Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Organic compounds in different solutions have caused several pollution problems to the environment and even affected human health. Advanced Oxidation Processes (AOPs) have been effectively used in the decontamination of these types of compounds. Distinct reactive oxygen species (ROS) have been proposed to explain the degradation or mineralization of contaminating organic matter. ROS, such as free radicals (., .OH), superoxide (., .O), and peroxides (., HO), are capable of modifying the chemical structure of organic matter and consequently degrade or mineralize it. In this review, the formation of hydroxyl radicals in each AOP, as in a hybrid process, and the methods for quantifying and determining this type of radical are discussed.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461335923240918061714
2024-10-01
2025-01-15
Loading full text...

Full text loading...

References

  1. TufailA. PriceW.E. MohseniM. PramanikB.K. HaiF.I. A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: Mechanisms, factors, degradation products, and effluent toxicity.J. Water Process Eng.20214010177810.1016/j.jwpe.2020.101778
    [Google Scholar]
  2. LuoY. GuoW. NgoH.H. NghiemL.D. HaiF.I. ZhangJ. LiangS. WangX.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment.Sci. Total Environ.2014473-47461964110.1016/j.scitotenv.2013.12.065 24394371
    [Google Scholar]
  3. YangS. HaiF.I. NghiemL.D. PriceW.E. RoddickF. MoreiraM.T. MagramS.F. Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review.Bioresour. Technol.20131419710810.1016/j.biortech.2013.01.173 23499178
    [Google Scholar]
  4. TijaniJ.O. FatobaO.O. MadzivireG. PetrikL.F. A review of combined advanced oxidation technologies for the removal of organic pollutants from water.Water Air Soil Pollut.20142259210210.1007/s11270‑014‑2102‑y
    [Google Scholar]
  5. Rodríguez-PeñaM. NatividadR. Barrera-DíazC.E. Balderas HernándezP. AlanisR.C.I. Roa-MoralesG. Current perspective of advanced electrochemical oxidation processes in wastewater treatment and life cycle analysis.Int. J. Electrochem. Sci.202419710058910.1016/j.ijoes.2024.100589
    [Google Scholar]
  6. IkeI.A. KaranfilT. ChoJ. HurJ. Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes – A critical review.Water Res.201916411492910.1016/j.watres.2019.114929 31387056
    [Google Scholar]
  7. YangY. LiX. ZhouC. XiongW. ZengG. HuangD. ZhangC. WangW. SongB. TangX. LiX. GuoH. Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: A critical review.Water Res.202018411620010.1016/j.watres.2020.116200 32712506
    [Google Scholar]
  8. YangZ. LiY. ZhangG. Degradation of microplastic in water by advanced oxidation processes.Chemosphere202435714193910.1016/j.chemosphere.2024.141939 38621489
    [Google Scholar]
  9. BabuP.A. SinhaS. AshokanH. V PaulM. HariharanS.P. ArunJ. GopinathK.P. Hoang LeQ. PugazhendhiA. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques.Environ. Res.2023237Pt 111694410.1016/j.envres.2023.116944 37611785
    [Google Scholar]
  10. DuJ. ZhangB. LiJ. LaiB. Decontamination of heavy metal complexes by advanced oxidation processes: A review.Chin. Chem. Lett.202031102575258210.1016/j.cclet.2020.07.050
    [Google Scholar]
  11. PoyatosJ.M. MuñioM.M. AlmecijaM.C. TorresJ.C. HontoriaE. OsorioF. Advanced oxidation processes for wastewater treatment: state of the art.Water Air Soil Pollut.20102051-418720410.1007/s11270‑009‑0065‑1
    [Google Scholar]
  12. WeiC. ZhangF. HuY. FengC. WuH. Ozonation in water treatment: The generation, basic properties of ozone and its practical application.Rev. Chem. Engin.20173314989
    [Google Scholar]
  13. GuoY. YangL. WangX. The application and reaction mechanism of catalytic ozonation in water treatment.J. Environ. Anal. Toxicol.2012262161052510.4172/2161‑0525.1000150
    [Google Scholar]
  14. PopielS. NalepaT. DzierżakD. StankiewiczR. WitkiewiczZ. Rate of dibutylsulfide decomposition by ozonation and the O3/H2O2 advanced oxidation process.J. Hazard. Mater.20091642-31364137110.1016/j.jhazmat.2008.09.049 18977083
    [Google Scholar]
  15. Safarzadeh-AmiriA. O3/H2O2 treatment of methyl-tert-butyl ether (MTBE) in contaminated waters.Water Res.200135153706371410.1016/S0043‑1354(01)00090‑2 11561633
    [Google Scholar]
  16. WuZ. AbramovaA. NikonovR. CravottoG. Sonozonation (sonication/ozonation) for the degradation of organic contaminants – A review.Ultrason. Sonochem.20206810519510.1016/j.ultsonch.2020.105195 32502960
    [Google Scholar]
  17. LiangD. LiN. AnJ. MaJ. WuY. LiuH. Fenton-based technologies as efficient advanced oxidation processes for microcystin-LR degradation.Sci. Total Environ.202175314180910.1016/j.scitotenv.2020.141809 33207450
    [Google Scholar]
  18. BelloM.M. AbdulR.A.A. AsgharA. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment.Process Saf. Environ. Prot.201912611914010.1016/j.psep.2019.03.028
    [Google Scholar]
  19. MaslahatiR.A. ChelliapanS. WanM.W.H.M. KamyabH. Prediction and optimization of the fenton process for the treatment of landfill leachate using an artificial neural network.Water2018105059510.3390/w10050595
    [Google Scholar]
  20. MuangthaiI. RatanatamskulC. LuM-C. Removal of 2,4-dichlorophenol by fluidized-bed fenton process.Sustain. Environ. Res.201020325331
    [Google Scholar]
  21. RadjenovicJ. SedlakD.L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water.Environ. Sci. Technol.201549112921130210.1021/acs.est.5b02414
    [Google Scholar]
  22. BrillasE. Martínez-HuitleC.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review.Appl. Catal. B2015166-16760364310.1016/j.apcatb.2014.11.016
    [Google Scholar]
  23. Martínez-HuitleC.A. RodrigoM.A. SirésI. ScialdoneO. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review.Chem. Rev.201511524133621340710.1021/acs.chemrev.5b00361 26654466
    [Google Scholar]
  24. ChaplinB.P. Critical review of electrochemical advanced oxidation processes for water treatment applications.Environ. Sci. Process. Impacts20141661182120310.1039/C3EM00679D 24549240
    [Google Scholar]
  25. LuX. SuP. SongG. ZhouM. A critical review on regulating multi-electron pathways of oxygen reduction reaction on modified carbon-catalysts for organic wastewater treatment.Chem. Eng. J.202448815096710.1016/j.cej.2024.150967
    [Google Scholar]
  26. LiM. BaiL. JiangS. SillanpääM. HuangY. LiuY. Electrocatalytic transformation of oxygen to hydroxyl radicals via three-electron pathway using nitrogen-doped carbon nanotube-encapsulated nickel nanocatalysts for effective organic decontamination.J. Hazard. Mater.202345213135210.1016/j.jhazmat.2023.131352 37027919
    [Google Scholar]
  27. ZhiD. LinY. JiangL. ZhouY. HuangA. YangJ. LuoL. Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: A review.J. Environ. Manage.202026011012510.1016/j.jenvman.2020.110125 31941637
    [Google Scholar]
  28. ComninellisC. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment.Electrochim. Acta19943911-121857186210.1016/0013‑4686(94)85175‑1
    [Google Scholar]
  29. DingJ. BuL. ZhaoQ. KabuteyF.T. WeiL. DionysiouD.D. Electrochemical activation of persulfate on BDD and DSA anodes: Electrolyte influence, kinetics and mechanisms in the degradation of bisphenol A.J. Hazard. Mater.202038812178910.1016/j.jhazmat.2019.121789 31818663
    [Google Scholar]
  30. GaniyuS.O. Martínez-HuitleC.A. OturanM.A. Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms.Curr. Opin. Electrochem.20212710067810.1016/j.coelec.2020.100678
    [Google Scholar]
  31. TianF.X. MaS.X. XuB. HuX.J. XingH.B. LiuJ. WangJ. LiY.Y. WangB. JiangX. Photochemical degradation of iodate by UV/H2O2 process: Kinetics, parameters and enhanced formation of iodo-trihalomethanes during chloramination.Chemosphere201922129230010.1016/j.chemosphere.2019.01.014 30640012
    [Google Scholar]
  32. MunterR. Advanced oxidation processes-current status and prospects. Proceedings of the Estonian Academy of Sciences.Chemistry2001502598010.3176/chem.2001.2.01
    [Google Scholar]
  33. KasiriM.B. KhataeeA.R. Removal of organic dyes by UV/H2O2 process: Modelling and optimization.Environ. Technol.201233121417142510.1080/09593330.2011.630425 22856317
    [Google Scholar]
  34. Herrera-MeliánJ.A. Martín-RodríguezA.J. Ortega-MéndezA. ArañaJ. Doña-RodríguezJ.M. Pérez-PeñaJ. Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands.J. Environ. Manage.2012105536010.1016/j.jenvman.2012.03.044 22525833
    [Google Scholar]
  35. YaoH. PeiJ. WangH. FuJ. Effect of Fe(II/III) on tetracycline degradation under UV/VUV irradiation.Chem. Eng. J.201730819320110.1016/j.cej.2016.09.074
    [Google Scholar]
  36. KanakarajuD. GlassB.D. OelgemöllerM. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review.J. Environ. Manage.201821918920710.1016/j.jenvman.2018.04.103 29747102
    [Google Scholar]
  37. AshrafA. LiuG. YousafB. ArifM. AhmedR. IrshadS. CheemaA.I. RashidA. GulzamanH. Recent trends in advanced oxidation process-based degradation of erythromycin: Pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems.Sci. Total Environ.202177214538910.1016/j.scitotenv.2021.145389 33578171
    [Google Scholar]
  38. AlbornozL.L. da SilvaS.W. BortolozziJ.P. BanúsE.D. BrussinoP. UllaM.A. BernardesA.M. Degradation and mineralization of erythromycin by heterogeneous photocatalysis using SnO2-doped TiO2 structured catalysts: Activity and stability.Chemosphere202126812885810.1016/j.chemosphere.2020.128858 33187661
    [Google Scholar]
  39. DaghrirR. DroguiP. RobertD. Modified TiO2 for environmental photocatalytic applications: A review.Ind. Eng. Chem. Res.201352103581359910.1021/ie303468t
    [Google Scholar]
  40. TanW.K. CheahS.C. ParthasarathyS. RajeshR.P. PangC.H. ManickamS. Fish pond water treatment using ultrasonic cavitation and advanced oxidation processes.Chemosphere202127412970210.1016/j.chemosphere.2021.129702 33529956
    [Google Scholar]
  41. KorpeS. RaoP.V. Application of advanced oxidation processes and cavitation techniques for treatment of tannery wastewater—A review.J. Environ. Chem. Eng.20219310523410.1016/j.jece.2021.105234
    [Google Scholar]
  42. GoreM.M. SaharanV.K. PinjariD.V. ChavanP.V. PanditA.B. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.Ultrason. Sonochem.20142131075108210.1016/j.ultsonch.2013.11.015 24360991
    [Google Scholar]
  43. JanuszG. PawlikA. SulejJ. Świderska-BurekU. Jarosz-WilkołazkaA. PaszczyńskiA. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution.FEMS Microbiol. Rev.201741694196210.1093/femsre/fux049 29088355
    [Google Scholar]
  44. FarréM. DoménechX. PeralJ. Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid.J. Hazard. Mater.20071471-216717410.1016/j.jhazmat.2006.12.063 17267109
    [Google Scholar]
  45. AboudalleA. DjelalH. DomergueL. FourcadeF. AmraneA. A novel system coupling an electro-Fenton process and an advanced biological process to remove a pharmaceutical compound, metronidazole.J. Hazard. Mater.202141512570510.1016/j.jhazmat.2021.125705 34088190
    [Google Scholar]
  46. AboudalleA. DjelalH. FourcadeF. DomergueL. AssadiA.A. LendormiT. TahaS. AmraneA. Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment: By-products monitoring and performance enhancement.J. Hazard. Mater.2018359859510.1016/j.jhazmat.2018.07.006 30014918
    [Google Scholar]
  47. RosmanN. SallehW.N.W. MohamedM.A. JaafarJ. IsmailA.F. HarunZ. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue.J. Colloid Interface Sci.201853223626010.1016/j.jcis.2018.07.118 30092507
    [Google Scholar]
  48. ŻyłłaR. BorutaT. GmurekM. MilalaR. LedakowiczS. Integration of advanced oxidation and membrane filtration for removal of micropollutants of emerging concern.Process Saf. Environ. Prot.2019130677610.1016/j.psep.2019.07.021
    [Google Scholar]
  49. RealF.J. BenitezF.J. AceroJ.L. RoldánG. Combined chemical oxidation and membrane filtration techniques applied to the removal of some selected pharmaceuticals from water systems.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.201247452253310.1080/10934529.2012.650549 22375535
    [Google Scholar]
  50. GaniyuS.O. van HullebuschE.D. CretinM. EspositoG. OturanM.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review.Sep. Purif. Technol.2015156891914
    [Google Scholar]
  51. Miralles-CuevasS. ArquésA. MaldonadoM.I. Sánchez-PérezJ.A. Malato RodríguezS. Combined nanofiltration and photo-Fenton treatment of water containing micropollutants.Chem. Eng. J.2013224899510.1016/j.cej.2012.09.068
    [Google Scholar]
  52. YueR. RaisiB. RahmatinejadJ. YeZ. BarbeauB. RahamanM.S. A photo-Fenton nanocomposite ultrafiltration membrane for enhanced dye removal with self-cleaning properties.J. Colloid Interface Sci.202160445846810.1016/j.jcis.2021.06.157 34273782
    [Google Scholar]
  53. NidheeshP.V. SinghT.S.A. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism.Chemosphere201718141843210.1016/j.chemosphere.2017.04.082 28458217
    [Google Scholar]
  54. Garcia-SeguraS. EibandM.M.S.G. de MeloJ.V. Martínez-HuitleC.A. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies.J. Electroanal. Chem. (Lausanne)201780126729910.1016/j.jelechem.2017.07.047
    [Google Scholar]
  55. NidheeshP.V. ScariaJ. BabuD.S. KumarM.S. An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater.Chemosphere202126312790710.1016/j.chemosphere.2020.127907 32835972
    [Google Scholar]
  56. XuD. MaH. Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis.J. Clean. Prod.202131312775810.1016/j.jclepro.2021.127758
    [Google Scholar]
  57. GawandeG. ChouguleS. BangarS. DetheA. RathodA. KulkarniA. Hydrodynamic cavitation and its hybridization with Fenton process as a promising AOP for dairy wastewater treatment.Mater. Today. Proceed.2024
    [Google Scholar]
  58. de WiltA. van GijnK. VerhoekT. VergnesA. HoekM. RijnaartsH. LangenhoffA. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process.Water Res.20181389710510.1016/j.watres.2018.03.028 29574201
    [Google Scholar]
  59. GanzenkoO. TrelluC. OturanN. HuguenotD. PéchaudY. van HullebuschE.D. OturanM.A. Electro-Fenton treatment of a complex pharmaceutical mixture: Mineralization efficiency and biodegradability enhancement.Chemosphere202025312665910.1016/j.chemosphere.2020.126659 32278912
    [Google Scholar]
  60. Pastrana-MartínezL.M. Morales-TorresS. FigueiredoJ.L. FariaJ.L. SilvaA.M.T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water.Water Res.20157717919010.1016/j.watres.2015.03.014 25875927
    [Google Scholar]
  61. GilPavasE. Dobrosz-GómezI. Gómez-GarcíaM.Á. Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment.Sci. Total Environ.2019651Pt 155156010.1016/j.scitotenv.2018.09.125 30245411
    [Google Scholar]
  62. BokareA.D. ChoiW. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes.J. Hazard. Mater.201427512113510.1016/j.jhazmat.2014.04.054 24857896
    [Google Scholar]
  63. MuruganandhamM. SwaminathanM. Photochemical oxidation of reactive azo dye with UV–H2O2 process.Dyes Pigments200462326927510.1016/j.dyepig.2003.12.006
    [Google Scholar]
  64. LiW. WangY. IriniA. Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4 catalyzing UV–Fenton and identification of reactive oxygen species.Chem. Eng. J.20142441810.1016/j.cej.2014.01.011
    [Google Scholar]
  65. WangJ. WangS. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants.Chem. Eng. J.202141112839210.1016/j.cej.2020.128392
    [Google Scholar]
  66. LiB. LiC. QuR. WuN. QiY. SunC. ZhouD. WangZ. Effects of common inorganic anions on the ozonation of polychlorinated diphenyl sulfides on silica gel: Kinetics, mechanisms, and theoretical calculations.Water Res.202018611635810.1016/j.watres.2020.116358 32898788
    [Google Scholar]
  67. WangS. WangJ. Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions.Chem. Eng. J.201835168869610.1016/j.cej.2018.06.137
    [Google Scholar]
  68. WangJ. ChuL. Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview.Radiat. Phys. Chem.2016125566410.1016/j.radphyschem.2016.03.012
    [Google Scholar]
  69. MaJ. YangY. JiangX. XieZ. LiX. ChenC. ChenH. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water.Chemosphere201819029630610.1016/j.chemosphere.2017.09.148 28992483
    [Google Scholar]
  70. MártireD.O. GonzalezM.C. Aqueous phase kinetic studies involving intermediates of environmental interest: Phosphate radicals and their reactions with substituted benzenes.Prog. React. Kinet. Mech.2001262-320121810.3184/007967401103165253
    [Google Scholar]
  71. JiY. WangL. JiangM. LuJ. FerronatoC. ChovelonJ.M. The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO).Water Res.201712324925710.1016/j.watres.2017.06.081 28672209
    [Google Scholar]
  72. VaranasiL. CoscarelliE. KhaksariM. MazzoleniL.R. MinakataD. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes.Water Res.2018135223010.1016/j.watres.2018.02.015 29454238
    [Google Scholar]
  73. XieP. MaJ. LiuW. ZouJ. YueS. LiX. WiesnerM.R. FangJ. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals.Water Res.20156922323310.1016/j.watres.2014.11.029 25486622
    [Google Scholar]
  74. GuiQ. ZhangL. WangS. FangJ. SongZ. WeiZ. LiuD. Study on high-efficiency sulfide removement using sulfate radical-based AOPs and its oxidation mechanism of refractory gold ore.Chem. Eng. J.202449415301910.1016/j.cej.2024.153019
    [Google Scholar]
  75. Guerra-RodríguezS. RodríguezE. SinghD. Rodríguez-ChuecaJ. Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review.Water20181012182810.3390/w10121828
    [Google Scholar]
  76. Fernández-CastroP. VallejoM. San RománM.F. OrtizI. Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species.J. Chem. Technol. Biotechnol.201590579682010.1002/jctb.4634
    [Google Scholar]
  77. LiuY. WangL. DongY. PengW. FuY. LiQ. FanQ. WangY. WangZ. Current analytical methods for the determination of persulfate in aqueous solutions: A historical review.Chem. Eng. J.202141612914310.1016/j.cej.2021.129143
    [Google Scholar]
  78. BadekarP.S. KumbharA.A. Anthracene-based fluorescence turn-on chemodosimeter for the recognition of persulfate anion.New J. Chem.20184253917392310.1039/C7NJ03425C
    [Google Scholar]
  79. LiH. LiuY. LiX. LiX. MaH. Design, synthesis and application of a dual-functional fluorescent probe for reactive oxygen species and viscosity.Spectrochim. Acta A Mol. Biomol. Spectrosc.202124611905910.1016/j.saa.2020.119059 33080516
    [Google Scholar]
  80. CastañedaC. GutiérrezK. AlvaradoI. MartínezJ.J. RojasH. TzompantziF. GómezR. Effective phosphated CEO2 materials in the photocatalytic degradation of phenol under UV irradiation.J. Chem. Technol. Biotechnol.202095123213322010.1002/jctb.6499
    [Google Scholar]
  81. ŽerjavG. AlbrehtA. VovkI. PintarA. Revisiting terephthalic acid and coumarin as probes for photoluminescent determination of hydroxyl radical formation rate in heterogeneous photocatalysis.Appl. Catal. A Gen.202059811756610.1016/j.apcata.2020.117566
    [Google Scholar]
  82. Martin‐NetoL. MiloriD.M. Da SilvaW.T. SimõesM.L. EPR, FTIR, Raman, UV–Visible absorption, and fluorescence spectroscopies in studies of NOM.Biophysico‐Chem. Proc. Involv. Nat. Nonliving Org. Mat. Environ. Sys.200965172710.1002/9780470494950.ch16
    [Google Scholar]
  83. WangZ. MaW. ChenC. JiH. ZhaoJ. Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review.Chem. Eng. J.20111702-335336210.1016/j.cej.2010.12.002
    [Google Scholar]
  84. WangJ. WangS. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism.Chem. Eng. J.202040112615810.1016/j.cej.2020.126158
    [Google Scholar]
  85. GuoQ. QianS.Y. MasonR.P. Separation and identification of DMPO adducts of oxygen-centered radicals formed from organic hydroperoxides by HPLC-ESR, ESI-MS and MS/MS.J. Am. Soc. Mass Spectrom.200314886287110.1016/S1044‑0305(03)00336‑2 12892910
    [Google Scholar]
  86. HanS.K. HwangT.M. YoonY. KangJ.W. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR).Chemosphere20118481095110110.1016/j.chemosphere.2011.04.051 21561642
    [Google Scholar]
  87. LaajimiH. MattiaM. SteinR.S. BianchiC.L. BoffitoD.C. Electron paramagnetic resonance of sonicated powder suspensions in organic solvents.Ultrason. Sonochem.20217310554410.1016/j.ultsonch.2021.105544 33819869
    [Google Scholar]
  88. BauerN.A. HoqueE. WolfM. KleigreweK. HofmannT. Detection of the formyl radical by EPR spin-trapping and mass spectrometry.Free Radic. Biol. Med.201811612913310.1016/j.freeradbiomed.2018.01.002 29307725
    [Google Scholar]
  89. MojovićM. SpasojevicI. VuleticM. VucinicZ. BacicG. An EPR spin-probe and spin-trap study of the free radicals produced by plant plasma membranes.J. Serb. Chem. Soc.200570217718610.2298/JSC0502177M
    [Google Scholar]
  90. ZhangZ. WangG. LiW. ZhangL. ChenT. DingL. Degradation of methyl orange through hydroxyl radical generated by optically excited biochar: Performance and mechanism.Colloids Surf. A Physicochem. Eng. Asp.202060112503410.1016/j.colsurfa.2020.125034
    [Google Scholar]
  91. QianZ. ZhangJ. WangC. ChenH. ZhengJ. A novel High-Gravity AOP process for enhanced NOx attenuation using alkaline H2O2 as a strong oxidizing reagent: Reaction mechanisms and kinetics.Chem. Eng. J.202140412645410.1016/j.cej.2020.126454
    [Google Scholar]
  92. SokolováR. TarábekJ. PapouškováB. KocábováJ. FiedlerJ. VacekJ. MarholP. VavříkováE. KřenV. Oxidation of the flavonolignan silybin. In situ EPR evidence of the spin-trapped silybin radical.Electrochim. Acta201620511812310.1016/j.electacta.2016.04.107
    [Google Scholar]
  93. SunX. XuK. ChatzitakisA. NorbyT. Photocatalytic generation of gas phase reactive oxygen species from adsorbed water: Remote action and electrochemical detection.J. Environ. Chem. Eng.20219210480910.1016/j.jece.2020.104809
    [Google Scholar]
  94. DuanghathaipornsukS. AlateeqF.A.O. KimS.S. KimD.S. Alba-RubioA.C. The effects of size and content of cerium oxide nanoparticles on a composite sensor for hydroxyl radicals detection.Sens. Actuators B Chem.202032112846710.1016/j.snb.2020.128467
    [Google Scholar]
  95. LouitG. FoleyS. CabillicJ. CoffignyH. TaranF. ValleixA. RenaultJ.P. PinS. The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography.Radiat. Phys. Chem.2005722-311912410.1016/j.radphyschem.2004.09.007
    [Google Scholar]
  96. JenJ.F. LeuM.F. YangT.C. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography.J. Chromatogr. A1998796228328810.1016/S0021‑9673(97)01019‑4
    [Google Scholar]
  97. SahniM. LockeB.R. Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors.Ind. Eng. Chem. Res.200645175819582510.1021/ie0601504
    [Google Scholar]
  98. TaiC. PengJ.F. LiuJ.F. JiangG.B. ZouH. Determination of hydroxyl radicals in advanced oxidation processes with dimethyl sulfoxide trapping and liquid chromatography.Anal. Chim. Acta20045271738010.1016/j.aca.2004.08.019
    [Google Scholar]
  99. De-NasriS.J. NagarajanS. RobertsonP.K.J. RanadeV.V. Quantification of hydroxyl radicals in photocatalysis and acoustic cavitation: Utility of coumarin as a chemical probe.Chem. Eng. J.202142012756010.1016/j.cej.2020.127560
    [Google Scholar]
  100. ZhangJ. NosakaY. Quantitative detection of OH radicals for investigating the reaction mechanism of various visible-light TiO2 photocatalysts in aqueous suspension.J. Phys. Chem. C201311731383139110.1021/jp3105166
    [Google Scholar]
  101. LiuW. LuY. DongY. JinQ. LinH. A critical review on reliability of quenching experiment in advanced oxidation processes.Chem. Eng. J.202346614316110.1016/j.cej.2023.143161
    [Google Scholar]
  102. LiangC. YinS. HuangP. YangS. WangZ. ZhengS. LiC. SunZ. The critical role of minerals in persulfate-based advanced oxidation process: Catalytic properties, mechanism, and prospects.Chem. Eng. J.202448214896910.1016/j.cej.2024.148969
    [Google Scholar]
  103. MullerJ.G. ZhengP. RokitaS.E. BurrowsC.J. DNA and RNA modification promoted by [Co(H2O)6]Cl2 and KHSO5: Guanine selectivity, temperature dependence, and mechanism.J. Am. Chem. Soc.1996118102320232510.1021/ja952518m
    [Google Scholar]
  104. FónagyO. Szabó-BárdosE. HorváthO. 1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems.J. Photochem. Photobiol. Chem.202140711305710.1016/j.jphotochem.2020.113057
    [Google Scholar]
  105. LiY. QuC. YeQ. MengF. YangD. WangL. Enhanced tetracycline degradation by novel Mn–FeOOH/CNNS photocatalysts in a visible-light-driven photocatalysis coupled peroxydisulfate system.Environ. Res.202425711929310.1016/j.envres.2024.119293 38838749
    [Google Scholar]
  106. ZengB. HuangF. WangY. XiongK. LangX. TEMPO radically expedites the conversion of sulfides to sulfoxides by pyrene-based metal-organic framework photocatalysis.Chin. J. Catal.20245822623610.1016/S1872‑2067(23)64601‑7
    [Google Scholar]
  107. SchuchmannM.N. BotheE. von SonntagJ. von SonntagC. Reaction of OH radicals with benzoquinone in aqueous solutions. A pulse radiolysis study.J. Chem. Soc., Perkin Trans. 21998479179610.1039/a708772a
    [Google Scholar]
  108. ShtarevD.S. ShtarevaA.V. BlokhA.I. GoncharovaP.S. MakarevichK.S. On the question of the optimal concentration of benzoquinone when it is used as a radical scavenger.Appl. Phys., A Mater. Sci. Process.2017123960210.1007/s00339‑017‑1193‑x
    [Google Scholar]
  109. TanT. BeydounD. AmalR. Effects of organic hole scavengers on the photocatalytic reduction of selenium anions.J. Photochem. Photobiol. Chem.2003159327328010.1016/S1010‑6030(03)00171‑0
    [Google Scholar]
  110. IslamJ.B. FurukawaM. TateishiI. KatsumataH. KanecoS. Photocatalytic reduction of hexavalent chromium with nanosized TiO2 in presence of formic acid.ChemEngineering2019323310.3390/chemengineering3020033
    [Google Scholar]
  111. SchneiderJ.T. FirakD.S. RibeiroR.R. Peralta-ZamoraP. Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations.Phys. Chem. Chem. Phys.20202227157231573310.1039/D0CP02411B 32626855
    [Google Scholar]
  112. RengarajS. LiX.Z. Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger.Chemosphere200766593093810.1016/j.chemosphere.2006.06.007 16859732
    [Google Scholar]
  113. BancirovaM. Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues.Luminescence201126668568810.1002/bio.1296 21491580
    [Google Scholar]
  114. LiM.Y. ClineC.S. KokerE.B. CarmichaelH.H. ChignellC.F. BilskiP. Quenching of singlet molecular oxygen (1O2) by azide anion in solvent mixtures.Photochem. Photobiol.200174676076410.1562/0031‑8655(2001)074<0760:QOSMOO>2.0.CO;2 11783930
    [Google Scholar]
  115. YangJ. ZhuW. YaoQ. LuG. YangC. DangZ. Photochemical reactivity of nitrogen-doped biochars under simulated sunlight irradiation: Generation of singlet oxygen.J. Hazard. Mater.202141012454710.1016/j.jhazmat.2020.124547 33229271
    [Google Scholar]
  116. ZhaoZ. FuC. ZhangY. FuA. Dimeric histidine as a novel free radical scavenger alleviates non-alcoholic liver injury.Antioxidants20211010152910.3390/antiox10101529 34679664
    [Google Scholar]
  117. ValachovaK. SvikK. BiroC. CollinsM.N. JurcikR. OndruskaL. SoltesL. Impact of ergothioneine, hercynine, and histidine on oxidative degradation of hyaluronan and wound healing.Polymers (Basel)20201319510.3390/polym13010095 33383628
    [Google Scholar]
  118. Méndez-HurtadoJ. LópezR. SuárezD. MenéndezM.I. Theoretical study of the oxidation of histidine by singlet oxygen.Chemistry201218278437844710.1002/chem.201103680 22639301
    [Google Scholar]
  119. WangJ. LiuH. MaD. WangY. YaoG. YueQ. GaoB. WangS. XuX. Degradation of organic pollutants by ultraviolet/ozone in high salinity condition: Non-radical pathway dominated by singlet oxygen.Chemosphere202126812879610.1016/j.chemosphere.2020.128796 33158505
    [Google Scholar]
  120. GhatakH.R. Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater.Crit. Rev. Environ. Sci. Technol.20144476358110.1080/10643389.2013.763581
    [Google Scholar]
  121. AnbarM. MeyersteinD. NetaP. Reactivity of aliphatic compounds towards hydroxyl radicals.J. Chem. Soc. B196674274710.1039/j29660000742
    [Google Scholar]
  122. AlamM.S. RaoB.S.M. JanataE. OH reactions with aliphatic alcohols: evaluation of kinetics by direct optical absorption measurement. A pulse radiolysis study.Radiat. Phys. Chem.200367672372810.1016/S0969‑806X(03)00310‑4
    [Google Scholar]
  123. NieM. WangQ. QiuG. Enhancement of ultrasonically initiated emulsion polymerization rate using aliphatic alcohols as hydroxyl radical scavengers.Ultrason. Sonochem.200815322222610.1016/j.ultsonch.2007.03.010 17509922
    [Google Scholar]
  124. InceN.H. GültekinI. Tezcanli-GüyerG. Sonochemical destruction of nonylphenol: Effects of pH and hydroxyl radical scavengers.J. Hazard. Mater.20091722-373974310.1016/j.jhazmat.2009.07.058 19674839
    [Google Scholar]
  125. VioneD. KhanraS. ManS.C. MaddigapuP.R. DasR. ArseneC. OlariuR.I. MaurinoV. MineroC. Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the •OH scavengers bicarbonate and carbonate.Water Res.200943184718472810.1016/j.watres.2009.07.032 19699506
    [Google Scholar]
  126. TrapidoM. Ozone-based advanced oxidation processes.Ozone Sci. Eng.201214
    [Google Scholar]
  127. BalachandranR. ZhaoM. DongB. BrownI. RaghavanS. KeswaniM. Role of ammonia and carbonates in scavenging hydroxyl radicals generated during megasonic irradiation of wafer cleaning solutions.Microelectron. Eng.2014130828610.1016/j.mee.2014.10.022
    [Google Scholar]
  128. ParkerK.M. MitchW.A. Halogen radicals contribute to photooxidation in coastal and estuarine waters.Proc. Natl. Acad. Sci. USA2016113215868587310.1073/pnas.1602595113 27162335
    [Google Scholar]
  129. ZhangK. ParkerK.M. Halogen radical oxidants in natural and engineered aquatic systems.Environ. Sci. Technol.201852179579959410.1021/acs.est.8b02219 30080407
    [Google Scholar]
  130. GuoK. ZhengS. ZhangX. ZhaoL. JiS. ChenC. WuZ. WangD. FangJ. Roles of bromine radicals and hydroxyl radicals in the degradation of micropollutants by the UV/bromine process.Environ. Sci. Technol.202054106415642610.1021/acs.est.0c00723 32320225
    [Google Scholar]
  131. GrebelJ.E. PignatelloJ.J. MitchW.A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters.Environ. Sci. Technol.201044176822682810.1021/es1010225 20681567
    [Google Scholar]
  132. GhaneianM. EhrampoushM. JasemizadT. KheirkhaM. AmraeiR. SahlabadiF. The effect of nitrate as a radical scavenger for the removal of humic acid from aqueous solutions by electron beam irradiation.J. Community Health Res.201313134143
    [Google Scholar]
  133. EntezariM. GodiniH. SheikhmohammadiA. EsrafiliA. Enhanced degradation of polychlorinated biphenyls with simultaneous usage of reductive and oxidative agents over UV/sulfite/TiO2 process as a new approach of advanced oxidation/reduction processes.J. Water Process Eng.20193210098310.1016/j.jwpe.2019.100983
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461335923240918061714
Loading
/content/journals/cgc/10.2174/0122133461335923240918061714
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test