Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

In the realm of synthetic organic chemistry, the environmentally friendly manipulation of small organic molecules has gained prominence. One particularly promising approach is electrochemical synthesis, which offers a green and sustainable alternative to using hazardous and toxic redox reagents. By harnessing electric current from renewable sources like sunlight or wind, electrochemical synthesis emerges as a viable replacement for conventional methods. This review article provides a comprehensive exploration of the electrochemical method, delving into its background and applications in synthesizing and transforming various small organic molecules, including sulfoximines, isoxazolines, benzimidazoles, and more. This review aims to shed light on the potential of electrochemical synthesis as a greener and more sustainable way of conducting organic transformations.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461329975240915171123
2024-09-25
2025-01-15
Loading full text...

Full text loading...

References

  1. SherbininA. CarrD. CasselsS. JiangL. Population and Environment.Annu. Rev. Environ. Resour.200732134537310.1146/annurev.energy.32.041306.100243 20011237
    [Google Scholar]
  2. AnastasP.T. WarnerJ.C. Green Chemistry: Theory and practice.OxfordOxford University Press1998
    [Google Scholar]
  3. HorváthI.T. Introduction: Sustainable chemistry.Chem. Rev.2018118236937110.1021/acs.chemrev.7b00721 29361827
    [Google Scholar]
  4. YanM. KawamataY. BaranP.S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance.Chem. Rev.201711721132301331910.1021/acs.chemrev.7b00397 28991454
    [Google Scholar]
  5. HornE.J. RosenB.R. BaranP.S. Synthetic organic electrochemistry: An enabling and innately sustainable method.ACS Cent. Sci.20162530230810.1021/acscentsci.6b00091 27280164
    [Google Scholar]
  6. KärkäsM.D. Electrochemical strategies for C–H functionalization and C–N bond formation.Chem. Soc. Rev.201847155786586510.1039/C7CS00619E 29911724
    [Google Scholar]
  7. WaldvogelS.R. JanzaB. Renaissance of electrosynthetic methods for the construction of complex molecules.Angew. Chem. Int. Ed.201453287122712310.1002/anie.201405082 24939665
    [Google Scholar]
  8. WiebeA. GieshoffT. MöhleS. RodrigoE. ZirbesM. WaldvogelS.R. Electrifying organic synthesis.Angew. Chem. Int. Ed.2018572055945619 https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201711060 10.1002/anie.201711060 29292849
    [Google Scholar]
  9. YoshidaJ. KataokaK. HorcajadaR. NagakiA. Modern strategies in electroorganic synthesis.Chem. Rev.200810872265229910.1021/cr0680843 18564879
    [Google Scholar]
  10. WaldvogelS.R. LipsS. SeltM. RiehlB. KampfC.J. Electrochemical arylation reaction.Chem. Rev.2018118146706676510.1021/acs.chemrev.8b00233 29963856
    [Google Scholar]
  11. PollokD. WaldvogelS.R. Electro-organic synthesis – a 21st century technique.Chem. Sci. (Camb.)20201146123861240010.1039/D0SC01848A 34123227
    [Google Scholar]
  12. KolbeH. Beobachtungen über die oxydirende Wirkung des Sauerstoffs, wenn derselbe mit Hülfe einer elektrischen Säule entwickelt wird.J. Prakt. Chem.184741113713910.1002/prac.18470410118
    [Google Scholar]
  13. MarkenF. AtobeM. Modern electrosynthetic methods in organic chemistry.New Jersey and CanadaApple Academic Press Inc.201810.1201/9780429434051
    [Google Scholar]
  14. FranckeR. Recent advances in the electrochemical construction of heterocycles.Beilstein J. Org. Chem.2014102858287310.3762/bjoc.10.303 25550752
    [Google Scholar]
  15. MöhleS. ZirbesM. RodrigoE. GieshoffT. WiebeA. WaldvogelS.R. Modern electrochemical aspects for the synthesis of value-added organic products.Angew. Chem. Int. Ed.201857216018604110.1002/anie.201712732 29359378
    [Google Scholar]
  16. JiangY. XuK. ZengC. Use of electrochemistry in the synthesis of heterocyclic structures.Chem. Rev.201811894485454010.1021/acs.chemrev.7b00271 29039924
    [Google Scholar]
  17. ShatskiyA. LundbergH. KärkäsM.D. Organic electrosynthesis: Applications in complex molecule synthesis.ChemElectroChem20196164067409210.1002/celc.201900435
    [Google Scholar]
  18. SbeiN. ListratovaA.V. TitovA.A. VoskressenskyL.G. Recent advances in electrochemistry for the synthesis of N-heterocycles.Synthesis201951122455247310.1055/s‑0037‑1611797
    [Google Scholar]
  19. ZhangC. LiuY. ChenD. WanJ-P. Recent advances in electrochemical cascade cyclization reactions.Synthesis202355182911292510.1055/a‑2039‑1728
    [Google Scholar]
  20. VoltaA. XVII. On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of natural philosophy in the university of pavia, to the Rt. Hon. Sir Joseph Banks, Bart.K.B. P. R. S. Philos. Trans. R. Soc. Lond.18009040343110.1098/rstl.1800.0018
    [Google Scholar]
  21. FaradayM. VI. Experimental researches in electricity.-Seventh Series.Philos. Trans. R. Soc. Lond.18341247712210.1098/rstl.1834.0008
    [Google Scholar]
  22. KolbeH. Untersuchungen über die elektrolyse organischer verbindungen justus liebigs.Justus Liebigs Ann. Chem.184969325729410.1002/jlac.18490690302
    [Google Scholar]
  23. HicklingA. Studies in electrode polarisation. Part IV.—The automatic control of the potential of a working electrode.Trans. Faraday Soc.194238273310.1039/TF9423800027
    [Google Scholar]
  24. RandlesJ.E.B. A cathode ray polarograph. Part II.—The current-voltage curves.Trans. Faraday Soc.19484432733810.1039/TF9484400327
    [Google Scholar]
  25. Frontana-UribeB.A. LittleR.D. IbanezJ.G. PalmaA. Vasquez-MedranoR. Organic electrosynthesis: A promising green methodology in organic chemistry.Green Chem.20101212209910.1039/c0gc00382d
    [Google Scholar]
  26. SchäferH.J. Contributions of organic electrosynthesis to green chemistry.C. R. Chim.2011147-874576510.1016/j.crci.2011.01.002
    [Google Scholar]
  27. ZhuC. AngN.W.J. MeyerT.H. QiuY. AckermannL. Organic electrochemistry: Molecular syntheses with potential.ACS Cent. Sci.20217341543110.1021/acscentsci.0c01532 33791425
    [Google Scholar]
  28. SimonsJ.H. Production of fluorocarbons.J. Electrochem. Soc.1949952476710.1149/1.2776733
    [Google Scholar]
  29. ShonoT. MatsumuraY. TsubataK. Electroorganic chemistry. 46. A new carbon-carbon bond forming reaction at the. alpha.-position of amines utilizing anodic oxidation as a key step.J. Am. Chem. Soc.198110351172117610.1021/ja00395a029
    [Google Scholar]
  30. ShonoT. MatsumuraY. TsubataK. Anodic oxidation of N-carbomethoxypyrrolidine: 2-Methoxy-N-carbomethoxypyrrolidine.Org. Synth.19856320610.15227/orgsyn.063.0206
    [Google Scholar]
  31. YoshidaJ. MurataT. IsoeS. Electrochemical oxidation of organosilicon compounds I. Oxidative cleavage of carbon-silicon bond in allylsilanes and benzylsilanes.Tetrahedron Lett.198627293373337610.1016/S0040‑4039(00)84799‑1
    [Google Scholar]
  32. SteckhanE. Indirect electroorganic syntheses-a modern chapter of organic electrochemistry.Angew. Chem. Int. Ed. Engl.198625868370110.1002/anie.198606831
    [Google Scholar]
  33. SteckhanE. Organic syntheses with electrochemically regenerable redox systems. Electrochemistry I.ChamSpringer198710.1007/3‑540‑17871‑6_11
    [Google Scholar]
  34. YoshidaJ. SugaS. Basic concepts of “cation pool” and “cation flow” methods and their applications in conventional and combinatorial organic synthesis.Chemistry2002812265010.1002/1521‑3765(20020617)8:12<2650::AID‑CHEM2650>3.0.CO;2‑S 12391641
    [Google Scholar]
  35. YoshidaJ. Cation Pool Method and Cation Flow Method.>Recent developments in carbocation and onium ion chemistry.Washington, D.CAmerican Chemical Society200710.1021/bk‑2007‑0965.ch010
    [Google Scholar]
  36. FranckeR. LittleR.D. Redox catalysis in organic electrosynthesis: Basic principles and recent developments.Chem. Soc. Rev.20144382492252110.1039/c3cs60464k 24500279
    [Google Scholar]
  37. LittleR.D. FoxD.P. Van HijfteL. DanneckerR. SowellG. WolinR.L. MoensL. BaizerM.M. Electroreductive cyclization. Ketones and aldehydes tethered to. alpha.beta.-unsaturated esters (nitriles). Fundamental investigations.J. Org. Chem.198853102287229410.1021/jo00245a029
    [Google Scholar]
  38. LittleR.D. SchwaebeM.K. Reductive cyclizations at the cathode.Top. Curr. Chem.199718514810.1007/3‑540‑61454‑0_69
    [Google Scholar]
  39. Gregory SowellC. WolinR.L. Daniel LittleR. Electroreductive cyclization reactions. Stereoselection, creation of quaternary centers in bicyclic frameworks, and a formal total synthesis of quadrone.Tetrahedron Lett.199031448548810.1016/0040‑4039(90)87014‑Q
    [Google Scholar]
  40. SchäferH.J. Anodic and cathodic CC-bond formation.Angew. Chem. Int. Ed. Engl.1981201191193410.1002/anie.198109111
    [Google Scholar]
  41. LundH. A century of organic electrochemistry.J. Electrochem. Soc.20021494S21S3310.1149/1.1462037
    [Google Scholar]
  42. IversenP.E. LundH. Electrolytic generation of strong bases I. Wittig reaction.Tetrahedron Lett.196910403523352410.1016/S0040‑4039(01)88438‑0
    [Google Scholar]
  43. GieshoffT. KehlA. SchollmeyerD. MoellerK.D. WaldvogelS.R. Insights into the mechanism of anodic N–N bond formation by dehydrogenative coupling.J. Am. Chem. Soc.201713935123171232410.1021/jacs.7b07488 28792218
    [Google Scholar]
  44. XuH.C. CampbellJ.M. MoellerK.D. Cyclization reactions of anode-generated amidyl radicals.J. Org. Chem.201479137939110.1021/jo402623r 24328239
    [Google Scholar]
  45. MoellerK.D. Synthetic applications of anodic electrochemistry.Tetrahedron200056499527955410.1016/S0040‑4020(00)00840‑1
    [Google Scholar]
  46. AmatoreC. CammounC. JutandA. Pd(OAc)2/p-benzoquinone-catalyzed anaerobic electrooxidative homocoupling of arylboronic acids, arylboronates and aryltrifluoroborates in DMF and/or water.Eur. J. Org. Chem.20082008274567457010.1002/ejoc.200800631
    [Google Scholar]
  47. JutandA. Contribution of electrochemistry to organometallic catalysis.Chem. Rev.200810872300234710.1021/cr068072h 18605756
    [Google Scholar]
  48. YoshidaJ. SugaS. SuzukiS. KinomuraN. YamamotoA. FujiwaraK. Direct oxidative carbon-carbon bond formation using the “Cation Pool” method. 1. Generation of iminium cation pools and their reaction with carbon nucleophiles.J. Am. Chem. Soc.1999121419546954910.1021/ja9920112
    [Google Scholar]
  49. SamantaR.C. MeyerT.H. SiewertI. AckermannL. Renewable resources for sustainable metallaelectro-catalysed C–H activation.Chem. Sci. (Camb.)202011338657867010.1039/D0SC03578E 34123124
    [Google Scholar]
  50. RosenB.R. WernerE.W. O’BrienA.G. BaranP.S. Total synthesis of dixiamycin B by electrochemical oxidation.J. Am. Chem. Soc.2014136155571557410.1021/ja5013323 24697810
    [Google Scholar]
  51. HarwoodS.J. PalkowitzM.D. GannettC.N. PerezP. YaoZ. SunL. AbruñaH.D. AndersonS.L. BaranP.S. Modular terpene synthesis enabled by mild electrochemical couplings.Science2022375658274575210.1126/science.abn1395 35175791
    [Google Scholar]
  52. SauerG.S. LinS. An electrocatalytic approach to the radical difunctionalization of alkenes.ACS Catal.2018865175518710.1021/acscatal.8b01069
    [Google Scholar]
  53. BaizerM.M. Recent developments in organic synthesis by electrolysis.Tetrahedron198440693596910.1016/S0040‑4020(01)91232‑3
    [Google Scholar]
  54. BaizerM.M. Electrolytic reductive coupling: I. acrylonitrile.J. Electrochem. Soc.1964111221510.1149/1.2426086
    [Google Scholar]
  55. LeechM.C. LamK. A practical guide to electrosynthesis.Nat. Rev. Chem.20226427528610.1038/s41570‑022‑00372‑y 37117870
    [Google Scholar]
  56. CardosoD.S.P. ŠljukićB. SantosD.M.F. SequeiraC.A.C. Organic electrosynthesis: From laboratorial practice to industrial applications.Org. Process Res. Dev.20172191213122610.1021/acs.oprd.7b00004
    [Google Scholar]
  57. KathiresanM. VelayuthamD. Ionic liquids as an electrolyte for the electro synthesis of organic compounds.Chem. Commun. (Camb.)20155199174991751610.1039/C5CC06961K 26442436
    [Google Scholar]
  58. ZhangX. ZhanJ. YuZ. DengJ. LiM. ShaoY. Recent advances in real-time analysis of electrochemical reactions by electrochemical mass spectrometry.Chin. J. Chem.202341221422410.1002/cjoc.202200523
    [Google Scholar]
  59. SchroederC.M. LeónS.A. OhlhorstK.K. LeadbeaterN.E. Development and use of a real-time in-situ monitoring tool for electrochemical advanced oxidation processes.Chem. Methods2023310e20230001410.1002/cmtd.202300014
    [Google Scholar]
  60. BentleyH.R. McDERMOTTE.E. PaceJ. WhiteheadJ.K. MoranT. Toxic factor from agonized proteins; methionine as the essential reactant.Nature1950165418715015110.1038/165150a0 15404893
    [Google Scholar]
  61. WhiteheadJ.K. BentleyH.R. 287. Preparation and properties of some aliphatic sulphoximines.J. Chem. Soc.19521952157210.1039/jr9520001572
    [Google Scholar]
  62. FengM. TangB. LiangS.H. JiangX. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry.Curr. Top. Med. Chem.201616111200121610.2174/1568026615666150915111741 26369815
    [Google Scholar]
  63. SururA.S. SchuligL. LinkA. Interconnection of sulfides and sulfoxides in medicinal chemistry.Arch. Pharm. (Weinheim)20183521180024810.1002/ardp.201800248 30521146
    [Google Scholar]
  64. MäderP. KattnerL. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry.J. Med. Chem.20206323142431427510.1021/acs.jmedchem.0c00960 32870008
    [Google Scholar]
  65. WangH. ChengY. BeckerP. RaabeG. BolmC. Synthesis of sulfoximidoyl-containing hypervalent iodine(III) reagents and their use in transition-metal-free sulfoximidations of alkynes.Angew. Chem. Int. Ed.20165541126551265810.1002/anie.201605743 27444808
    [Google Scholar]
  66. NoritakeS. ShibataN. NakamuraS. ToruT. ShiroM. Fluorinated johnson reagent for transfer-trifluoromethylation to carbon nucleophiles.Eur. J. Org. Chem.20082008203465346810.1002/ejoc.200800419
    [Google Scholar]
  67. OkamuraH. BolmC. Sulfoximines: Synthesis and catalytic applications.Chem. Lett.200433548248710.1246/cl.2004.482
    [Google Scholar]
  68. Fareghi-AlamdariR. ZekriN. MoghadamA.J. FarsaniM.R. Green oxidation of sulfides to sulfoxides and sulfones with H2O2 catalyzed by ionic liquid compounds based on Keplerate polyoxometalates.Catal. Commun.201798717510.1016/j.catcom.2017.04.050
    [Google Scholar]
  69. LuisiR. BullJ.A. Synthesis of sulfoximines and sulfonimidamides using hypervalent iodine mediated NH transfer.Molecules2023283112010.3390/molecules28031120 36770787
    [Google Scholar]
  70. LebelH. PirasH. BorduyM. Iron-catalyzed amination of sulfides and sulfoxides with azides in photochemical continuous flow synthesis.ACS Catal.2016621109111210.1021/acscatal.5b02495
    [Google Scholar]
  71. OkamuraH. BolmC. Rhodium-catalyzed imination of sulfoxides and sulfides: Efficient preparation of N-unsubstituted sulfoximines and sulfilimines.Org. Lett.2004681305130710.1021/ol049715n 15070323
    [Google Scholar]
  72. MiaoJ. RichardsN.G.J. GeH. Rhodium-catalyzed direct synthesis of unprotected NH-sulfoximines from sulfoxides.Chem. Commun. (Camb.)201450689687968910.1039/C4CC04349A 25016917
    [Google Scholar]
  73. TakadaH. NishibayashiY. OheK. UemuraS. BairdC.P. SpareyT.J. TaylorP.C. Catalytic asymmetric sulfimidation.J. Org. Chem.199762196512651810.1021/jo970798d
    [Google Scholar]
  74. ChoG.Y. BolmC. Silver-catalyzed imination of sulfoxides and sulfides.Org. Lett.20057224983498510.1021/ol0519442 16235938
    [Google Scholar]
  75. MancheñoO.G. DallimoreJ. PlantA. BolmC. Iron(II) triflate as an efficient catalyst for the imination of sulfoxides.Org. Lett.200911112429243210.1021/ol900660x 19473047
    [Google Scholar]
  76. AmriN. WirthT. Recent advances in the electrochemical synthesis of organosulfur compounds.Chem. Rec.20212192526253710.1002/tcr.202100064 33960607
    [Google Scholar]
  77. SiuT. YudinA.K. Electrochemical imination of sulfoxides using N-aminophthalimide.Org. Lett.20024111839184210.1021/ol0257530 12027627
    [Google Scholar]
  78. AmriN. WirthT. Flow electrosynthesis of sulfoxides, sulfones, and sulfoximines without supporting electrolytes.J. Org. Chem.20218622159611597210.1021/acs.joc.1c00860 34164983
    [Google Scholar]
  79. KleinM. TroglauerD.L. WaldvogelS.R. Dehydrogenative imination of low-valent sulfur compounds-fast and scalable synthesis of sulfilimines, sulfinamidines, and sulfinimidate esters.JACS Au20233257558310.1021/jacsau.2c00663 36873686
    [Google Scholar]
  80. KleinM. WaldvogelS.R. Anodic dehydrogenative cyanamidation of thioethers: Simple and sustainable synthesis of N-cyanosulfilimines.Angew. Chem. Int. Ed.20216043231972320110.1002/anie.202109033 34409715
    [Google Scholar]
  81. HanM. TangZ. LiG. WangQ. Electrochemical oxidation chemoselective sulfimidation of thioether with sulfonamide via catalytic iodobenzene.Tetrahedron Lett.202210215392510.1016/j.tetlet.2022.153925
    [Google Scholar]
  82. KongX. LinL. ChenX. ChenY. WangW. XuB. Electrochemical oxidative syntheses of NH-sulfoximines, NH-sulfonimidamides and dibenzothiazines via anodically generated hypervalent iodine intermediates.ChemSusChem202114163277328210.1002/cssc.202101002 34292660
    [Google Scholar]
  83. JiangY.M. LinY.Y. ZhuL. YuY. LiY. LinY. YeK.Y. A general electrochemical synthesis of sulfonimidoyl fluorides, azides, and acetates.CCS Chemistry2024682021203010.31635/ccschem.023.202303489
    [Google Scholar]
  84. KowalczykR. EdmundsA.J.F. HallR.G. BolmC. Synthesis of CF3-substituted sulfoximines from sulfonimidoyl fluorides.Org. Lett.201113476877110.1021/ol103030w 21235264
    [Google Scholar]
  85. LiuD. LiuZ.R. MaC. JiaoK.J. SunB. WeiL. LefrancJ. HerbertS. MeiT.S. Nickel-catalyzed N-arylation of NH-sulfoximines with aryl halides via paired electrolysis.Angew. Chem. Int. Ed.202160179444944910.1002/anie.202016310 33576561
    [Google Scholar]
  86. ZhuC. KaleA.P. YueH. RuepingM. Redox-neutral cross-coupling amination with weak N-nucleophiles: Arylation of anilines, sulfonamides, sulfoximines, carbamates, and imines via nickel electrocatalysis.JACS Au2021171057106510.1021/jacsau.1c00148 34467349
    [Google Scholar]
  87. ZhouG. ZhouT. JiangA.L. QianP.F. LiJ.Y. JiangB.Y. ChenZ.J. ShiB.F. Electrooxidative rhodium(III)/chiral carboxylic acid-catalyzed enantioselective C−H annulation of sulfoximines with alkynes.Angew. Chem. Int. Ed.20246315e20231987110.1002/anie.202319871 38289019
    [Google Scholar]
  88. KongX. TianY. ChenX. ChenY. WangW. Electrochemical oxidative C(sp3)-H/N-H coupling of diarylmethanes with sulfoximines or benzophenone imine.J. Org. Chem.20218619136101361710.1021/acs.joc.1c01647 34523935
    [Google Scholar]
  89. KangC. LiM. HuangW. WangS. PengM. ZhaoL. JiangG. JiF. Electrochemical N -acylation and N -α-ketoacylation of sulfoximines via the selective decarboxylation and dehydration of α-ketoacids.Green Chem.202325218838884410.1039/D3GC02674D
    [Google Scholar]
  90. LiM. PengM. HuangW. ZhaoL. WangS. KangC. JiangG. JiF. Electrochemical oxidative carbonylation of NH-sulfoximines.Org. Lett.202325417529753410.1021/acs.orglett.3c02800 37819202
    [Google Scholar]
  91. AlamT. PatelB.K. Electrochemical N-aroylation of sulfoximines using benzoyl hydrazines with H2 generation.Chemistry2024309e20230344410.1002/chem.202303444 37990751
    [Google Scholar]
  92. HuangW. WangS. LiM. ZhaoL. PengM. KangC. JiangG. JiF. Electrochemical N-acylation of sulfoximine with hydroxamic acid.J. Org. Chem.20238824175111752010.1021/acs.joc.3c01903 38018775
    [Google Scholar]
  93. WanJ.L. HuangJ.M. Electrochemically enabled sulfoximido-oxygenation of alkenes with NH-sulfoximines and alcohols.Org. Lett.202224488914891910.1021/acs.orglett.2c03774 36441567
    [Google Scholar]
  94. LiX. HuangJ. XuL. LiuJ. WeiY. Electrochemical oxidative dehydrogenative coupling of sulfoximines to construct N-sulfenyl and N-phosphinyl sulfoximines.Adv. Synth. Catal.2023365244647465310.1002/adsc.202300933
    [Google Scholar]
  95. ZhangS. HuM. QinC. WangS. JiF. JiangG. Electrochemical oxidative cross coupling of NH-sulfoximines with disulfides.New J. Chem.20244862576258310.1039/D3NJ05205B
    [Google Scholar]
  96. YangJ. GaoW. TengY. YuL. HuangK. LiQ. XieH. LiT. Electrochemically driven tandem cyclization reaction of unsaturated sulfoximines with diselenides.Eur. J. Org. Chem.2024273e20230092710.1002/ejoc.202300927
    [Google Scholar]
  97. XiongZ. NieH. ZhangS. HuM. QinC. WangS. JiF. JiangG. Electrochemically driven selective removal of the S═N bond-directing group using cyclohexanone oxime as the mediator.J. Org. Chem.20238874334434410.1021/acs.joc.2c02940 36922910
    [Google Scholar]
  98. KaurK. KumarV. SharmaA.K. GuptaG.K. Isoxazoline containing natural products as anticancer agents: A review.Eur. J. Med. Chem.20147712113310.1016/j.ejmech.2014.02.063 24631731
    [Google Scholar]
  99. HwangI.T. KimH.R. JeonD.J. HongK.S. SongJ.H. ChoK.Y. 5-(2,6-difluorobenzyl)oxymethyl-5-methyl-3-(3-methylthiophen-2-yl)- 1,2-isoxazoline as a useful rice herbicide.J. Agric. Food Chem.200553228639864310.1021/jf051284f 16248565
    [Google Scholar]
  100. García-ReynagaP. ZhaoC. SarpongR. CasidaJ.E. New GABA/glutamate receptor target for [3H]isoxazoline insecticide.Chem. Res. Toxicol.201326451451610.1021/tx400055p 23465072
    [Google Scholar]
  101. HwangK.H. LimJ.S. KimS.H. JeonM.S. LeeD.G. ChungK.H. KooS.J. KimJ.H. In vivo absorption, distribution, excretion, and metabolism of a new herbicide, methiozolin, in rats following oral administration.J. Agric. Food Chem.201361399285929210.1021/jf4025823 24000999
    [Google Scholar]
  102. JewettJ.C. SlettenE.M. BertozziC.R. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones.J. Am. Chem. Soc.2010132113688369010.1021/ja100014q 20187640
    [Google Scholar]
  103. JullienN. MakritisA. GeorgiadisD. BeauF. YiotakisA. DiveV. Phosphinic tripeptides as dual angiotensin-converting enzyme C-domain and endothelin-converting enzyme-1 inhibitors.J. Med. Chem.201053120822010.1021/jm9010803 19899765
    [Google Scholar]
  104. CastellanoS. KuckD. VivianoM. YooJ. López-VallejoF. ContiP. TamboriniL. PintoA. Medina-FrancoJ.L. SbardellaG. Synthesis and biochemical evaluation of δ(2)-isoxazoline derivatives as DNA methyltransferase 1 inhibitors.J. Med. Chem.201154217663767710.1021/jm2010404 21958292
    [Google Scholar]
  105. PoutiainenP.K. PalvimoJ.J. HinkkanenA.E. ValkonenA. VäisänenT.K. LaatikainenR. PulkkinenJ.T. Discovery of 5-benzyl-3-phenyl-4,5-dihydroisoxazoles and 5-benzyl-3-phenyl-1,4,2-dioxazoles as potent firefly luciferase inhibitors.J. Med. Chem.20135631064107310.1021/jm301516q 23286196
    [Google Scholar]
  106. KozikowskiA.P. SteinP.D. The INOC route to carbocyclics: A formal total synthesis of (.+-.)-sarkomycin.J. Am. Chem. Soc.1982104144023402410.1021/ja00378a049
    [Google Scholar]
  107. AraiM.A. AraiT. SasaiH. Design and synthesis of the first spiro bis(isoxazoline) derivatives as asymmetric ligands.Org. Lett.19991111795179710.1021/ol9902881
    [Google Scholar]
  108. AraiM.A. KuraishiM. AraiT. SasaiH. A new asymmetric Wacker-type cyclization and tandem cyclization promoted by Pd(II)-spiro bis(isoxazoline) catalyst.J. Am. Chem. Soc.2001123122907290810.1021/ja005920w 11456988
    [Google Scholar]
  109. MarottaE. MicheloniL.M. ScardoviN. RighiP. One-pot direct conversion of 2,3-epoxy alcohols into enantiomerically pure 4-hydroxy-4,5-dihydroisoxazole 2-oxides.Org. Lett.20013572772910.1021/ol0070379 11259047
    [Google Scholar]
  110. MuthiahC. AraiM.A. ShinoharaT. AraiT. TakizawaS. SasaiH. Enantioselective synthesis of α-methylene-γ-butyrolactones using chiral Pd(II)-SPRIX catalyst.Tetrahedron Lett.200344285201520410.1016/S0040‑4039(03)01250‑4
    [Google Scholar]
  111. FullerA.A. ChenB. MinterA.R. MappA.K. Succinct synthesis of β-amino acids via chiral isoxazolines.J. Am. Chem. Soc.2005127155376538310.1021/ja0431713 15826175
    [Google Scholar]
  112. WakitaK. BajracharyaG.B. AraiM.A. TakizawaS. SuzukiT. SasaiH. Enantioselective glyoxylate-ene reaction using a novel spiro bis(isoxazoline) ligand in copper catalysis.Tetrahedron Asymmetry200718337237610.1016/j.tetasy.2007.02.004
    [Google Scholar]
  113. LiaoJ. OuyangL. JinQ. ZhangJ. LuoR. Recent advances in the oxime-participating synthesis of isoxazolines.Org. Biomol. Chem.202018254709471610.1039/D0OB00963F 32525196
    [Google Scholar]
  114. PrabhakarK.A. NikolaienkoP. SmirnovaK. RuepingM. Intramolecular electrochemical oxybromination of olefins for the synthesis of isoxazolines in batch and continuous flow.Eur. J. Org. Chem.20212021243496350010.1002/ejoc.202100640
    [Google Scholar]
  115. JiangfeiC. ShengrongG. YanqinY. HongyanH. MinghaoY. Method for synthesizing fluorine-cintaining isoxazole derivatives through electrochemical oxidation.CN Patent 115449825A2022
  116. MahantyK. SahaS.K. HalderA. De SarkarS. Mediator-free electrochemical trifluoromethylation: A cascade approach for the synthesis of trifluoromethylated isoxazolines.Chem. Commun. (Camb.)202359304467447010.1039/D3CC00231D 36960582
    [Google Scholar]
  117. MallickS. BaidyaM. MahantyK. MaitiD. De SarkarS. Electrochemical chalcogenation of β,γ-unsaturated amides and oximes to corresponding oxazolines and isoxazolines.Adv. Synth. Catal.202036251046105210.1002/adsc.201901262
    [Google Scholar]
  118. GaoW. LiB. ZongL. YuL. LiX. LiQ. ZhangX. ZhangS. XuK. Electrochemical tandem cyclization of unsaturated oximes with diselenides: A general approach to seleno isoxazolines derivatives with quaternary carbon center.Eur. J. Org. Chem.20212021172431243510.1002/ejoc.202100294
    [Google Scholar]
  119. ChenD. HeT. JinY. HuangS. Electrooxidative dearomatization tospiroisoxazolines: Application to total synthesis of xanthoisoxazoline B.Adv. Synth. Catal.2022364228629010.1002/adsc.202101062
    [Google Scholar]
  120. HolmanS.D.L. WillsA.G. FazakerleyN.J. PooleD.L. CoeD.M. BerlouisL.A. ReidM. Electrochemical synthesis of isoxazolines: Method and mechanism.Chemistry20222813e20210372810.1002/chem.202103728 35076117
    [Google Scholar]
  121. HofmannS. WinterJ. PrenzelT. de Jesús Gálvez-VázquezM. WaldvogelS.R. Electrochemical synthesis of isoxazoles and isoxazolines via anodic oxidation of oximes.ChemElectroChem20231022e20230043410.1002/celc.202300434
    [Google Scholar]
  122. JiS. ZhaoL. MiaoB. XueM. PanT. ShaoZ. ZhouX. FuA. ZhangY. Electrochemical activation of nitromethane to construct isoxazoline aldoximes.Angew. Chem. Int. Ed.20236232e20230443410.1002/anie.202304434 37340694
    [Google Scholar]
  123. XiongM. LiangX. GaoZ. LeiA. PanY. Synthesis of isoxazolines and oxazines by electrochemical intermolecular [2+1+ n] annulation: Diazo compounds act as radical acceptors.Org. Lett.201921239300930510.1021/acs.orglett.9b03306 31713430
    [Google Scholar]
  124. LiM. ZhangC. ZhouY.Q. LiuY. ZhaoN. LiX. GuL.J. Electrochemical intramolecular haloheterocyclization reactions using 1,2-dihaloethanes as halogenating reagents.Tetrahedron Lett.20228915360210.1016/j.tetlet.2021.153602
    [Google Scholar]
  125. SurovI. LundH. SandströmJ. DarzynkiewiczE. Electrochemical reduction of isoxazoles and related compounds. Acta.Acta Chem. Scand.198640b83183810.3891/acta.chem.scand.40b‑0831
    [Google Scholar]
  126. LundH. SundholmA. MagnéliA. HögbergB. KneipP. PalmstiernaH. Electroörganic Preparations. VI.Acta Chem. Scand.19591324926710.3891/acta.chem.scand.13‑0249
    [Google Scholar]
  127. CaetanoV.F. DemnitzF.W.J. DinizF.B. MarizR.M.Jr NavarroM.Jr Preparation of β-hydroxyesters from isoxazolines. A selective Ni0bpy-catalyzed electrochemical method.Tetrahedron Lett.200344458217822010.1016/j.tetlet.2003.09.081
    [Google Scholar]
  128. TaylorR.D. MacCossM. LawsonA.D.G. Rings in drugs.J. Med. Chem.201457145845585910.1021/jm4017625 24471928
    [Google Scholar]
  129. CoburnR.A. ClarkM.T. EvansR.T. GencoR.J. Substituted 2-(2-hydroxyphenyl)benzimidazoles as potential agents for the control of periodontal diseases.J. Med. Chem.198730120520810.1021/jm00384a035 3806595
    [Google Scholar]
  130. GökerH. TunçbilekM. AyhanG. AltanlarN. Synthesis of some new benzimidazolecarboxamides and evaluation of their antimicrobial activity.Farmaco199853641542010.1016/S0014‑827X(98)00045‑7 9764474
    [Google Scholar]
  131. Ayhan-KılcıgilG. TunçbilekM. AltanlarN. GökerH. Synthesis and antimicrobial activity of some new benzimidazole carboxylates and carboxamides.Farmaco199954856256510.1016/S0014‑827X(99)00059‑2 10510853
    [Google Scholar]
  132. SolimanF.S.G. RidaS.M. BadawyE-S.A.M. KappeT. Synthesis of substituted 3-hydroxy-1H,5H-pyrido[1,2-a]benzimidazol-1-ones as possible antimicrobial and antineoplastic agents.Arch. Pharm. (Weinheim)19843171195195810.1002/ardp.19843171110 6517676
    [Google Scholar]
  133. HabibN.S. Abdel-HamidS. el-HawashM. Synthesis of benzimidazole derivatives as potential antimicrobial agents.Farmaco1989441212251232 2699417
    [Google Scholar]
  134. Abdel-RahmanA.E. MahmoudA.M. El-NaggarG.M. El-SheriefH.A. Synthesis and biological activity of some new benzimidazolyl-azetidin-2-ones and -thiazolidin-4-ones.Pharmazie1983389589590 6647531
    [Google Scholar]
  135. KhairnarV.L. LockhandeS.R. PatelM.R. KhadseB.G. Synthesis and antimicrobial evaluation of some new 2-(2-(p-chlorophenyl) benzimidazol-1-yl methyl)-5-substituted amino-[1,3,4]-thiadiazoles.Turkish J. Chem.2005292153162
    [Google Scholar]
  136. IslamI. SkiboE.B. DorrR.T. AlbertsD.S. Structure-activity studies of antitumor agents based on pyrrolo[1,2-a]benzimidazoles: New reductive alkylating DNA cleaving agents.J. Med. Chem.199134102954296110.1021/jm00114a003 1920349
    [Google Scholar]
  137. KruseL.I. LaddD.L. HarrschP.B. McCabeF.L. MongS.M. FaucetteL. JohnsonR. Synthesis, tubulin binding, antineoplastic evaluation, and structure-activity relationship of oncodazole analogs.J. Med. Chem.198932240941710.1021/jm00122a020 2913301
    [Google Scholar]
  138. HabernickelV.J. Alkyl-5-heterocyclic-benzimidazolyl-carbamate derivatives.Drugs Made Ger.19923597
    [Google Scholar]
  139. FukudaT. MorimotoY. IemuraR. KawashimaT. TsukamotoG. ItoK. Effect of 1-(2-ethoxyethyl)-2-(4-methyl-1-homopiperazinyl)-benzimida zole difumarate (KB-2413), a new antiallergic, on chemical mediators.Arzneimittelforschung1984347801805 6149754
    [Google Scholar]
  140. FukudaT. SaitoT. TajimaS. ShimoharaK. ItoK. Antiallergic effect of 1-(2-ethoxyethyl)-2-(4-methyl-1-homopiperazinyl) benzimidaz ole difumarate (KB-2413).Arzneimittelforschung1984347805810 6208915
    [Google Scholar]
  141. NakanoH. InoueT. KawasakiN. MiyatakaH. MatsumotoH. TaguchiT. InagakiN. NagaiH. SatohT. Synthesis of benzimidazole derivatives as antiallergic agents with 5-lipoxygenase inhibiting action.Chem. Pharm. Bull. (Tokyo)199947111573157810.1248/cpb.47.1573 10605056
    [Google Scholar]
  142. NakanoH. InoueT. KawasakiN. MiyatakaH. MatsumotoH. TaguchiT. InagakiN. NagaiH. SatohT. Synthesis and biological activities of novel antiallergic agents with 5-lipoxygenase inhibiting action.Bioorg. Med. Chem.20008237338010.1016/S0968‑0896(99)00291‑6 10722160
    [Google Scholar]
  143. Can-EkeB. OrhanP.M. BuyukbingolE. IscanM. A study on the antioxidant capacities of some benzimidazoles in rat tissues.Chem. Biol. Interact.19981131657710.1016/S0009‑2797(98)00020‑9 9630848
    [Google Scholar]
  144. WitkowskiJ.T. RobinsR.K. KhareG.P. SidwellR.W. Synthesis and antiviral activity of 1,2,4-triazole-3-thiocarboxamide and 1,2,4-triazole-3-carboxamidine ribonucleosides.J. Med. Chem.197316893593710.1021/jm00266a014 4355593
    [Google Scholar]
  145. AndreadouI. TasouliA. BofilisE. ChrysselisM. RekkaE. Tsantili-KakoulidouA. IliodromitisE. SiatraT. KremastinosD.T. Antioxidant activity of novel indole derivatives and protection of the myocardial damage in rabbits.Chem. Pharm. Bull. (Tokyo)200250216516810.1248/cpb.50.165 11848203
    [Google Scholar]
  146. MarakosP. Papakonstantinou-GaroufaliasS. TaniE. KourounakisP. AthanasiouG. Chytyroglou-LadaA. Synthesis and antifungal and antioxidant properties of some new 5-substituted-4-amino(or aryl)-3-mercapto-4(H)-1,2,4-triazoles.Arzneimittelforschung201152757257710.1055/s‑0031‑1299932 12189782
    [Google Scholar]
  147. RidleyH.F. SpickettR.G.W. TimmisG.M. A new synthesis of benzimidazoles and aza‐analogs.J. Heterocycl. Chem.19652445345610.1002/jhet.5570020424
    [Google Scholar]
  148. HeaneyH. LeyS.V. N-alkylation of indole and pyrroles in dimethyl sulphoxide.J. Chem. Soc., Perkin Trans. 11973I49950010.1039/p19730000499
    [Google Scholar]
  149. SmithP.A.S. Organic Reactions.Hoboken, New Jersey, U.S.John Wiley & Sons1949
    [Google Scholar]
  150. Siatra-PapastaikoudiT. TsotinisA. RaptopoulouC.P. SambaniC. ThomouH. Synthesis of new alkylaminoalkyl thiosemicarbazones of 3-acetylindole and their effect on DNA synthesis and cell proliferation.Eur. J. Med. Chem.199530210711410.1016/0223‑5234(96)88215‑8
    [Google Scholar]
  151. CarvalhoL.C.R. FernandesE. MarquesM.M.B. Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles.Chemistry20111745125441255510.1002/chem.201101508 21989969
    [Google Scholar]
  152. DuddL.M. VenardouE. Garcia-VerdugoE. LicenceP. BlakeA.J. WilsonC. PoliakoffM. Synthesis of benzimidazoles in high-temperature water.Green Chem.20035218719210.1039/b212394k
    [Google Scholar]
  153. DandiaA. MahawarD.K. SharmaR. BadgotiR.S. RathoreK.S. ParewaV. Graphene oxide‐catalyzed CSp3–H activation of methylarenes in aqueous medium: A unified metal‐free access to amides and benzimidazoles.Appl. Organomet. Chem.20193311e523210.1002/aoc.5232
    [Google Scholar]
  154. MaheshD. SatheeshV. KumarS.V. PunniyamurthyT. Copper(II)-catalyzed oxidative coupling of anilines, methyl arenes, and TMSN3 via C(sp3/sp2)-H functionalization and C–N bond formation.Org. Lett.201719246554655710.1021/acs.orglett.7b03264 29166025
    [Google Scholar]
  155. LaiY.L. YeJ.S. HuangJ.M. Electrochemical synthesis of benzazoles from alcohols and o-substituted anilines with a catalytic amount of CoII salt.Chemistry201622155425542910.1002/chem.201505074 26918770
    [Google Scholar]
  156. ShiT.T. WangS.Z. YangZ. WangY. LiuC. HeW. FangZ. GuoK. Enzymatic electrochemical continuous flow cascade synthesis of substituted benzimidazoles.React. Chem. Eng.20216593794310.1039/D1RE00058F
    [Google Scholar]
  157. MonrealI. Torres-PachecoL.J. Oropeza-GuzmanM.T. RiveroI.A. In-situ Fe electro-oxidation to improve the synthesis of mono and disubstituted benzimidazoles.Int. J. Electrochem. Sci.20151086743675310.1016/S1452‑3981(23)06758‑5
    [Google Scholar]
  158. ThadathilD.A. MB. VargheseA. GhoshM. Anchored ferrocene based heterogeneous electrocatalyst for the synthesis of benzimidazoles.Electrochim. Acta202243514139910.1016/j.electacta.2022.141399
    [Google Scholar]
  159. WangH.B. HuangJ.M. Decarboxylative coupling of α-keto acids with ortho-phenylenediamines promoted by an electrochemical method in aqueous media.Adv. Synth. Catal.2016358121975198110.1002/adsc.201501167
    [Google Scholar]
  160. DowlatiB. NematollahiD. OthmanM.R.B. Electrochemical synthesis of benzimidazole derivative using carbon electrode in aqueous medium.Int. J. Electrochem. Sci.2012775990599610.1016/S1452‑3981(23)19456‑9
    [Google Scholar]
  161. LiA. LiC. YangT. YangZ. LiuY. LiL. TangK. ZhouC. Electrochemical synthesis of benzo[d]imidazole via intramolecular C(sp3)–H amination.J. Org. Chem.20238841928193510.1021/acs.joc.1c01842 34918925
    [Google Scholar]
  162. DuanZ. ZhangL. ZhangW. LuL. ZengL. ShiR. LeiA. Palladium-catalyzed electro-oxidative C–H amination toward the synthesis of pyrido[1,2-a]benzimidazoles with hydrogen evolution.ACS Catal.20201063828383110.1021/acscatal.0c00103
    [Google Scholar]
  163. LvS. HanX. WangJ.Y. ZhouM. WuY. MaL. NiuL. GaoW. ZhouJ. HuW. CuiY. ChenJ. Tunable Electrochemical C−N versus N−N bond formation of nitrogen-centered radicals enabled by dehydrogenative dearomatization: Biological applications.Angew. Chem. Int. Ed.20205928115831159010.1002/anie.202001510 32203637
    [Google Scholar]
  164. ZhaoH.B. ZhuangJ.L. XuH.C. Electrochemical synthesis of benzimidazoles via dehydrogenative cyclization of amidines.ChemSusChem20211471692169510.1002/cssc.202100254 33605037
    [Google Scholar]
  165. ZhaoH.B. HouZ.W. LiuZ.J. ZhouZ.F. SongJ. XuH.C. Amidinyl radical formation through anodic N-H bond cleavage and its application in aromatic C-H bond functionalization.Angew. Chem. Int. Ed.201756258759010.1002/anie.201610715 27936308
    [Google Scholar]
  166. SokolovA.A. SyroeshkinM.A. SolkanV.N. ShebuninaT.V. BegunovR.S. Mikhal’chenkoL.V. LeonovaM.Y. GultyaibV.P. Efficient electrochemical synthesis of pyrido[1,2-a]benzimidazoles.Bull. Acad. Sci. USSR, Div. Chem. Sci.201463237238010.1007/s11172‑014‑0440‑y
    [Google Scholar]
  167. DissanayakeD.M.M.M. VannucciA.K. Transition-metal-free and base-free electrosynthesis of 1H-substituted benzimidazoles.ACS Sustain. Chem. Eng.20186169069510.1021/acssuschemeng.7b03029
    [Google Scholar]
  168. CapobiancoA. CarusoT. PalombiL. Electrochemically induced N-alkylation of chiral 2-(methylsulfinyl) 1H-benzimidazole.Synth. Commun.201545151783179110.1080/00397911.2015.1044616
    [Google Scholar]
  169. ZhanX. GaoG. LiangY. LiF. LiuK. FanW. ZhangS. LiM.B. Electrochemical four-component aminochlorination tuned by benzimidazoles.Org. Chem. Front.202310133353336010.1039/D3QO00692A
    [Google Scholar]
  170. SunC.C. XuK. ZengC.C. Transition metal and base free electrochemical aza-Michael addition of aromatic aza-heterocycles or Ts-protected amines to α,β-unsaturated alkenes mediated by NaI.ACS Sustain. Chem. Eng.2019722255226110.1021/acssuschemeng.8b04934
    [Google Scholar]
  171. ChenZ. LiZ. LiS. QianG. SunY. Electrochemically mediated fluoroalkylation/cyclization of unactivated alkenes: Synthesis of polycyclic benzimidazoles containing a CF3 group.New J. Chem.20234724114651146910.1039/D3NJ01759A
    [Google Scholar]
  172. LvY. DaiJ.Y. ZhaoZ.X. LiuJ. LiZ.W. LuC.H. ZhangY.F. LiuW.D. LiJ.S. Electrochemical synthesis of 5-trifluoroethyl dihydrobenzimidazo[2,1-a] isoquinolines from pendent unactivated alkenes via radical relay.Tetrahedron Lett.202311915441010.1016/j.tetlet.2023.154410
    [Google Scholar]
  173. ZhangC. YuZ. DingY. ShiY. XieY. Metal-free electrochemistry promoted radical cascade cyclization to access CF3 -containing benzimidazo[2,1- a]isoquinolin-6(5 H)-ones.Org. Biomol. Chem.202321336715671810.1039/D3OB00854A 37462425
    [Google Scholar]
  174. AleksandrovA.A. GalkinT.G. El’chaninovM.M. PopovaO.V. Electrochemical synthesis of new 2-(2′-furyl)benzimidazole derivatives.Chem. Heterocycl. Compd.20013781040104110.1023/A:1012708222253
    [Google Scholar]
  175. GuedouarR. Mhiri KammounM. DerbelN. Mbogning FeudjioW. JeanneauE. Besbes-HentatiS. An electrochemical route to a tetracyclic dimer through the anodic oxidation of 3-(4-fluorophenyl)-2-methyl-[1,2a] benzimidazolo-1, 3, 5-triazin-4-thione.J. Electroanal. Chem. (Lausanne)202394311761110.1016/j.jelechem.2023.117611
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461329975240915171123
Loading
/content/journals/cgc/10.2174/0122133461329975240915171123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test