Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Concerns over environmental contamination have been raised by the use of non-biodegradable and non-renewable materials such as glass, plastics, and metals in packaging applications. With the goal of lessening the environmental impact of petroleum-based packaging materials, an extensive amount of research has been conducted to find alternative packaging materials. Due to their biodegradability, studies have shown that using bio-polymer-based materials can reduce the amount of packaging waste produced, which could partially address the issue of trash disposal. This review article is mainly focused on eco-friendly biodegradable material that can replace non-biodegradable pharmaceutical packaging material. These materials come from natural resources like proteins, carbohydrates, . that have negligible to no negative effects on the environment and organisms that depend on it. This article depicts how we can replace the existing non-biodegradable plastics with eco-friendly material as the use of pharmaceutical packaging material also plays a crucial role in the therapeutic performance of pharmaceutical products.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461339499240826080506
2024-08-29
2025-06-24
Loading full text...

Full text loading...

References

  1. DharmadhikariS. Eco-friendly packaging in supply chain.2012927
    [Google Scholar]
  2. SinghA. SharmaP. MalviyaR. Eco friendly pharmaceutical packaging material.World Appl. Sci. J.20111417031716
    [Google Scholar]
  3. KumarS. Applications of biodegradable pharmaceutical packaging materials: A review.Middle East J. Sci. Res.201212699706
    [Google Scholar]
  4. TharanathanR.N. Biodegradable films and composite coatings: Past, present and future.Trends Food Sci. Technol.2003143717810.1016/S0924‑2244(02)00280‑7
    [Google Scholar]
  5. MarshK. BugusuB. Food packaging--Roles, materials, and environmental issues.J. Food Sci.2007723R39R5510.1111/j.1750‑3841.2007.00301.x17995809
    [Google Scholar]
  6. YoussefA.M. AssemF.M. Abdel-AzizM.E. ElaaserM. IbrahimO.A. MahmoudM. Abd El-SalamM.H. Development of bionanocomposite materials and its use in coating of Ras cheese.Food Chem.201927046747510.1016/j.foodchem.2018.07.11430174073
    [Google Scholar]
  7. YoussefA. M. El‐SayedS. M. El‐SayedH. S. SalamaH. H. AssemF. M. Abd El-SalamM. H. Novel bionanocomposite materials used for packaging skimmed milk acid coagulated cheese (Karish).Int. J. Biol. Macromol.20181151002101110.1016/j.ijbiomac.2018.04.165.
    [Google Scholar]
  8. BumbudsanpharokeN. KoS. Nano-food packaging: An overview of market, migration research, and safety regulations.J. Food Sci.2015805R910R92310.1111/1750‑3841.1286125881665
    [Google Scholar]
  9. YoussefA.M. Polymer nanocomposites as a new trend for packaging applications.Polym. Plast. Technol. Eng.201352763566010.1080/03602559.2012.762673
    [Google Scholar]
  10. MoustafaH. YoussefA.M. DarwishN.A. Abou-KandilA.I. Eco-friendly polymer composites for green packaging: Future vision and challenges.Compos. Part B Eng.2019172162510.1016/j.compositesb.2019.05.048
    [Google Scholar]
  11. RiazU. AshrafS.M. Plant oil renewable-resource-based biodegradable blends as green alternatives in biopackaging.Int. J. Polym. Mater.201261322923910.1080/00914037.2011.574661
    [Google Scholar]
  12. NandniD. VohraK.K. MahajanR.K. Study of micellar and phase separation behavior of mixed systems of triblock polymers.J. Colloid Interface Sci.2009338242042710.1016/j.jcis.2009.06.03819616785
    [Google Scholar]
  13. DenisaC. PopaM. Trends on pharmaceutical packaging materials.Sci. Bull. (Beijing)201923
    [Google Scholar]
  14. ShahS. MatkawalaF. GargS. NighojkarS. NighojkarA. KumarA. Emerging trend of bio-plastics and its impact on society.Int. J. Biotechnol.20202411010.9734/bji/2020/v24i430107
    [Google Scholar]
  15. Mohd SabeeM. M. S. Uyen ThanhN. AhmadN. Abdul HamidZ. Plastics packaging for pharmaceutical products.Reference Module in Materials Science and Materials Engineering202110.1016/B978‑0‑12‑820352‑1.00088‑2.
    [Google Scholar]
  16. JenkeD. Evaluation of the chemical compatibility of plastic contact materials and pharmaceutical products; Safety considerations related to extractables and leachables.J. Pharm. Sci.200796102566258110.1002/jps.2098417701994
    [Google Scholar]
  17. IbrahimI.D. HamamY. SadikuE.R. NdambukiJ.M. KupolatiW.K. JamiruT. EzeA.A. SnymanJ. Need for sustainable packaging: An overview.Polymers (Basel)20221420443010.3390/polym1420443036298009
    [Google Scholar]
  18. JainA. Sustainability trends to drive pharmaceutical packaging market and materials.2022Available from: https://innovareacademics.in/blog/pharmaceutical-packaging-market-material/
  19. KobayashiM. Glass packaging properties and attributes.Reference Module in Food Science201610.1016/B978‑0‑08‑100596‑5.03191‑7
    [Google Scholar]
  20. AshiwajuB.I. OrikpeteO.F. FawoleA.A. AladeE.Y. OdogwuC. A step toward sustainability: A review of biodegradable packaging in the pharmaceutical industry.Matrix. Sci. Pharma.202373738410.4103/mtsp.mtsp_22_23
    [Google Scholar]
  21. VermaM.K. ShakyaS. KumarP. MadhaviJ. MurugaiyanJ. RaoM.V.R. Trends in packaging material for food products: historical background, current scenario, and future prospects.J. Food Sci. Technol.202158114069408210.1007/s13197‑021‑04964‑234538891
    [Google Scholar]
  22. CoelhoP. M. CoronaB. ten KloosterR. WorrellE. Sustainability of reusable packaging - Current situation and trends.Resour. Conserv. Recycl.2020610003710.1016/j.rcrx.2020.100037.
    [Google Scholar]
  23. MohamedS.A.A. El-SakhawyM. El-SakhawyM.A.M. Polysaccharides, protein and lipid -based natural edible films in food packaging: A review.Carbohydr. Polym.202023811617810.1016/j.carbpol.2020.11617832299560
    [Google Scholar]
  24. TorresF.G. TroncosoO.P. PisaniA. GattoF. BardiG. Natural polysaccharide nanomaterials: An overview of their immunological properties.Int. J. Mol. Sci.20192020509210.3390/ijms2020509231615111
    [Google Scholar]
  25. ChakrabortyI. SenI.K. MondalS. RoutD. BhanjaS.K. MaityG.N. MaityP. Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities.Biocatal. Agric. Biotechnol.20192210142510.1016/j.bcab.2019.101425
    [Google Scholar]
  26. NechaiA. KrvavychA. KonechnaR. Prospects for the use of plant materials in creating biodegradable eco-friendly packaging.IOP Conf. Ser. Earth Environ. Sci.2021915101200310.1088/1755‑1315/915/1/012003
    [Google Scholar]
  27. JoshiP. GuptaK. UniyalP. JanaA. BanerjeeA. KumarN. GhoshD. SrivastavaM. RayA. KhatriO.P. Cassava starch-derived aerogels as biodegradable packaging materials.Mater. Chem. Phys.202329612728210.1016/j.matchemphys.2022.127282
    [Google Scholar]
  28. DazaL.D. UmañaM. SimalS. VáquiroH.A. EimV.S. Non-conventional starch from cubio tuber (Tropaeolum tuberosum ): Physicochemical, structural, morphological, thermal characterization and the evaluation of its potential as a packaging material.Int. J. Biol. Macromol.202222195496410.1016/j.ijbiomac.2022.09.09236108747
    [Google Scholar]
  29. SahaT. HoqueM.E. MahbubT. Biopolymers for sustainable packaging in food, cosmetics, and pharmaceuticals.Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers Al-OqlaF.M. SapuanS.M. Elsevier202019721410.1016/B978‑0‑12‑819661‑8.00013‑5
    [Google Scholar]
  30. CinelliP. ColtelliM.B. SignoriF. MorgantiP. LazzeriA. Cosmetic packaging to save the environment: Future perspectives.Cosmetics2019622610.3390/cosmetics6020026.
    [Google Scholar]
  31. KlemmD. KramerF. MoritzS. LindströmT. AnkerforsM. GrayD. DorrisA. Nanocelluloses: A new family of nature-based materials.Angew. Chem. Int. Ed.201150245438546610.1002/anie.20100127321598362
    [Google Scholar]
  32. ElfalehI. AbbassiF. HabibiM. AhmadF. GuedriM. NasriM. GarnierC. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials.Results Eng.20231910127110.1016/j.rineng.2023.101271
    [Google Scholar]
  33. RandhawaA. DuttaS.D. GangulyK. PatilT.V. PatelD.K. LimK-T. A review of properties of nanocellulose, its synthesis, and potential in biomedical applications.Appl Sci2022202212709010.3390/app12147090.
    [Google Scholar]
  34. FernandesS.Q. MadhuranthakamC.M.R. Molecular dynamics simulation of a superhydrophobic cellulose derivative targeted for eco‐friendly packaging material.Macromol. Theory Simul.2021301200005610.1002/mats.202000056
    [Google Scholar]
  35. MouraM. MattosoL. ZucolottoV. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging.J. Food Eng.2012109520524
    [Google Scholar]
  36. RaoJ. LvZ. ChenG. HaoX. GuanY. PengF. Fabrication of flexible composite film based on xylan from pulping process for packaging application.Int. J. Biol. Macromol.202117328529210.1016/j.ijbiomac.2021.01.12833485889
    [Google Scholar]
  37. MellinasC. ValdésA. RamosM. BurgosN. GarrigósM.C. JiménezA. Active edible films: Current state and future trends.J. Appl. Polym. Sci.20161332app.4263110.1002/app.42631
    [Google Scholar]
  38. KhanA. RiahiZ. KimJ.T. RhimJ.W. Chitosan/gelatin-based multifunctional films integrated with sulfur-functionalized chitin for active packaging applications.Food Hydrocoll.202414910953710.1016/j.foodhyd.2023.109537
    [Google Scholar]
  39. BrizgaJ. HubacekK. FengK. The unintended side effects of bioplastics: carbon, land, and water footprints.One Earth202031455310.1016/j.oneear.2020.06.016
    [Google Scholar]
  40. IbrahimN.I. ShaharF.S. SultanM.T. ShahA.U. SafriS.N. Mat YazikM.H. Overview of bioplastic introduction and its applications in product packaging.Coatings20211111142310.3390/coatings11111423
    [Google Scholar]
  41. BreuerU. Book review: Microbial biodegradation: Genomics and molecular biology. By E. Díaz (Ed.).Eng. Life Sci.200881818210.1002/elsc.200890008.
    [Google Scholar]
  42. JimenezA. RuseckaiteR. Nano-biocomposites for food packaging.Green Energy and Technology20125039340810.1007/978‑1‑4471‑4108‑2_15
    [Google Scholar]
  43. AurasR. HarteB. SelkeS. An overview of polylactides as packaging materials.Macromol. Biosci.20044983586410.1002/mabi.20040004315468294
    [Google Scholar]
  44. BikiarisN.D. KoumentakouI. SamiotakiC. MeimaroglouD. VarytimidouD. KaratzaA. KalantzisZ. RoussouM. BikiarisR.D. PapageorgiouG.Z. Recent advances in the investigation of poly(lactic acid) (PLA) nanocomposites: Incorporation of various nanofillers and their properties and applications.Polymers2023155119610.3390/polym15051196.
    [Google Scholar]
  45. SinghaS. HedenqvistM.S. A review on barrier properties of poly(lactic acid)/clay nanocomposites.Polymers (Basel)2020125109510.3390/polym1205109532403371
    [Google Scholar]
  46. AliW. AliH. GillaniS. ZinckP. SouissiS. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: A review.Environ. Chem. Lett.20232131761178610.1007/s10311‑023‑01564‑8
    [Google Scholar]
  47. CrisafiF. ValentinoF. MicolucciF. DenaroR. From organic wastes and hydrocarbons pollutants to polyhydroxyalkanoates: Bioconversion by terrestrial and marine bacteria.Sustainability20221414824110.3390/su14148241.
    [Google Scholar]
  48. PoltronieriP. KumarP. Polyhydroxyalkanoates (PHAs) in industrial applications.Handbook of Ecomaterials201713010.1007/978‑3‑319‑48281‑1_70‑1.
    [Google Scholar]
  49. MuiruriJ.K. YeoJ.C.C. ZhuQ. YeE. LohX.J. LiZ. Poly(hydroxyalkanoates): Production, applications and end-of-life strategies–life cycle assessment nexus.ACS Sustain. Chem.& Eng.202210113387340610.1021/acssuschemeng.1c08631
    [Google Scholar]
  50. SinghA. SrivastavaV. Production of polyhydroxyalkanoates (PHA) by pseudomonas from waste products.Int. J. Health Sci.20226S3114501145910.53730/ijhs.v6nS3.8678
    [Google Scholar]
  51. ChenW. WangX. TaoQ. WangJ. ZhengZ. WangX. Lotus-like paper/paperboard packaging prepared with nano-modified overprint varnish.Appl. Surf. Sci.201326631932510.1016/j.apsusc.2012.12.018
    [Google Scholar]
  52. RhimJ.W. LeeJ.H. HongS.I. Increase in water resistance of paperboard by coating with poly(lactide).Packag. Technol. Sci.200720639340210.1002/pts.767
    [Google Scholar]
  53. LahtinenK. MaydannikP. JohanssonP. KääriäinenT. CameronD.C. KuusipaloJ. Utilisation of continuous atomic layer deposition process for barrier enhancement of extrusion-coated paper.Surf. Coat. Tech.2011205153916392210.1016/j.surfcoat.2011.02.009
    [Google Scholar]
  54. ColesR. Paper and paperboard innovations and developments for the packaging of food, beverages and other fast-moving consumer goods.Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods201318722010.1533/9780857098979.187
    [Google Scholar]
  55. RileyA. Paper and paperboard packaging.Packaging Technology201217823910.1533/9780857095701.2.178
    [Google Scholar]
  56. WalshH. KerryJ. Packaging of ready-to-serve and retail-ready meat, poultry and seafood products.2012PP. 40643610.1533/9780857095718.3.406
    [Google Scholar]
  57. Ortega-ToroR. Collazo-BigliardiS. TalensP. ChiraltA. Influence of citric acid on the properties and stability of starch‐polycaprolactone based films.J. Appl. Polym. Sci.20161332app.4222010.1002/app.42220
    [Google Scholar]
  58. ThulasisinghA. KumarK. YamunadeviB. PoojithaN. SuhailMadharHanifS. KannaiyanS. Biodegradable packaging materials.Polym. Bull.20227974467449610.1007/s00289‑021‑03767‑x
    [Google Scholar]
  59. YoussefA.M. Abdel-AzizM.S. El-SayedS.M. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus subtilis as packaging materials.Int. J. Biol. Macromol.20146918519110.1016/j.ijbiomac.2014.05.04724875320
    [Google Scholar]
  60. YoussefA.M. YoussefM. AyadD.M. SarhanA.A. A novel approach to prepare poly(vinyl acetate)/ag nanocomposite for effective antimicrobial coating applications.Polym. Plast. Technol. Eng.201554161735174210.1080/03602559.2015.1050517
    [Google Scholar]
  61. MohammadiS. BabaeiA. Poly (vinyl alcohol)/chitosan/polyethylene glycol-assembled graphene oxide bio-nanocomposites as a prosperous candidate for biomedical applications and drug/food packaging industry.Int. J. Biol. Macromol.202220152853810.1016/j.ijbiomac.2022.01.08635051501
    [Google Scholar]
  62. NasrollahiM. BeynaghiA. MohamadyF.M. MozafariM. Plastic packaging, recycling, and sustainable development.Responsible Consumption and Production Leal FilhoW. AzulA.M. BrandlilL. özuyarP.G. WallT. Springer202010.1007/978‑3‑319‑95726‑5_110.
    [Google Scholar]
  63. VersinoF. LópezO. GarcíaM. Green biocomposites for packaging applications.Biocomposite Materials202113010.1007/978‑981‑33‑4091‑6_1
    [Google Scholar]
  64. EtxabideA. UrangaJ. GuerreroP. de la CabaK. Development of active gelatin films by means of valorisation of food processing waste: A review.Food Hydrocoll.20176819219810.1016/j.foodhyd.2016.08.021
    [Google Scholar]
  65. BassaniF. RodriguesC. FreireF. Life cycle assessment of pharmaceutical packaging addressing end-of-life alternatives.Waste Manag.202417511110.1016/j.wasman.2023.12.02238103434
    [Google Scholar]
  66. PatelP.N. ParmarK.G. NakumA.N. PatelM.N. PatelP.R. PatelV.R. SenD.J. Biodegradable polymers: An ecofriendly approach in newer millenium.Asian J. Biomed. Pharm. Sci.2011132339
    [Google Scholar]
  67. GuoC. GuoH. Progress in the degradability of biodegradable film materials for packaging.Membranes (Basel)202212550010.3390/membranes12050500
    [Google Scholar]
  68. BakbolatB. DaulbayevC. SultanovF. BeissenovR. UmirzakovA. MerekeA. BekbaevA. ChuprakovI. Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: A review.Nanomaterials (Basel)2020109179010.3390/nano1009179032916899
    [Google Scholar]
  69. LiJ. DengJ. LiangL. Application progress of degradable plastics in packaging products.Plasma Sci. Technol.2021499498
    [Google Scholar]
  70. ShiL. ZhuJ. ShiJ. ZhaoX. Classification and identification of degradable plastic products: Current situation and prospect.Plast. Addit. Compd.2021315
    [Google Scholar]
  71. ChenZ. ZhaoW. XingR. XieS. YangX. CuiP. LüJ. LiaoH. YuZ. WangS. ZhouS. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology.J. Hazard. Mater.202038412127110.1016/j.jhazmat.2019.12127131611021
    [Google Scholar]
  72. AmmalaA. BatemanS. DeanK. PetinakisE. SangwanP. WongS. YuanQ. YuL. PatrickC. LeongK.H. An overview of degradable and biodegradable polyolefins.Prog. Polym. Sci.20113681015104910.1016/j.progpolymsci.2010.12.002
    [Google Scholar]
  73. ChielliniE. CortiA. D’AntoneS. BaciuR. Oxo-biodegradable carbon backbone polymers – Oxidative degradation of polyethylene under accelerated test conditions.Polym. Degrad. Stabil.200691112739274710.1016/j.polymdegradstab.2006.03.022
    [Google Scholar]
  74. MadhuG. BhuniaH. BajpaiP.K. NandoG.B. Physico-mechanical properties and biodegradation of oxo-degradable HDPE/PLA blends.Polym. Sci. Ser. A2016581577510.1134/S0965545X16010077
    [Google Scholar]
  75. LiuL. XuM. YeY. ZhangB. On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts.Sci. Total Environ.2022806Pt 315131210.1016/j.scitotenv.2021.15131234743885
    [Google Scholar]
  76. LucasN. BienaimeC. BelloyC. QueneudecM. SilvestreF. Nava-SaucedoJ.E. Polymer biodegradation: Mechanisms and estimation techniques – A review.Chemosphere200873442944210.1016/j.chemosphere.2008.06.06418723204
    [Google Scholar]
  77. LiuB. ZhangJ. GuoH. Research progress of polyvinyl alcohol water-resistant film materials.Membranes202212334710.3390/membranes12030347.
    [Google Scholar]
  78. SainiI. SharmaA. DhimanR. AggarwalS. RamS. SharmaP.K. Grafted SiC nanocrystals: For enhanced optical, electrical and mechanical properties of polyvinyl alcohol.J. Alloys Compd.201771417218010.1016/j.jallcom.2017.04.183
    [Google Scholar]
  79. PandaP.K. YangJ.M. ChangY.H. Water-induced shape memory behavior of poly (vinyl alcohol) and p-coumaric acid-modified water-soluble chitosan blended membrane.Carbohydr. Polym.202125711763310.1016/j.carbpol.2021.11763333541659
    [Google Scholar]
  80. YangJ.M. PandaP.K. JieC.J. DashP. ChangY.H. Poly (vinyl alcohol)/chitosan/sodium alginate composite blended membrane: Preparation, characterization, and water‐induced shape memory phenomenon.Polym. Eng. Sci.20226251526153710.1002/pen.25941
    [Google Scholar]
  81. AbdullahZ.W. DongY. DaviesI.J. BarbhuiyaS. PVA, PVA blends, and their nanocomposites for biodegradable packaging application.Polym. Plast. Technol. Eng.201756121307134410.1080/03602559.2016.1275684
    [Google Scholar]
  82. TeodorescuM. BerceaM. MorariuS. Biomaterials of poly(vinyl alcohol) and natural polymers.Polym. Rev. (Phila. Pa.)201858224728710.1080/15583724.2017.1403928
    [Google Scholar]
  83. LvS. LiuC. LiH. ZhangY. Assessment of structural modification and time-dependent behavior of poly (lactic acid) based composites upon hydrolytic degradation.Eur. Polym. J.202216611105810.1016/j.eurpolymj.2022.111058
    [Google Scholar]
  84. Amaral-ZettlerL.A. ZettlerE.R. MincerT.J. Ecology of the plastisphere.Nat. Rev. Microbiol.202018313915110.1038/s41579‑019‑0308‑031937947
    [Google Scholar]
  85. Zeenat ElahiA. BukhariD.A. ShamimS. RehmanA. Plastics degradation by microbes: A sustainable approach.J. King Saud Univ. Sci.202133610153810.1016/j.jksus.2021.101538
    [Google Scholar]
  86. KyrikouI. BriassoulisD. Biodegradation of agricultural plastic films: A critical review.J. Polym. Environ.200715212515010.1007/s10924‑007‑0053‑8
    [Google Scholar]
  87. ReddyR. L. ReddyV. GuptaG. Study of bio-plastics as green & sustainable alternative to plastics.Mater. Sci. Environ. Sci.2013357681
    [Google Scholar]
  88. EdaesF.S. de SouzaC.B. Conventional plastics’ harmful effects and biological and molecular strategies for biodegradable plastics’ production.Curr. Biotechnol.20219424225410.2174/2211550109999201113102157
    [Google Scholar]
  89. SongY. QiuR. HuJ. LiX. ZhangX. ChenY. WuW.M. HeD. Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica .Sci. Total Environ.202074614128910.1016/j.scitotenv.2020.14128932745868
    [Google Scholar]
  90. ZhangJ. GaoD. LiQ. ZhaoY. LiL. LinH. BiQ. ZhaoY. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella .Sci. Total Environ.202070413593110.1016/j.scitotenv.2019.13593131830656
    [Google Scholar]
  91. KhoironiA. AnggoroS. SudarnoS. Evaluation of the interaction among microalgae Spirulina sp.J. Ecol. Eng.201920616117310.12911/22998993/108637
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461339499240826080506
Loading
/content/journals/cgc/10.2174/0122133461339499240826080506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test