-2). Med. Res. Rev. 1999 19 3 199 208 10232649
    [Google Scholar]
  2. Almansa C. Alfón J. de Arriba A.F. Cavalcanti F.L. Escamilla I. Gómez L.A. Miralles A. Soliva R. Bartrolí J. Carceller E. Merlos M. García-Rafanell J. Synthesis and structure-activity relationship of a new series of COX-2 selective inhibitors: 1,5-diarylimidazoles. J. Med. Chem. 2003 46 16 3463 3475 10.1021/jm030765s 12877584
    [Google Scholar]
  3. Qadir T. Amin A. Sharma P.K. Jeelani I. Abe H. A review on medicinally important heterocyclic compounds. Open J. Med. Chem. 2022 16 1 34
    [Google Scholar]
  4. Arora P. Arora V. Lamba H.S. Wadhwa D. Importance of heterocyclic chemistry: A review. Int. J. Pharma Sci. 2012 3 2947 2954
    [Google Scholar]
  5. Sharma P.K. Singh P. Antibacterial and antifungal activity of piperazinylbenzothiazine. Der Pharma Chem. 2016 8 191 193
    [Google Scholar]
  6. Makkar R. Sharma P.K. Antibacterial, antifungal and antioxidant activities of substituted 4H-1, 4-benzothiazines. Der Pharma Chem. 2016 8 156 159
    [Google Scholar]
  7. Jeelani I. Itaya K. Abe H. Total synthesis of hyalodendriol C. Heterocycles 2021 102 8 1570 1578 10.3987/COM‑21‑14480
    [Google Scholar]
  8. Sharma P.K. Antifungal, antibacterial and antioxidant activities of substituted morpholinylbenzothiazine. Pharm. Lett. 2016 8 140 142
    [Google Scholar]
  9. Ahmed K. Jeelani I. Synthesis and in vitro antimicrobial screening of 3-acetyl-4-hydroxycoumarin hydrazones. Int. J. Pharm. Biol. Sci. 2019 9 1000 1005
    [Google Scholar]
  10. Khan A. Jasinski J.P. Smolenski V.A. Hotchkiss E.P. Kelley P.T. Shalit Z.A. Kaur M. Paul K. Sharma R. Enhancement in anti-tubercular activity of indole based thiosemicarbazones on complexation with copper(I) and silver(I) halides: Structure elucidation, evaluation and molecular modelling. Bioorg. Chem. 2018 80 303 318 10.1016/j.bioorg.2018.06.027 29986180
    [Google Scholar]
  11. Qadir T. Amin A. Sarkar D. Sharma P.K. A review on recent advances in the synthesis of aziridines and their applications in organic synthesis. Curr. Org. Chem. 2021 25 16 1868 1893 10.2174/1385272825666210728100022
    [Google Scholar]
  12. Sharma P.K. Kumar M. Antimicrobial and antioxidant activities of substituted 4H-1, 4-benzothiazines. Med. Chem. Res. 2012 21 2072 2078 10.1007/s00044‑011‑9732‑z
    [Google Scholar]
  13. Sapra R. Patel D. Meshram D. A mini-review: Recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis. J. Med. Chem. Sci. 2020 3 71 78
    [Google Scholar]
  14. Mahmood R.M.U. Aljamali N.M. Synthesis, spectral investigation, and microbial studying of pyridine-heterocyclic compounds. Eur. J. Mol. Clin. Med. 2020 7 4444 4453
    [Google Scholar]
  15. Panchal N.B. Patel P.H. Chhipa N.M. Parmar R.S. Acridine a versatile heterocyclic moiety as anticancer agent. Int. J. Pharm. Sci. Res. 2020 11 4739 4748
    [Google Scholar]
  16. Thigulla Y. Kumar T.U. Trivedi P. Ghosh B. Bhattacharya A. One-step synthesis of fused chromeno[4,3-b]pyrrolo[3,2-h]quinolin-7(1H)-one compounds and their anticancer activity evaluation. ChemistrySelect 2017 2 9 2718 2721 10.1002/slct.201700129
    [Google Scholar]
  17. Wang M. Gao M. Mock B.H. Miller K.D. Sledge G.W. Hutchins G.D. Zheng Q.H. Synthesis of carbon-11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents. Bioorg. Med. Chem. 2006 14 24 8599 8607 10.1016/j.bmc.2006.08.026 16962783
    [Google Scholar]
  18. Sondhi S.M. Goyal R.N. Lahoti A.M. Singh N. Shukla R. Raghubir R. Synthesis and biological evaluation of 2-thiopyrimidine derivatives. Bioorg. Med. Chem. 2005 13 9 3185 3195 10.1016/j.bmc.2005.02.047 15809154
    [Google Scholar]
  19. Amir M. Khan M.S.Y. Zaman M.S. Synthesis, characterization, and biological activities of substituted oxadiazole, triazole, thiadiazole, and 4- thiazolidinone derivatives. Indian J. Chem. 2004 43 2189 2194
    [Google Scholar]
  20. Kumar D. Kumar R.R. Pathania S. Singh P.K. Kalra S. Kumar B. Investigation of indole functionalized pyrazoles and oxadiazoles as anti-inflammatory agents: Synthesis, in-vivo, in-vitro and in-silico analysis. Bioorg. Chem. 2021 114 105068 105078 10.1016/j.bioorg.2021.105068 34130110
    [Google Scholar]
  21. Held F.E. Guryev A.A. Fröhlich T. Hampel F. Kahnt A. Hutterer C. Steingruber M. Bahsi H. von Bojničić-Kninski C. Mattes D.S. Foertsch T.C. Nesterov-Mueller A. Marschall M. Tsogoeva S.B. Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions. Nat. Commun. 2017 8 1 15071 15079 10.1038/ncomms15071 28462939
    [Google Scholar]
  22. Xu Y.B. Yang L. Wang G.F. Tong X.K. Wang Y.J. Yu Y. Jing J.F. Feng C.L. He P.L. Lu W. Tang W. Zuo J.P. Benzimidazole derivative, BM601, a novel inhibitor of hepatitis B virus and HBsAg secretion. Antiviral Res. 2014 107 6 15 10.1016/j.antiviral.2014.04.002 24746457
    [Google Scholar]
  23. Shin Y.S. Jarhad D.B. Jang M.H. Kovacikova K. Kim G. Yoon J. Kim H.R. Hyun Y.E. Tipnis A.S. Chang T.S. van Hemert M.J. Jeong L.S. Identification of 6′-β-fluoro-homoaristeromycin as a potent inhibitor of chikungunya virus replication. Eur. J. Med. Chem. 2020 187 111956 111965 10.1016/j.ejmech.2019.111956 31841728
    [Google Scholar]
  24. Santosh R. Selvam M.K. Kanekar S.U. Nagaraja G.K. Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole-linked chalcone derivatives. ChemistrySelect 2018 3 23 6338 6343 10.1002/slct.201800905
    [Google Scholar]
  25. Rastegari A. Nadri H. Mahdavi M. Moradi A. Mirfazli S.S. Edraki N. Moghadam F.H. Larijani B. Akbarzadeh T. Saeedi M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem. 2019 83 391 401 10.1016/j.bioorg.2018.10.065 30412794
    [Google Scholar]
  26. Hamed A.A. Abdelhamid I.A. Saad G.R. Elkady N.A. Elsabee M.Z. Synthesis, characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties. Int. J. Biol. Macromol. 2020 153 492 501 10.1016/j.ijbiomac.2020.02.302 32112843
    [Google Scholar]
  27. Zhao S. Zhang X. Wei P. Su X. Zhao L. Wu M. Hao C. Liu C. Zhao D. Cheng M. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents. Eur. J. Med. Chem. 2017 137 96 107 10.1016/j.ejmech.2017.05.043 28558334
    [Google Scholar]
  28. Zhou Q.L. Transition‐metal catalysis and organocatalysis: Where can progress be expected? Angew. Chem. Int. Ed. 2016 55 18 5352 5353 10.1002/anie.201509164 26662619
    [Google Scholar]
  29. Chen J.R. Hu X.Q. Lu L.Q. Xiao W.J. Exploration of visible-light photocatalysis in heterocycle synthesis and functionalization: Reaction design and beyond. Acc. Chem. Res. 2016 49 9 1911 1923 10.1021/acs.accounts.6b00254 27551740
    [Google Scholar]
  30. Hu X.Q. Liu Z.K. Xiao W.J. Radical carbonylative synthesis of heterocycles by visible light photoredox catalysis. Catalysts 2020 10 9 1054 1079 10.3390/catal10091054
    [Google Scholar]
  31. Festa A.A. Voskressensky L.G. Van der Eycken E.V. Visible light-mediated chemistry of indoles and related heterocycles. Chem. Soc. Rev. 2019 48 6 4401 4423 10.1039/C8CS00790J 31268435
    [Google Scholar]
  32. Dhiya A.K. Monga A. Sharma A. Visible-light-mediated synthesis of quinolines. Org. Chem. Front. 2021 8 7 1657 1676 10.1039/D0QO01387K
    [Google Scholar]
  33. Castro K.A.D.F.L. Lourenço M.O. da Silva R.S. Tomé J.P.C. Photocatalytic synthesis of nitrogen-containing heterocycles. Synthetic Approaches to Nonaromatic Nitrogen Heterocycles. Phillips A.M.M.M.F. John Wiley & Sons Ltd. 2021 699 728 10.1002/9781119708841.ch22
    [Google Scholar]
  34. Castro K.A.D.F.L. Lourenço M.O. da Silva R.S. Tomé J.P.C. Synthesis of nonaromatic nitrogen heterocycles via singlet oxygen. More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles. Phillips A.M.M.M.F. John Wiley & Sons Ltd. 2022 333 355 10.1002/9781119757153.ch9
    [Google Scholar]
  35. Keri R.S. Patil M.R. Patil S.A. Budagumpi S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem. 2015 89 207 251 10.1016/j.ejmech.2014.10.059 25462241
    [Google Scholar]
  36. Cheng Y. Yang J. Qu Y. Li P. Aerobic visible-light photoredox radical C-H functionalization: Catalytic synthesis of 2-substituted benzothiazoles. Org. Lett. 2012 14 1 98 101 10.1021/ol2028866 22146071
    [Google Scholar]
  37. Yu C. Lee K. You Y. Cho E.J. Synthesis of 2‐substituted benzothiazoles by visible light‐driven photoredox catalysis. Adv. Synth. Catal. 2013 355 8 1471 1476 10.1002/adsc.201300376
    [Google Scholar]
  38. Srivastava V. Singh P.K. Singh P.P. Eosin Y. Eosin Y catalyzed visible-light-promoted aerobic oxidative cyclization of 2-aminobenzothiazole. Croat. Chem. Acta 2015 88 3 227 233 10.5562/cca2632
    [Google Scholar]
  39. Bouchet L.M. Heredia A.A. Argüello J.E. Schmidt L.C. Riboflavin as photoredox catalyst in the cyclization of thiobenzanilides: Synthesis of 2-substituted benzothiazoles. Org. Lett. 2020 22 2 610 614 10.1021/acs.orglett.9b04384 31887062
    [Google Scholar]
  40. Monga A. Bagchi S. Soni R.K. Sharma A. Synthesis of benzothiazoles via photooxidative decarboxylation of α‐keto acids. Adv. Synth. Catal. 2020 362 11 2232 2237 10.1002/adsc.201901617
    [Google Scholar]
  41. Singh P.K. Bhardiya S.R. Asati A. Rai V.K. Singh M. Rai A. Cu/Cu 2 O@g‐C 3 N 4 : Recyclable photocatalyst under visible light to access 2‐aryl‐/benzimidazoles/benzothiazoles in water. ChemistrySelect 2020 5 45 14270 14275 10.1002/slct.202003812
    [Google Scholar]
  42. a Kawasaki T. Higuchi K. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep. 2005 22 6 761 793 10.1039/b502162f 16311634
    [Google Scholar]
  43. b d’Ischia M. Napolitano A. Pezzella A. Comprehensive Heterocyclic Chemistry III Elsevier Oxford Katritzky A.R. Ramsden C.A. Scriven E.F.V. Taylor R.J.K. 3 2008 353 388
    [Google Scholar]
  44. c Bandini M. Eichholzer A. Catalytic functionalization of indoles in a new dimension. Angew Chem. Int. Ed. Engl. 2009 48 51 9786 9824 10.1002/ange.200901843
    [Google Scholar]
  45. d Kochanowska-Karamyan A.J. Hamann M.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety. Chem. Rev. 2010 110 8 4489 4497 10.1021/cr900211p 20380420
    [Google Scholar]
  46. e Zhuo C.X. Wu Q.F. Zhao Q. Xu Q.L. You S.L. Enantioselective functionalization of indoles and pyrroles via an in situ-formed spiro intermediate. J. Am. Chem. Soc. 2013 135 22 8169 8172 10.1021/ja403535a 23672506
    [Google Scholar]
  47. Zhong J.J. Meng Q.Y. Wang G.X. Liu Q. Chen B. Feng K. Tung C.H. Wu L.Z. A highly efficient and selective aerobic cross-dehydrogenative-coupling reaction photocatalyzed by a platinum(II) terpyridyl complex. Chemistry 2013 19 20 6443 6450 10.1002/chem.201204572 23504986
    [Google Scholar]
  48. Li X. Gu X. Li Y. Li P. Aerobic transition-metal-free visible-light photoredox indole C-3 formylation reaction. ACS Catal. 2014 4 6 1897 1900 10.1021/cs5005129
    [Google Scholar]
  49. Yang Q.Q. Marchini M. Xiao W.J. Ceroni P. Bandini M. Visible‐light‐induced direct photocatalytic carboxylation of indoles with CBr 4/MeOH. Chemistry 2015 21 50 18052 18056 10.1002/chem.201503787 26509744
    [Google Scholar]
  50. a Franc G. Kakkar A.K. “Click” methodologies: Efficient, simple and greener routes to design dendrimers. Chem. Soc. Rev. 2010 39 5 1536 1544 10.1039/b913281n 20419208
    [Google Scholar]
  51. b Golas P.L. Matyjaszewski K. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chem. Soc. Rev. 2010 39 4 1338 1354 10.1039/B901978M 20309490
    [Google Scholar]
  52. c Lau Y.H. Rutledge P.J. Watkinson M. Todd M.H. Chemical sensors that incorporate click-derived triazoles. Chem. Soc. Rev. 2011 40 5 2848 2866 10.1039/c0cs00143k 21380414
    [Google Scholar]
  53. d Schulze B. Schubert U.S. Beyond click chemistry – Supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev. 2014 43 8 2522 2571 10.1039/c3cs60386e 24492745
    [Google Scholar]
  54. e Kukwikila M. Gale N. El-Sagheer A.H. Brown T. Tavassoli A. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation. Nat. Chem. 2017 9 11 1089 1098 10.1038/nchem.2850 29064492
    [Google Scholar]
  55. Arslan M. Yilmaz G. Yagci Y. Dibenzoyldiethylgermane as a visible light photo-reducing agent for CuAAC click reactions. Polym. Chem. 2015 6 47 8168 8175 10.1039/C5PY01465D
    [Google Scholar]
  56. Yang J. Duan J. Wang G. Zhou H. Ma B. Wu C. Xiao J. Visible-light-promoted site-selective N 1 -alkylation of benzotriazoles with α-diazoacetates. Org. Lett. 2020 22 18 7284 7289 10.1021/acs.orglett.0c02619 32902300
    [Google Scholar]
  57. Wu Z.G. Liao X.J. Yuan L. Wang Y. Zheng Y.X. Zuo J.L. Pan Y. Visible‐light‐mediated click chemistry for highly regioselective azide–alkyne cycloaddition by a photoredox electron‐transfer strategy. Chemistry 2020 26 25 5694 5700 10.1002/chem.202000252 31953964
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461344399241001071524
Loading
/content/journals/cgc/10.2174/0122133461344399241001071524
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Heterocycles ; triazoles ; synthesis ; benzothiazoles ; sustainable ; indoles ; visible light
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test