Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Plant-aided biosynthesis of palladium nanoparticles is a necessity nowadays to avoid toxic chemicals used in the synthesis of palladium nanoparticles in traditional methods. Palladium nanoparticles are used as a catalyst in the Suzuki coupling reaction. Traditional synthesis of palladium nanoparticles uses harmful chemicals, reducing agents, and solvents, creating toxic byproducts. The Suzuki coupling reaction is a key step in the formation of C-C bonds in organic synthesis. The Suzuki coupling reaction has numerous applications in the synthesis of pharmaceuticals, agrochemicals, . So, there is scope for developing an environmentally friendly and low-cost palladium nanoparticle catalyst for the Suzuki coupling reaction that reduces environmental pollution. The traditional Suzuki coupling reaction requires expensive and toxic ligands, solvents, and bases and also produces toxic byproducts. In this review article, we focus on plant-assisted biosynthesis methods for the production of palladium nanoparticles and their applications for the Suzuki coupling reaction.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461320577240724100847
2024-08-12
2025-01-19
Loading full text...

Full text loading...

References

  1. IravaniS. Green synthesis of metal nanoparticles using plants.Green Chem.20111310263810.1039/c1gc15386b
    [Google Scholar]
  2. Vajtai, R., Ed.; Springer Handbook of Nanomaterials201310.1007/978‑3‑642‑20595‑8
    [Google Scholar]
  3. CouvreurP. Nanoparticles in drug delivery: Past, present and future.Adv. Drug Deliv. Rev.2013651212310.1016/j.addr.2012.04.010 22580334
    [Google Scholar]
  4. RaveendranP. FuJ. WallenS.L. Completely “green” synthesis and stabilization of metal nanoparticles.J. Am. Chem. Soc.200312546139401394110.1021/ja029267j 14611213
    [Google Scholar]
  5. ChandraH. KumariP. BontempiE. YadavS. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications.Biocatal. Agric. Biotechnol.20202410151810.1016/j.bcab.2020.101518
    [Google Scholar]
  6. MpungoseP.P. VundlaZ.P. MaguireG.E.M. FriedrichH.B. The current status of heterogeneous palladium catalysed heck and suzuki cross-coupling reactions.Molecules2018237167610.3390/molecules23071676 29996491
    [Google Scholar]
  7. FahmyS. PreisE. BakowskyU. AzzazyH.M. Palladium nanoparticles fabricated by green chemistry: Promising chemotherapeutic, antioxidant and antimicrobial agents.Materials (Basel)20201317366110.3390/ma13173661 32825057
    [Google Scholar]
  8. LiH. ZhaoW. SaravanamuruganS. DaiW. HeJ. MeierS. YangS. RiisagerA. Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides.Commun. Chem.2018113210.1038/s42004‑018‑0033‑z
    [Google Scholar]
  9. FavierI. PlaD. GómezM. Palladium nanoparticles in polyols: Synthesis, catalytic couplings, and hydrogenations.Chem. Rev.202012021146118310.1021/acs.chemrev.9b00204 31385693
    [Google Scholar]
  10. Garcia-SuarezE.J. PaolicchiD. LiH. HeJ. YangS. RiisagerA. SaravanamuruganS. Pd-catalysed formation of ester products from cascade reaction of 5-hydroxymethylfurfural with 1-hexene.Appl. Catal. A Gen.201956917017410.1016/j.apcata.2018.10.031
    [Google Scholar]
  11. NasrollahzadehM. SajjadiM. DadashiJ. GhafuriH. Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities.Adv. Colloid Interface Sci.202027610210310.1016/j.cis.2020.102103 31978638
    [Google Scholar]
  12. ManjareS.B. PendhariP.D. BadadeS.M. ThopateS.R. Palladium nanoparticles: Plant aided biosynthesis, characterization, applications.Chemistry Africa20214471573010.1007/s42250‑021‑00284‑2
    [Google Scholar]
  13. García-MelchorM. BragaA.A.C. LledósA. UjaqueG. MaserasF. Computational perspective on Pd-catalyzed C-C cross-coupling reaction mechanisms.Acc. Chem. Res.201346112626263410.1021/ar400080r 23848308
    [Google Scholar]
  14. D’AlterioM.C. Casals-CruañasÈ. TzourasN.V. TalaricoG. NolanS.P. PoaterA. Mechanistic aspects of the palladium‐catalyzed suzuki‐miyaura cross‐coupling reaction.Chemistry20212754134811349310.1002/chem.202101880 34269488
    [Google Scholar]
  15. ClarkeM.L. HeydtM. The importance of ligand steric effects on transmetalation.Organometallics200524266475647810.1021/om050724p
    [Google Scholar]
  16. IwasakiM. NishiharaY. Mechanisms and fundamental reactions. Applied Cross-Coupling Reactions.Springer2013173910.1007/978‑3‑642‑32368‑3_2
    [Google Scholar]
  17. QaziF. HussainZ. TahirM.N. Advances in biogenic synthesis of palladium nanoparticles.RSC Advances2016665602776028610.1039/C6RA11695G
    [Google Scholar]
  18. GowrammaB. KeerthiU. RafiM. Muralidhara RaoD. Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity.3 Biotech.20155219520110.1007/s13205‑014‑0210‑4
    [Google Scholar]
  19. MittalA.K. ChistiY. BanerjeeU.C. Synthesis of metallic nanoparticles using plant extracts.Biotechnol. Adv.201331234635610.1016/j.biotechadv.2013.01.003 23318667
    [Google Scholar]
  20. KavithaK. BakerS. RakshithD. KavithaH. HariniB.P. SatishS. Plants as green source towards synthesis of nanoparticles.Int. Res. J. Biol. Sci.2013266676
    [Google Scholar]
  21. KharissovaO.V. DiasH.V.R. KharisovB.I. PérezB.O. PérezV.M.J. The greener synthesis of nanoparticles.Trends Biotechnol.201331424024810.1016/j.tibtech.2013.01.003 23434153
    [Google Scholar]
  22. ThakkarK.N. MhatreS.S. ParikhR.Y. Biological synthesis of metallic nanoparticles.Nanomedicine20106225726210.1016/j.nano.2009.07.002 19616126
    [Google Scholar]
  23. ChenH. WangY. WangY. DongS. WangE. One-step preparation and characterization of PDDA-protected gold nanoparticles.Polymer (Guildf.)200647276376610.1016/j.polymer.2005.11.034
    [Google Scholar]
  24. VigneshwaranN. NachaneR.P. BalasubramanyaR.H. VaradarajanP.V. A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch.Carbohydr. Res.2006341122012201810.1016/j.carres.2006.04.042 16716274
    [Google Scholar]
  25. ShahM. FawcettD. SharmaS. TripathyS. PoinernG. Green synthesis of metallic nanoparticles via biological entities.Materials (Basel)20158117278730810.3390/ma8115377 28793638
    [Google Scholar]
  26. KulkarniN. MuddapurU. Biosynthesis of metal nanoparticles: A review.J. Nanotechnol.201420141810.1155/2014/510246
    [Google Scholar]
  27. MohamadN.A.N. ArhamN.A. JaiJ. HadiA. Plant extract as reducing agent in synthesis of metallic nanoparticles: A review.Adv. Mat. Res.201383235035510.4028/www.scientific.net/AMR.832.350
    [Google Scholar]
  28. GhorbaniH.R. SafekordiA.A. AttarH. SorkhabadiS.M. Biological and non-biological methods for silver nanoparticles synthesis.Chem. Biochem. Eng. Q.201125317
    [Google Scholar]
  29. VishnukumarP. VivekanandhanS. MuthuramkumarS. Plant-mediated biogenic synthesis of palladium nanoparticles: Recent trends and emerging opportunities.ChemBioEng Rev.201741183610.1002/cben.201600017
    [Google Scholar]
  30. JoudehN. SaragliadisA. KosterG. MikheenkoP. LinkeD. Synthesis methods and applications of palladium nanoparticles: A review.Front. Nanotechnol.20224106260810.3389/fnano.2022.1062608
    [Google Scholar]
  31. ManjareS.B. ChaudhariR.A. Palladium nanoparticle-bentonite hybrid using leaves of Syzygium aqueum plant from India: design and assessment in the catalysis of –C–C– coupling reaction.Chem. Africa20203232934110.1007/s42250‑020‑00139‑2
    [Google Scholar]
  32. VeisiH. RashtianiA. BarjastehV. Biosynthesis of palladium nanoparticles using Rosa canina fruit extract and their use as a heterogeneous and recyclable catalyst for Suzuki–Miyaura coupling reactions in water.Appl. Organomet. Chem.201630423123510.1002/aoc.3421
    [Google Scholar]
  33. RomanI. StănilăA. StănilăS. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania.Chem. Cent. J.2013717310.1186/1752‑153X‑7‑73 23618509
    [Google Scholar]
  34. DemirF. ÖzcanM. Chemical and technological properties of rose (Rosa canina L.) fruits grown wild in Turkey.J. Food Eng.200147433333610.1016/S0260‑8774(00)00129‑1
    [Google Scholar]
  35. AslanM. HosbasS. DeliormanO. OrhanN. Antidiabetic effect and antioxidant potential of Rosa canina fruits.Pharmacogn. Mag.200952030910.4103/0973‑1296.58151
    [Google Scholar]
  36. VeisiH. FarajiA.R. HemmatiS. GilA. Green synthesis of palladium nanoparticles using Pistacia atlantica kurdica gum and their catalytic performance in Mizoroki–Heck and Suzuki–Miyaura coupling reactions in aqueous solutions.Appl. Organomet. Chem.201529851752310.1002/aoc.3325
    [Google Scholar]
  37. BorahR.K. MahantaA. DuttaA. BoraU. ThakurA.J. A green synthesis of palladium nanoparticles by Sapindus mukorossi seed extract and use in efficient room temperature Suzuki–Miyaura cross‐coupling reaction.Appl. Organomet. Chem.20173111e378410.1002/aoc.3784
    [Google Scholar]
  38. HekmatiM. BonyasiF. JavaheriH. HemmatiS. Green synthesis of palladium nanoparticles using Hibiscus sabdariffa L. flower extract: Heterogeneous and reusable nanocatalyst in Suzuki coupling reactions.Appl. Organomet. Chem.20173111e375710.1002/aoc.3757
    [Google Scholar]
  39. AliB.H. WabelN.A. BlundenG. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: A review.Phytother. Res.200519536937510.1002/ptr.1628 16106391
    [Google Scholar]
  40. EntezariM. SafariM. HekmatiM. HekmatS. AzinA. Modification of carboxylated multiwall nanotubes with benzotriazole derivatives and study of their anticancer activities.Med. Chem. Res.201423148749510.1007/s00044‑013‑0668‑3
    [Google Scholar]
  41. HajighorbaniM. HekmatiM. Pd nanoparticles deposited on Isoniazid grafted multi walled carbon nanotubes: Synthesis, characterization and application for Suzuki reaction in aqueous media.RSC Advances2016692889168892410.1039/C6RA19934H
    [Google Scholar]
  42. PhukanS. MahantaA. KakatiD. RashidM.H. Green chemical synthesis of Pd nanoparticles for use as efficient catalyst in Suzuki‐Miyaura cross‐coupling reaction.Appl. Organomet. Chem.2019333e475810.1002/aoc.4758
    [Google Scholar]
  43. NasrollahzadehM. SajadiS.M. MahamM. Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water.J. Mol. Catal. Chem.201539629730310.1016/j.molcata.2014.10.019
    [Google Scholar]
  44. KallioH. YangB. PeippoP. Effects of different origins and harvesting time on vitamin C, tocopherols, and tocotrienols in sea buckthorn (Hippophaë rhamnoides) berries.J. Agric. Food Chem.200250216136614210.1021/jf020421v 12358492
    [Google Scholar]
  45. PichiahP.B.T. MoonH.J. ParkJ.E. MoonY.J. ChaY.S. Ethanolic extract of seabuckthorn (Hippophae rhamnoides L) prevents high-fat diet–induced obesity in mice through down-regulation of adipogenic and lipogenic gene expression.Nutr. Res.2012321185686410.1016/j.nutres.2012.09.015 23176796
    [Google Scholar]
  46. RöschD. BergmannM. KnorrD. KrohL.W. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice.J. Agric. Food Chem.200351154233423910.1021/jf0300339 12848490
    [Google Scholar]
  47. LeeH.I. KimM.S. LeeK.M. ParkS.K. SeoK.I. KimH.J. KimM.J. ChoiM.S. LeeM.K. Anti-visceral obesity and antioxidant effects of powdered sea buckthorn (Hippophae rhamnoides L.) leaf tea in diet-induced obese mice.Food Chem. Toxicol.20114992370237610.1016/j.fct.2011.06.049 21723364
    [Google Scholar]
  48. NasrollahzadehM. Mohammad SajadiS. Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: Catalytic properties of the resulting particles.J. Colloid Interface Sci.201646224325110.1016/j.jcis.2015.09.065 26462089
    [Google Scholar]
  49. NatarajanD. BrittoS.J. SrinivasanK. NagamuruganN. MohanasundariC. PerumalG. Anti-bacterial activity of Euphorbia fusiformis —A rare medicinal herb.J. Ethnopharmacol.2005102112312610.1016/j.jep.2005.04.023 16159702
    [Google Scholar]
  50. ParvezM. HussainF. AhmadB. AliJ. Euphorbia granulata forssk as a source of mineral supplement. American-Eurasian J.Agric. & Environ. Sci20131381108111310.5829/idosi.aejaes.2013.13.08.11017
    [Google Scholar]
  51. BousselesselaH. YahiaM. MahboubiA. BenbiaS. Antioxidant and antibacterial activity of alkaloids and terpenes extracts from Euphorbia granulata.World Acid Sci. Eng. Technol.201310.5281/ZENODO.1060753
    [Google Scholar]
  52. LakshmipathyR. Palakshi ReddyB. SaradaN.C. ChidambaramK. Khadeer PashaS. Watermelon rind-mediated green synthesis of noble palladium nanoparticles: Catalytic application.Appl. Nanosci.20155222322810.1007/s13204‑014‑0309‑2
    [Google Scholar]
  53. RimandoA.M. Perkins-VeazieP.M. Determination of citrulline in watermelon rind.J. Chromatogr. A200510781-219620010.1016/j.chroma.2005.05.009 16007998
    [Google Scholar]
  54. MortA. ZhengY. QiuF. NimtzM. Bell-EuniceG. Structure of xylogalacturonan fragments from watermelon cell-wall pectin. Endopolygalacturonase can accommodate a xylosyl residue on the galacturonic acid just following the hydrolysis site.Carbohydr. Res.200834371212122110.1016/j.carres.2008.03.021 18394594
    [Google Scholar]
  55. QuekS.Y. ChokN.K. SwedlundP. The physicochemical properties of spray-dried watermelon powders.Chem. Eng. Process.200746538639210.1016/j.cep.2006.06.020
    [Google Scholar]
  56. DewanA. SarmahM. ThakurA.J. BharaliP. BoraU. Greener biogenic approach for the synthesis of palladium nanoparticles using papaya peel: An eco-friendly catalyst for C–C coupling reaction.ACS Omega2018355327533510.1021/acsomega.8b00039 31458742
    [Google Scholar]
  57. RudraS.G. NishadJ. JakharN. KaurC. Food industry waste: Mine of nutraceuticals.Int. J. Sci. Environ. Technol.201541205229
    [Google Scholar]
  58. de MeloE.M. ClarkJ.H. MatharuA.S. The Hy-MASS concept: Hydrothermal microwave assisted selective scissoring of cellulose for in situ production of (meso)porous nanocellulose fibrils and crystals.Green Chem.201719143408341710.1039/C7GC01378G
    [Google Scholar]
  59. PelissariF.M. SobralP.J.A. MenegalliF.C. Isolation and characterization of cellulose nanofibers from banana peels.Cellulose201421141743210.1007/s10570‑013‑0138‑6
    [Google Scholar]
  60. BalavijayalakshmiJ. RamalakshmiV. Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens.J. Appl. Res. Technol.201715541342210.1016/j.jart.2017.03.010
    [Google Scholar]
  61. WangZ. BaiX. One-pot synthesis of bio-supported Pd nanoparticles by using clove leaf and their catalytic performance for Suzuki coupling reaction.J. Mol. Struct.2020121912853810.1016/j.molstruc.2020.128538
    [Google Scholar]
  62. VeisiH. NasrabadiN.H. MohammadiP. Biosynthesis of palladium nanoparticles as a heterogeneous and reusable nanocatalyst for reduction of nitroarenes and Suzuki coupling reactions.Appl. Organomet. Chem.2016301189089610.1002/aoc.3517
    [Google Scholar]
  63. RavichandranV. VasanthiS. ShaliniS. Ali ShahS.A. HarishR. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity.Mater. Lett.201618026426710.1016/j.matlet.2016.05.172
    [Google Scholar]
  64. HuangX. FengY. HuangY. LiH. Chemical composition, antioxidant and the possible use as skin-care ingredient of clove oil (Syzygium aromaticum (L.) Merr. & Perry) and citronella oil (Cymbopogon goeringii) from China.J. Essent. Oil Res.201325431532310.1080/10412905.2013.775082
    [Google Scholar]
  65. AnasdassJ.R. KannaiyanP. RaghavacharyR. GopinathS.C.B. ChenY. Palladium nanoparticle-decorated reduced graphene oxide sheets synthesized using Ficus carica fruit extract: A catalyst for Suzuki cross-coupling reactions.PLoS One2018132e019328110.1371/journal.pone.0193281 29466453
    [Google Scholar]
  66. LogaranjanK. PandianS.D.K. Biogenic synthesis of silver nanoparticles using fruit extract of Ficus carica and study its antimicrobial activity.Nano Biomed. Eng.20124417718210.5101/nbe.v4i4.p177‑182
    [Google Scholar]
  67. ParkerH.L. RylottE.L. HuntA.J. DodsonJ.R. TaylorA.F. BruceN.C. ClarkJ.H. Supported palladium nanoparticles synthesized by living plants as a catalyst for Suzuki-Miyaura reactions.PLoS One201491e8719210.1371/journal.pone.0087192 24489869
    [Google Scholar]
  68. MovahedS.K. DabiriM. BazgirA. Palladium nanoparticle decorated high nitrogen-doped graphene with high catalytic activity for Suzuki–Miyaura and Ullmann-type coupling reactions in aqueous media.Appl. Catal. A Gen.201448826527410.1016/j.apcata.2014.09.045
    [Google Scholar]
  69. ParkJ.H. RazaF. JeonS.J. KimH.I. KangT.W. YimD. KimJ.H. Recyclable N-heterocyclic carbene/palladium catalyst on graphene oxide for the aqueous-phase Suzuki reaction.Tetrahedron Lett.201455233426343010.1016/j.tetlet.2014.04.078
    [Google Scholar]
  70. Gómez-MartínezM. BuxaderasE. PastorI.M. AlonsoD.A. Palladium nanoparticles supported on graphene and reduced graphene oxide as efficient recyclable catalyst for the Suzuki–Miyaura reaction of potassium aryltrifluoroborates.J. Mol. Catal. Chem.2015404-4051710.1016/j.molcata.2015.03.022
    [Google Scholar]
  71. HussainN. BorahA. DarabdharaG. GogoiP. AzhaganV.K. ShelkeM.V. DasM.R. A green approach for the decoration of Pd nanoparticles on graphene nanosheets: An in situ process for the reduction of C–C double bonds and a reusable catalyst for the Suzuki cross-coupling reaction.New J. Chem.20153986631664110.1039/C5NJ01221J
    [Google Scholar]
  72. SchmittC.R. DuarteF.A. GodoiM. PeixotoC.R.M. TrombettaF. RosaG.R. Palladium nanoparticle biosynthesis via Yerba Mate (Ilex paraguariensis) extract: An efficient eco-friendly catalyst for Suzuki–Miyaura reactions.SN Applied Sciences20213224310.1007/s42452‑021‑04167‑6
    [Google Scholar]
  73. GrigioniG. CarduzaF. IruruetaM. PenselN. Flavour characteristics of Ilex paraguariensis infusion, a typical Argentine product, assessed by sensory evaluation and electronic nose.J. Sci. Food Agric.200484542743210.1002/jsfa.1670
    [Google Scholar]
  74. BurrisK.P. HarteF.M. Michael DavidsonP. Neal StewartC.Jr ZivanovicS. Composition and bioactive properties of Yerba Mate (llex paraguariensis A. St.-Hil.): A review.Chil. J. Agric. Res.201272226827510.4067/S0718‑58392012000200016
    [Google Scholar]
  75. FilipR. LópezP. GibertiG. CoussioJ. FerraroG. Phenolic compounds in seven South American Ilex species.Fitoterapia200172777477810.1016/S0367‑326X(01)00331‑8 11677016
    [Google Scholar]
  76. ArrecheR.A. Montes de Oca-VásquezG. Vega-BaudritJ.R. VázquezP.G. Synthesis of silver nanoparticles using extracts from Yerba Mate (Ilex paraguariensis) wastes.Waste Biomass Valoriz.202011124525310.1007/s12649‑018‑0394‑7
    [Google Scholar]
  77. ShamailaS. SajjadA.K.L. RymaN.A. FarooqiS.A. JabeenN. MajeedS. FarooqI. Advancements in nanoparticle fabrication by hazard free eco-friendly green routes.Appl. Mater. Today2016515019910.1016/j.apmt.2016.09.009
    [Google Scholar]
  78. CastroL. BlázquezM.L. MuñozJ.A. GonzálezF. García-BalboaC. BallesterA. Biosynthesis of gold nanowires using sugar beet pulp.Process Biochem.20114651076108210.1016/j.procbio.2011.01.025
    [Google Scholar]
  79. AlvarengaG. RuasC.P. VicentiJ.R.M. DuarteF.A. GeleskyM.A. RosaG.R. PdCl2 Immobilized in polyacrylamide: A low cost and eco-friendly catalyst for Suzuki-Miyaura reactions.J. Braz. Chem. Soc.201510.5935/0103‑5053.20150333
    [Google Scholar]
  80. RosaD.S. VargasB.P. SilveiraM.V. RosaC.H. MartinsM.L. RosaG.R. On the use of calcined agro-industrial waste as palladium supports in the production of eco-friendly catalysts: Rice husks and banana peels tested in the Suzuki–Miyaura reaction.Waste Biomass Valoriz.20191082285229610.1007/s12649‑018‑0252‑7
    [Google Scholar]
  81. SchmittC.R. RosaD.S. VargasB.P. RosaC.H. DuarteF.A. ScheerenC.W. LopesT.J. TrombettaF. RosaG.R. Coconut agro-industrial waste in the production of catalyst containing palladium: The report of a mini-project for teaching of sustainable Suzuki-Miyaura reaction.J. Clean. Prod.201818534234610.1016/j.jclepro.2018.03.082
    [Google Scholar]
  82. LebaschiS. HekmatiM. VeisiH. Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: Catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions.J Colloid Interface Sci.201748522323110.1016/j.jcis.2016.09.027
    [Google Scholar]
  83. ŁuczajW. SkrzydlewskaE. Antioxidative properties of black tea.Prev. Med.200540691091810.1016/j.ypmed.2004.10.014 15850895
    [Google Scholar]
  84. AnandK. TilokeC. PhulukdareeA. RanjanB. ChuturgoonA. SinghS. GenganR.M. Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties.J. Photochem. Photobiol. B2016165879510.1016/j.jphotobiol.2016.09.039 27776261
    [Google Scholar]
  85. FaiziS. SiddiquiB.S. SaleemR. SiddiquiS. AftabK. GilaniA.U.H. Fully acetylated carbamate and hypotensive thiocarbamate glycosides from Moringa oleifera.Phytochemistry199538495796310.1016/0031‑9422(94)00729‑D 7766390
    [Google Scholar]
  86. NasrollahzadehM. Mohammad SajadiS. Rostami-VartooniA. KhalajM. Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions.J. Mol. Catal. Chem.2015396313910.1016/j.molcata.2014.09.029
    [Google Scholar]
  87. RizkA.F.M. The chemical constituents and economic plants of the Euphorbiaceae.Bot. J. Linn. Soc.1987941-229332610.1111/j.1095‑8339.1987.tb01052.x
    [Google Scholar]
  88. JassbiA.R. Chemistry and biological activity of secondary metabolites in Euphorbia from Iran.Phytochemistry200667181977198410.1016/j.phytochem.2006.06.030 16889806
    [Google Scholar]
  89. NasrollahzadehM. SajadiS.M. MahamM. SalaryanP. EnayatiA. SajjadiS.A. NaderiK. Optimal extraction method of phenolics from the root of Euphorbia condylocarpa.Chem. Nat. Compd.201147343443510.1007/s10600‑011‑9952‑y
    [Google Scholar]
  90. SeyediN. SaidiK. SheibaniH. Green synthesis of Pd nanoparticles supported on magnetic graphene oxide by Origanum vulgare leaf plant extract: Catalytic activity in the reduction of organic dyes and Suzuki–Miyaura cross-coupling reaction.Catal. Lett.2018148127728810.1007/s10562‑017‑2220‑4
    [Google Scholar]
  91. RaoG.V. MukhopadhyayT. AnnamalaiT. RadhakrishnanN. SahooM.R. Chemical constituents and biological studies of Origanum vulgare Linn.Pharmacognosy Res.20113214314510.4103/0974‑8490.81964 21772760
    [Google Scholar]
  92. BaruahD. DasR.N. HazarikaS. KonwarD. Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb — A green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating.Catal. Commun.201572738010.1016/j.catcom.2015.09.011
    [Google Scholar]
  93. ManjareS.B. ChaudhariR.A. Environment-friendly synthesis of palladium nanoparticles loaded on Zeolite Type-Y (Na-form) using Anacardium occidentale shell extract (Cashew nut shell extract), characterization and application in C C coupling reaction.J. Environ. Chem. Eng.20208510421310.1016/j.jece.2020.104213
    [Google Scholar]
  94. LiuG. BaiX. LvH. Green synthesis of supported palladium nanoparticles employing pine needles as reducing agent and carrier: New reusable heterogeneous catalyst in the Suzuki coupling reaction.Appl. Organomet. Chem.2017314e358710.1002/aoc.3587
    [Google Scholar]
  95. KähkönenM.P. HopiaA.I. VuorelaH.J. RauhaJ.P. PihlajaK. KujalaT.S. HeinonenM. Antioxidant activity of plant extracts containing phenolic compounds.J. Agric. Food Chem.199947103954396210.1021/jf990146l 10552749
    [Google Scholar]
  96. MartinR. BuchwaldS.L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands.Acc. Chem. Res.200841111461147310.1021/ar800036s 18620434
    [Google Scholar]
  97. Johansson SeechurnC.C.C. KitchingM.O. ColacotT.J. SnieckusV. Palladium‐catalyzed cross‐coupling: A historical contextual perspective to the 2010 nobel prize.Angew. Chem. Int. Ed.201251215062508510.1002/anie.201107017
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461320577240724100847
Loading
/content/journals/cgc/10.2174/0122133461320577240724100847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test