Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

GAC is one of the crucial emerging platforms in the analytical field focusing on the environmental impact of various extraction procedures. There are various principles on which GAC is based, including the use of DESs, a miniaturized platform for extraction, the integration of extraction steps, operator safety, reducing energy consumption, and minimizing solvent wastage. Pesticide residue analysis is one of the most important factors affecting food safety and the health of society. Pesticides were used extensively to improve the production of crops and other food stuff, which is essential to meet the demands of society. This led to an accumulation of pesticide residues in various agricultural products, including fruits and vegetables, which are important to be detected and quantified. Different techniques were employed for extraction or sample preparation prior to detection by instrumental techniques, including GC, HPLC, and hyphenated techniques. Various software programs are available online to evaluate the greenness of any developed method, including GAPI, NEMI, Agree, AMVI, . This manuscript describes the impact of various extraction procedures like SPE, LLE, and TFME on sensitivity and extraction efficiency, along with the greenness evaluation used in the detection of pesticide residue in fruits and vegetables using Agree software.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461324692240816093449
2024-08-26
2025-05-05
Loading full text...

Full text loading...

References

  1. AnastasP. KazlauskasR. SheldrakeG. Ten years of green chemistry at the Gordon Research Conferences: Frontiers of science.Green Chem.20068867767810.1039/b608918f
    [Google Scholar]
  2. KayaS.I. CetinkayaA. OzkanS.A. Green analytical chemistry approaches on environmental analysis.Trends in Environmental Analytical Chemistry202233e0015710.1016/j.teac.2022.e00157
    [Google Scholar]
  3. Napolitano-TabaresP.I. Negrín-SantamaríaI. Gutiérrez-SerpaA. PinoV. Recent efforts to increase greenness in chromatography.Curr. Opin. Green Sustain. Chem.20213210053610.1016/j.cogsc.2021.100536
    [Google Scholar]
  4. KowtharapuL.P. KatariN.K. MuchakayalaS.K. MarisettiV.M. Green metric tools for analytical methods assessment critical review, case studies and crucify.Trends Analyt. Chem.202316611719610.1016/j.trac.2023.117196
    [Google Scholar]
  5. KeithL. H. BrassH. J. SullivanD. J. BoianiJ. A. AlbenK. T. An introduction to the national environmental methods index.Environ. Sci. Technol.2005398173A176A10.1021/es053241l
    [Google Scholar]
  6. Van AkenK. StrekowskiL. PatinyL. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters.Beilstein J. Org. Chem.200621310.1186/1860‑5397‑2‑316542013
    [Google Scholar]
  7. RaynieD. DriverJ.L. Green assessment of chemical methods.13th Annual Green Chemistry and Engineering ConferenceUSA2009Available from: https://www.researchgate.net/publication/267357856_Green_Assessment_of_Chemical_Methods
    [Google Scholar]
  8. GaberY. TörnvallU. KumarM.A. Ali AminM. Hatti-KaulR. HPLC-EAT (Environmental Assessment Tool): A tool for profiling safety, health and environmental impacts of liquid chromatography methods.Green Chem.20111382021202510.1039/c0gc00667j
    [Google Scholar]
  9. HartmanR. HelmyR. Al-SayahM. WelchC.J. Analytical method volume intensity (AMVI): A green chemistry metric for HPLC methodology in the pharmaceutical industry.Green Chem.201113493493910.1039/c0gc00524j
    [Google Scholar]
  10. Płotka-WasylkaJ. A new tool for the evaluation of the analytical procedure: Green analytical procedure index.Talanta201818120420910.1016/j.talanta.2018.01.01329426502
    [Google Scholar]
  11. ShenY. SomasundaranP. Greenness index evaluation of fracking chemicals using SDS (safety data sheet) information.J. Environ. Chem. Eng.20197210298910.1016/j.jece.2019.102989
    [Google Scholar]
  12. HicksM.B. FarrellW. AurigemmaC. LehmannL. WeiselL. NadeauK. LeeH. MoraffC. WongM. HuangY. FergusonP. Making the move towards modernized greener separations: introduction of the analytical method greenness score (AMGS) calculator.Green Chem.20192171816182610.1039/C8GC03875A
    [Google Scholar]
  13. Pena-PereiraF. WojnowskiW. TobiszewskiM. Agree—analytical greenness metric approach and software.Anal. Chem.20209214100761008210.1021/acs.analchem.0c0188732538619
    [Google Scholar]
  14. KannaiahK.P. SugumaranA. ChanduluruH.K. RathinamS. Environmental impact of greenness assessment tools in liquid chromatography – A review.Microchem. J.202117010668510.1016/j.microc.2021.106685
    [Google Scholar]
  15. Castagna Cezimbra WeisG. De Oliveira AlvesA. AssmannC.E. Da Silva Rosa BonadimanB. CostabeberI.H. Pesticides: classifications, exposure and risks to human health.Arch. Biosci. Health201911294410.18593/abh.17454
    [Google Scholar]
  16. NayakP. SolankiH. Pesticides and Indian agriculture—A review.Int. J. Res.20219525026310.29121/granthaalayah.v9.i5.2021.3930
    [Google Scholar]
  17. KaurR. MaviG.K. RaghavS. KhanI. Pesticides classification and its impact on environment.Int. J. Curr. Microbiol. Appl. Sci.2019831889189710.20546/ijcmas.2019.803.224
    [Google Scholar]
  18. MahmoodI. ImadiS. R. ShazadiK. GulA. HakeemK. R. Effects of pesticides on environment. Plant, Soil and Microbes Volume 1: Implications in Crop ScienceSpringer International201610.1007/978‑3‑319‑27455‑3_13.
    [Google Scholar]
  19. SharmaN. SinghviR. Effects of chemical fertilizers and pesticides on human health and environment: A review.Int. J. Agric. Environ. Biotechnol.201710667568010.5958/2230‑732X.2017.00083.3
    [Google Scholar]
  20. AliS. UllahM.I. SajjadA. ShakeelQ. HussainA. Environmental and health effects of pesticide residues.Sustainable Agriculture Reviews 482021231133610.1007/978‑3‑030‑54719‑6_8.
    [Google Scholar]
  21. GuptaP. K. Concepts and Applications in Veterinary Toxicology: An Interactive Guide.201910.1007/978‑3‑030‑22250‑5.
    [Google Scholar]
  22. YeX. DongF. LeiX. Microbial resources and ecology - Microbial degradation of pesticides.Nat. Resour. Conserv. Res20181110.24294/nrcr.v1i1.242.
    [Google Scholar]
  23. WuL. ChládkováB. LechtenfeldO.J. LianS. SchindelkaJ. HerrmannH. RichnowH.H. Characterizing chemical transformation of organophosphorus compounds by 13C and 2H stable isotope analysis.Sci. Total Environ.2018615202810.1016/j.scitotenv.2017.09.23328961438
    [Google Scholar]
  24. MichelC. BaranN. AndréL. CharronM. JoulianC. Side effects of pesticides and metabolites in groundwater: Impact on denitrification.Front. Microbiol.20211266272710.3389/fmicb.2021.66272734054765
    [Google Scholar]
  25. LiuT. HuangJ. HuangZ. LuoQ. WuH. MengY. HeC. LiH. Full-spectrum photocatalytic treatment and in situ upcycling of organophosphorus wastewater enabled by biomimetic urchin-like Bi2S3/CdS.Chem. Eng. J.202448615020910.1016/j.cej.2024.150209
    [Google Scholar]
  26. HuangZ. HuangJ. LiuT. WenY. WuH. YangS. LiH. Full carbon upcycling of organophosphorus wastewater enabled by interface photolysis.Chem. Eng. J.202448514998710.1016/j.cej.2024.149987
    [Google Scholar]
  27. LehotayS.J. CookJ.M. Sampling and sample processing in pesticide residue analysis.J. Agric. Food Chem.201563184395440410.1021/jf505698525677085
    [Google Scholar]
  28. AlyA. GóreckiT. Green approaches to sample preparation based on extraction techniques.Molecules2020257171910.3390/molecules2507171932283595
    [Google Scholar]
  29. JiaM. eZ. ZhaiF. BingX. Rapid multi-residue detection methods for pesticides and veterinary drugs.Molecules20202516359010.3390/molecules2516359032784605
    [Google Scholar]
  30. KanuA.B. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review.J. Chromatogr. A2021165446244410.1016/j.chroma.2021.46244434380070
    [Google Scholar]
  31. JanickaP. Płotka-WasylkaJ. JatkowskaN. ChabowskaA. FaresM.Y. AndruchV. KaykhaiiM. GębickiJ. Trends in the new generation of green solvents in extraction processes.Curr. Opin. Green Sustain. Chem.20223710067010.1016/j.cogsc.2022.100670
    [Google Scholar]
  32. BuszewskiB. SzultkaM. Past, present, and future of solid phase extraction: A review.Crit. Rev. Anal. Chem.201242319821310.1080/07373937.2011.645413
    [Google Scholar]
  33. PicóY. Ultrasound-assisted extraction for food and environmental samples.Trends Analyt. Chem.201343849910.1016/j.trac.2012.12.005
    [Google Scholar]
  34. PerestreloR. SilvaP. Porto-FigueiraP. PereiraJ.A.M. SilvaC. MedinaS. CâmaraJ.S. QuEChERS - Fundamentals, relevant improvements, applications and future trends.Anal. Chim. Acta2019107012810.1016/j.aca.2019.02.03631103162
    [Google Scholar]
  35. Min ShinJ. ChoiS.-J. hey ParkY. KwakB. MoonS.H. YoonY.T. JoS.A. YiH. Jung KimS. ParkS.K. Sung ParkJ. Comparison of QuEChERS and Liquid–Liquid extraction methods for the simultaneous analysis of pesticide residues using LC-MS/MS.Food Control202214110920210.1016/j.foodcont.2022.109202.
    [Google Scholar]
  36. YaminiY. RezazadehM. SeidiS. Liquid-phase microextraction – The different principles and configurations.Trends Analyt. Chem.201911226427210.1016/j.trac.2018.06.010
    [Google Scholar]
  37. MajekodunmiS.O. A review on centrifugation in the pharmaceutical industry.Am. J. Biomed. Eng.2015526778
    [Google Scholar]
  38. OlcerY.A. TasconM. ErogluA.E. BoyacıE. Thin film microextraction: Towards faster and more sensitive microextraction.Trends Analyt. Chem.20191139310110.1016/j.trac.2019.01.022
    [Google Scholar]
  39. González-CurbeloM.Á. Herrera-HerreraA.V. Ravelo-PérezL.M. Hernández-BorgesJ. Sample-preparation methods for pesticide-residue analysis in cereals and derivatives.Trends Analyt. Chem.201238325110.1016/j.trac.2012.04.010
    [Google Scholar]
  40. LehotayS.J. HanL. SapozhnikovaY. Use of a quality control approach to assess measurement uncertainty in the comparison of sample processing techniques in the analysis of pesticide residues in fruits and vegetables.Anal. Bioanal. Chem.2018410225465547910.1007/s00216‑018‑0905‑129411087
    [Google Scholar]
  41. ZanellaR. PrestesO.D. BernardiG. AdaimeM.B. Advanced sample preparation techniques for pesticide residues determination by HRMS analysis.Applications in High Resolution Mass Spectrometry.Elsevier201713116410.1016/B978‑0‑12‑809464‑8.00005‑1
    [Google Scholar]
  42. ShiraniM. AslaniA. AnsariF. ParandiE. NodehH.R. JahanmardE. Zirconium oxide/titanium oxide nanorod decorated nickel foam as an efficient sorbent in syringe filter based solid-phase extraction of pesticides in some vegetables.Microchem. J.202318910850710.1016/j.microc.2023.108507
    [Google Scholar]
  43. SenosyI.A. LuZ.H. ZhouD.D. AbdelrahmanT.M. ChenM. ZhuangL.Y. LiuX. CaoY.W. LiJ.H. Hua YangZ. Construction of a magnetic solid-phase extraction method for the analysis of azole pesticides residue in medicinal plants.Food Chem.202238613274310.1016/j.foodchem.2022.13274335364494
    [Google Scholar]
  44. GuoX. YangM. WangC. NieS. CuiS.W. GuoQ. Acetyl-glucomannan from Dendrobium officinale: Structural modification and immunomodulatory activities.Front. Nutr.20229101696110.3389/fnut.2022.101696136245489
    [Google Scholar]
  45. ChenY. ZhuS.C. ZhenX.T. ShiM.Z. YuY.L. CaoJ. ZhengH. YeL.H. Miniaturized solid phase extraction of multi-pesticide residues in food supplement using plant sorbent by microwave-induced activated carbons.Microchem. J.202117110681410.1016/j.microc.2021.106814
    [Google Scholar]
  46. ZhaoJ. MaoX. ZhangQ. XiaoW. YanA. HuJ. JiangS. LiH. WangY. A convenient and effective method for determining organophosphorus pesticides in citrus fruits based on a novel dispersive solid phase extraction using UiO-66/Alg bead as the sorbent.Food Chem.202443813799110.1016/j.foodchem.2023.13799137980869
    [Google Scholar]
  47. OelligC. SchwackW. Planar solid phase extraction clean-up and microliter-flow injection analysis–time-of-flight mass spectrometry for multi-residue screening of pesticides in food.J. Chromatogr. A2014135111110.1016/j.chroma.2014.05.03224877980
    [Google Scholar]
  48. LiuZ. WangJ. WangZ. XuH. DiS. ZhaoH. QiP. WangX. Development of magnetic solid phase extraction using magnetic amphiphilic polymer for sensitive analysis of multi-pesticides residue in honey.J. Chromatogr. A2022166446278910.1016/j.chroma.2021.46278935026602
    [Google Scholar]
  49. KawH.Y. JinX. LiuY. CaiL. ZhaoX. WangJ. ZhouJ.L. HeM. LiD. Gas-liquid microextraction coupled with magnetic-assisted dispersive solid-phase extraction clean-up for multi-residue pesticide analysis in fatty foods of animal origin.Lebensm. Wiss. Technol.202113711044810.1016/j.lwt.2020.110448
    [Google Scholar]
  50. ZhaoJ. MengZ. ZhaoZ. ZhaoL. Ultrasound-assisted deep eutectic solvent as green and efficient media combined with functionalized magnetic multi-walled carbon nanotubes as solid-phase extraction to determine pesticide residues in food products.Food Chem.202031012586310.1016/j.foodchem.2019.12586331835214
    [Google Scholar]
  51. LiuG. TianM. LuM. ShiW. LiL. GaoY. LiT. XuD. Preparation of magnetic MOFs for use as a solid-phase extraction absorbent for rapid adsorption of triazole pesticide residues in fruits juices and vegetables.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021116612250010.1016/j.jchromb.2020.12250033578273
    [Google Scholar]
  52. Erbaşİ. Deniz ÇiftçiT. PelitF. Magnetic dispersive micro solid phase extraction method by Fe3O4/Ni/NixB magnetic nanoparticles for determination of endocrine disruptor pesticides.Microchem. J.202319110890910.1016/j.microc.2023.108909
    [Google Scholar]
  53. Bakhshizadeh AghdamM. FarajzadehM.A. Afshar MogaddamM.R. Facile preparation of carbonized cellulose nanoparticles and their application for the dispersive solid phase extraction prior to dispersive liquid–liquid microextraction of pesticide residues from vegetable and fruit juices.J. Food Compos. Anal.202211010452710.1016/j.jfca.2022.104527
    [Google Scholar]
  54. FurukawaH. GándaraF. ZhangY.B. JiangJ. QueenW.L. HudsonM.R. YaghiO.M. Water adsorption in porous metal-organic frameworks and related materials.J. Am. Chem. Soc.2014136114369438110.1021/ja500330a24588307
    [Google Scholar]
  55. PezhhanfarS. FarajzadehM.A. Hosseini-YazdiS.A. MogaddamM.R.A. Exhaustive extraction of pesticides through MOF-801-oriented dispersive micro solid phase extraction coupled with gas-assisted evaporation.J. Food Compos. Anal.202312310557810.1016/j.jfca.2023.105578
    [Google Scholar]
  56. AgoK.A. KitteS.A. GureA. Determination of organochlorine pesticides from juice samples using magnetic biochar-based dispersive micro-solid phase extraction in combination with dispersive liquid-liquid microextraction.Emerg. Contam.202410110028310.1016/j.emcon.2023.100283
    [Google Scholar]
  57. ShiY. JinH.F. ShiM.Z. CaoJ. YeL.H. Carbon black-assisted miniaturized solid-phase extraction of carbamate residues from ginger by supercritical fluid chromatography combined with ion mobility quadrupole time-of-flight mass spectrometry.Microchem. J.202319410933510.1016/j.microc.2023.109335
    [Google Scholar]
  58. KorraniZ.S. KhaliliE. KamyabH. Wan IbrahimW.A. HashimH. A new solid phase extraction sorbent developed based on cyanopropyl functionalized silica nanoparticles for organophosphorus pesticides determination.Environ. Res.2023238Pt 211716710.1016/j.envres.2023.11716737722580
    [Google Scholar]
  59. SereshtiH. AbdolhosseiniG. SoltaniS. SadatfarajiH. KaramiS. RashidiN.H. A green ternary polymeric deep eutectic solvent used in dispersive liquid-liquid microextraction technique for isolation of multiclass pesticides in fruit juice samples.J. Food Compos. Anal.202312410566310.1016/j.jfca.2023.105663
    [Google Scholar]
  60. NascimentoM.M. dos AnjosJ.P. NascimentoM.L. Assis FelixC.S. da RochaG.O. de AndradeJ.B. Development of a green liquid-phase microextraction procedure using a customized device for the comprehensive determination of legacy and current pesticides in distinct types of wine samples.Talanta2024266Pt 112491410.1016/j.talanta.2023.12491437524042
    [Google Scholar]
  61. FarajzadehM.A. KiavarL. PezhhanfarS. Development of a method based on dispersive liquid–liquid microextraction followed by partial vaporization of the extract for ultra–preconcentration of some pesticide residues in fruit juices.J. Chromatogr. A2021165346242710.1016/j.chroma.2021.46242734332315
    [Google Scholar]
  62. TesfayeB. GureA. AsereT.G. MololeG.J. Deep eutectic solvent-based dispersive liquid–liquid microextraction for determination of organochlorine pesticides in water and apple juice samples.Microchem. J.202319510942810.1016/j.microc.2023.109428
    [Google Scholar]
  63. SoltaniS. SereshtiH. NouriN. Deep eutectic solvent-based clean-up/vortex-assisted emulsification liquid-liquid microextraction: Application for multi-residue analysis of 16 pesticides in olive oils.Talanta202122512198310.1016/j.talanta.2020.12198333592731
    [Google Scholar]
  64. NematiM. FarajzadehM.A. MohebbiA. KhodadadeianF. Afshar MogaddamM.R. Development of a stir bar sorptive extraction method coupled to solidification of floating droplets dispersive liquid–liquid microextraction based on deep eutectic solvents for the extraction of acidic pesticides from tomato samples.J. Sep. Sci.20204361119112710.1002/jssc.20190100031876075
    [Google Scholar]
  65. NematiM. FarajzadehM.A. MogaddamM.R.A. MohebbiA. AzimiA.R. FattahiN. TuzenM. Development of a gas–controlled deep eutectic solvent–based evaporation–assisted dispersive liquid–liquid microextraction approach for the extraction of pyrethroid pesticides from fruit juices.Microchem. J.202217510719610.1016/j.microc.2022.107196
    [Google Scholar]
  66. SereshtiH. SerajM. SoltaniS. Rashidi NodehH. Hossein Shojaee, AliAM. TaghizadehM. Development of a sustainable dispersive liquid–liquid microextraction based on novel hydrophobic and hydrophilic natural deep eutectic solvents for the analysis of multiclass pesticides in water.Microchem. J.202217510722610.1016/j.microc.2022.107226
    [Google Scholar]
  67. HeidariH. Ghanbari-RadS. HabibiE. Optimization deep eutectic solvent-based ultrasound-assisted liquid-liquid microextraction by using the desirability function approach for extraction and preconcentration of organophosphorus pesticides from fruit juice samples.J. Food Compos. Anal.20208710338910.1016/j.jfca.2019.103389
    [Google Scholar]
  68. IslamS. HossainM.S. NaharN. MosihuzzamM. MamunM.I.R. Application of high performance liquid chromatography to the analysis of pesticide residues in eggplants.J. Appl. Sci. (Faisalabad)20099597397710.3923/jas.2009.973.977
    [Google Scholar]
  69. Abdullah AlFarisN. Zaidan ALTamimiJ. ALOthmanZ.A. WabaidurS.M. GhafarA.A. Saleh AldayelT. Development of a sensitive liquid-liquid extraction and ultra-performance liquid chromatography-tandem mass spectrometry method for the analysis of carbaryl residues in fresh vegetables sold in Riyadh.J. King Saud Univ. Sci.20203242414241810.1016/j.jksus.2020.03.030
    [Google Scholar]
  70. JuZ. FanJ. MengZ. LuR. GaoH. ZhouW. A high-throughput semi-automated dispersive liquid–liquid microextraction based on deep eutectic solvent for the determination of neonicotinoid pesticides in edible oils.Microchem. J.202318510819310.1016/j.microc.2022.108193
    [Google Scholar]
  71. JouybanA. FarajzadehM.A. Afshar MogaddamM.R. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples.Talanta202020612016910.1016/j.talanta.2019.12016931514834
    [Google Scholar]
  72. ElencovanV. JosephJ. YahayaN. Abdul SamadN. RaoovM. LimV. ZainN.N.M. Exploring a novel deep eutectic solvents combined with vortex assisted dispersive liquid–liquid microextraction and its toxicity for organophosphorus pesticides analysis from honey and fruit samples.Food Chem.202236813083510.1016/j.foodchem.2021.13083534416487
    [Google Scholar]
  73. CaiL. DongJ. WangY. ChenX. A review of developments and applications of thin‐film microextraction coupled to surface‐enhanced Raman scattering.Electrophoresis20194016-172041204910.1002/elps.20180053131127635
    [Google Scholar]
  74. MirnaghiF.S. HeinD. PawliszynJ. Thin-film microextraction coupled with mass spectrometry and liquid chromatography–mass spectrometry.Chromatographia20137619-201215122310.1007/s10337‑013‑2443‑5
    [Google Scholar]
  75. LiuZ. LiW. ZhuX. HuaR. WuX. XueJ. Combination of polyurethane and polymethyl methacrylate thin films as a microextraction sorbent for rapid adsorption and sensitive determination of neonicotinoid insecticides in fruit juice and tea by ultra high performance liquid chromatography with tandem mass spectrometry.J. Chromatogr. A2021165946264610.1016/j.chroma.2021.46264634735961
    [Google Scholar]
  76. WangC.H. MaX.X. WangC. WuQ.H. WangZ. Poly(vinylidene fluoride) membrane based thin film microextraction for enrichment of benzoylurea insecticides from water samples followed by their determination with HPLC.Chin. Chem. Lett.201425121625162910.1016/j.cclet.2014.06.018
    [Google Scholar]
  77. DarvishnejadF. RaoofJ.B. GhaniM. OjaniR. Keggin-type polyoxometalate embedded polyvinylidene fluoride for thin film microextraction of organophosphorus pesticides.Food Chem. X20231910085710.1016/j.fochx.2023.10085737780334
    [Google Scholar]
  78. GionfriddoE. BoyacıE. PawliszynJ. New generation of solid-phase microextraction coatings for complementary separation approaches: A step toward comprehensive metabolomics and multiresidue analyses in complex matrices.Anal. Chem.20178974046405410.1021/acs.analchem.6b0469028260369
    [Google Scholar]
  79. KahremanoğluK. AkpınarY. BoyaciE. Development of thin film microextraction method for the multi-residue analysis of selected pesticides.Adv Sampl Prep.2023610006110.1016/j.sampre.2023.100061
    [Google Scholar]
  80. AyaziZ. EkhteraeiM. PashayiS. Seyed AhmadianS.M. Zr-based metal–organic framework incorporated polystyrene nanocomposite as a novel sorbent for ultrasound assisted-thin film microextraction of organophosphorus pesticides from complex samples.Food Chem.202239313334310.1016/j.foodchem.2022.13334335661595
    [Google Scholar]
  81. AziziA. ShahhoseiniF. LangilleE.A. AkhoondiR. BottaroC.S. Micro-gel thin film molecularly imprinted polymer coating for extraction of organophosphorus pesticides from water and beverage samples.Anal. Chim. Acta2021118733913510.1016/j.aca.2021.33913534753563
    [Google Scholar]
  82. WojnowskiW. TobiszewskiM. Pena-PereiraF. PsillakisE. AGREEprep – Analytical greenness metric for sample preparation.Trends Analyt. Chem.202214911655310.1016/j.trac.2022.116553
    [Google Scholar]
  83. IbrahimA.E. MagedK. ElhenaweeM. El-HayS.S.A. Integrating micellar HPLC and green analytical chemistry tools in greenness assessment of five commonly co-formulated antidiabetic drugs.Sustain. Chem. Pharm.20233510119910.1016/j.scp.2023.101199
    [Google Scholar]
  84. SoysevenM. SezginB. ArliG. The development and validation of a novel, green, sustainable and eco-friendly HPLC-ELSD method approach for the simultaneous determination of seven artificial sweeteners in various food products: An assessment of the greenness profile of the developed method with an analytical eco-scale, NEMI, GAPI and AGREE.Microchem. J.202319310922510.1016/j.microc.2023.109225
    [Google Scholar]
  85. DarjiH. DedaniaZ. Simultaneous estimation of Azelnidipine and Metoprolol succinate with greenness assessment using HPLC and UV-spectrophotometric methods.Green Anal. Chem.2023710007910.1016/j.greeac.2023.100079
    [Google Scholar]
  86. MoemaD. MakwakwaT.A. GebreyohannesB.E. DubeS. NindiM.M. Hollow fiber liquid phase microextraction of fluoroquinolones in chicken livers followed by high pressure liquid chromatography: Greenness assessment using National Environmental Methods Index Label (NEMI), green analytical procedure index (GAPI), Analytical GREEnness metric (AGREE), and Eco Scale.J. Food Compos. Anal.202311710513110.1016/j.jfca.2023.105131
    [Google Scholar]
  87. FalihMS. AbbasRF. MahdiNI. AboodNK. HassanMJM. FIA- spectrophotometric method for the determination of amoxicillin in pharmaceuticals; application of AES, GAPI, and AGREE greenness assessment tools.MethodsX20231110243710.1016/j.mex.2023.102437.
    [Google Scholar]
  88. HafezH.M. El DeebS. MahmoudS.M. IsmailI.R. Ali KamilR. Salman AbdelwahedA. Ehab IbrahimA. Micellar Organic-solvent free HPLC design of experiment for the determination of Ertapenem and meropenem; Assessment using GAPI, AGREE and analytical Eco-scale models.Microchem. J.202318510826210.1016/j.microc.2022.108262
    [Google Scholar]
  89. González-MartínR. Gutiérrez-SerpaA. PinoV. SajidM. A tool to assess analytical sample preparation procedures: Sample preparation metric of sustainability.J. Chromatogr. A2023170746429110.1016/j.chroma.2023.46429137582319
    [Google Scholar]
  90. ImamM. S. AbdelrahmanM. M. How environmentally friendly is the analytical process? A paradigm overview of ten greenness assessment metric approaches for analytical methods.rends Environ. Anal. Chem.2023386e0020210.1016/j.teac.2023.e00202.
    [Google Scholar]
  91. PallaviM.S. Harischandra NaikR. PavankumarK. Ratnamma Nandini ShwethaA. NaveenkumarP. ParamasivamM. UdaykumarN.R. PrabhurajA. BheemannaM. Determination of 73 multi-class pesticides in okra (Abelmoschus esculentus L.) fruits using LC–MS/MS and GC–MS/MS and estimation of analytical uncertainty of measurement.Food Chem. X20231910081410.1016/j.fochx.2023.10081437780267
    [Google Scholar]
  92. WangS. LiM. LiX. LiX. LiX. LiS. ZhangQ. LiH. A functionalized carbon nanotube nanohybrids-based QuEChERS method for detection of pesticide residues in vegetables and fruits.J. Chromatogr. A2020163146152610.1016/j.chroma.2020.46152633002705
    [Google Scholar]
  93. RumanU.E. ZubairM. ZeeshanM.H. Analytical assessment of modulated electric flux triggered degradation of chlorfenapyr and deltamethrin pesticides in guava fruits.Anal. Biochem.202367011514810.1016/j.ab.2023.11514837019252
    [Google Scholar]
  94. HanotV. GoscinnyS. DeridderM. A simple multi-residue method for the determination of pesticides in fruits and vegetables using a methanolic extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry: Optimization and extension of scope.J. Chromatogr. A20151384536610.1016/j.chroma.2015.01.04025660522
    [Google Scholar]
  95. Abdulra’ufL.B. TanG.H. Chemometric approach to the optimization of HS-SPME/GC–MS for the determination of multiclass pesticide residues in fruits and vegetables.Food Chem.201517726727310.1016/j.foodchem.2015.01.03125660885
    [Google Scholar]
  96. SahuB. KurreyR. KhalkhoB.R. DebM.K. α-Cyclodextrin functionalized silver nanoparticles as colorimetric sensor for micro extraction and trace level detection of chlorpyrifos pesticide in fruits and vegetables.Colloids Surf. A Physicochem. Eng. Asp.202265412994710.1016/j.colsurfa.2022.129947
    [Google Scholar]
  97. LiuM. LiX. HanL. WangQ. KongX. XuM. WangK. XuH. ShenY. GaoG. NieJ. Determination and risk assessment of 31 pesticide residues in apples from China’s major production regions.J. Food Compos. Anal.202311810518810.1016/j.jfca.2023.105188
    [Google Scholar]
  98. DuY. WangQ. YangG. HanF. Determination of 43 pesticide residues in intact grape berries (Vitis Vinifera L.) by using an ultrasound-assisted acetonitrile extraction method followed by LC–MS/MS.Food Control202214010912310.1016/j.foodcont.2022.109123
    [Google Scholar]
  99. AfifyA.S. AbdallahM. IsmailS.A. AtaallaM. AbourehabM.A.S. Al-RashoodS.T. AliM.A. Development of GC–MS/MS method for environmental monitoring of 49 pesticide residues in food commodities in Al-Rass, Al-Qassim region, Saudi Arabia.Arab. J. Chem.2022151110419910.1016/j.arabjc.2022.104199
    [Google Scholar]
  100. YangX. LuoJ. DuanY. LiS. LiuC. Simultaneous analysis of multiple pesticide residues in minor fruits by ultrahigh-performance liquid chromatography/hybrid quadrupole time-of-fight mass spectrometry.Food Chem.201824118819810.1016/j.foodchem.2017.08.10228958518
    [Google Scholar]
  101. TangZ. WeiY. WangD. HuangJ. WanN. WeiJ. LiB. Risk assessment of 369 pesticide residues in banana from Hainan province of China through UPLC-Q-TOF/MS.J. Food Compos. Anal.202312310563810.1016/j.jfca.2023.105638
    [Google Scholar]
  102. WondimuK.T. GeletuA.K. Residue analysis of selected organophosphorus and organochlorine pesticides in commercial tomato fruits by gas chromatography mass spectrometry.Heliyon202393e1412110.1016/j.heliyon.2023.e1412136923857
    [Google Scholar]
  103. MaJ. FanS. YangL. HeL. ZhaiH. RenX. LiQ. ZhangY. Rapid screening of 420 pesticide residues in fruits and vegetables using ultra high performance liquid chromatography combined with quadrupole-time of flight mass spectrometry.Food Sci. Hum. Wellness20231241064107010.1016/j.fshw.2022.10.024
    [Google Scholar]
  104. SeebunruengK. SantaladchaiyakitY. SrijaranaiS. Vortex-assisted low density solvent liquid–liquid microextraction and salt-induced demulsification coupled to high performance liquid chromatography for the determination of five organophosphorus pesticide residues in fruits.Talanta201513276977410.1016/j.talanta.2014.10.02025476376
    [Google Scholar]
  105. Płotka-WasylkaJ. GałuszkaA. NamieśnikJ. Green analytical chemistry: Summary of existing knowledge and future trends.Green Analytical Chemistry201943144910.1007/978‑981‑13‑9105‑7_15.
    [Google Scholar]
  106. SajidM. Płotka-WasylkaJ. Green analytical chemistry metrics: A review.Talanta2022238Pt 212304610.1016/j.talanta.2021.12304634801903
    [Google Scholar]
  107. López-LorenteÁ.I. Pena-PereiraF. Pedersen-BjergaardS. ZuinV.G. OzkanS.A. PsillakisE. The ten principles of green sample preparation.Trends Analyt. Chem.202214811653010.1016/j.trac.2022.116530
    [Google Scholar]
  108. TintropL.K. SalemiA. JochmannM.A. EngewaldW.R. SchmidtT.C. Improving greenness and sustainability of standard analytical methods by microextraction techniques: A critical review.Anal. Chim. Acta2023127134146810.1016/j.aca.2023.34146837328248
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461324692240816093449
Loading
/content/journals/cgc/10.2174/0122133461324692240816093449
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): GAC; HPLC; LLE; pesticides; Solvent wastage; SPE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test