Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Background

We generally focused on an environmentally green synthesis and we used to replace toxic methods, hazardous reaction conditions from the greener methods such as electro-organic synthesis, use of visible light as an energy source, natural and biodegradable green catalysts .

Objective

Synthesis of biologically-active benzothiazole derivatives eco-compatible method is the objective of our research article.

Methods

Electrochemical method where electro-organic synthesis was carried out in an undivided cell at room temperature in the presence of lithium perchlorate as a supporting electrolyte and electricity was also utilized here instead of a chemical substance with a simple graphite-iron electrode combination.

Results

The generation of 2-substituted benzothiazoles was achieved through the amalgamation of bis(2- aminophenyl)disulfides with aromatic aldehydes under the influence of the electrodes. Products were obtained here with the satisfactory to excellent yields with the range of 64% - 91%.

Conclusion

In conclusion, for the synthesis of benzothiazole derivatives, a different aqueous phase, facile, simple and dexterous method that is free from any type of hazardous catalyst was reported. This protocol represents a novel synthetic concept and an eco-compatible pathway along with green chemistry expertise like usage of the nontoxic solvent with effortless work-up procedure.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461307610240903094350
2024-09-10
2025-01-31
Loading full text...

Full text loading...

References

  1. SchneiderP. SchneiderG. Privileged structures revisited.Angew. Chem. Int. Ed.201756277971797410.1002/anie.201702816 28558125
    [Google Scholar]
  2. Bräse, S.Ed.; Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation.CambridgeRSC201510.1039/9781782622246
    [Google Scholar]
  3. YetL. Privileged Structures in Drug Discovery.HobokenJohn Wiley & Sons, Inc.201810.1002/9781118686263
    [Google Scholar]
  4. (a ViciniP. GeronikakiA. IncertiM. BusoneraB. PoniG. CabrasC.A. La CollaP. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases.Bioorg. Med. Chem.200311224785478910.1016/S0968‑0896(03)00493‑014556794
    [Google Scholar]
  5. (b TaleR.H. Novel synthesis of 2-arylbenzothiazoles mediated by ceric ammonium nitrate (CAN).Org. Lett.20024101641164210.1021/ol020027i 12000262
    [Google Scholar]
  6. (a HenriksenG. HauserA.I. WestwellA.D. YousefiB.H. SchwaigerM. DrzezgaA. WesterH.J. Metabolically stabilized benzothiazoles for imaging of amyloid plaques.J. Med. Chem.20075061087108910.1021/jm061466g17319654
    [Google Scholar]
  7. (b WangM. GaoM. MockB.H. MillerK.D. SledgeG.W. HutchinsG.D. ZhengQ.H. Synthesis of carbon-11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents.Bioorg. Med. Chem.200614248599860710.1016/j.bmc.2006.08.02616962783
    [Google Scholar]
  8. (c MortimerC.G. WellsG. CrochardJ.P. StoneE.L. BradshawT.D. StevensM.F.G. WestwellA.D. Antitumor benzothiazoles. 26. 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines.J. Med. Chem.200649117918510.1021/jm050942k16392802
    [Google Scholar]
  9. (d KamalA. KhanM.N.A. ReddyK.S. SrikanthY.V.V. SridharB. SridharB. Synthesis, structural characterization and biological evaluation of novel[1,2,4]triazolo[1,5-b][1,2,4]benzothiadiazine-benzothiazole conjugates as potential anticancer agents.Chem. Biol. Drug Des.2008711788610.1111/j.1747‑0285.2007.00609.x 18086151
    [Google Scholar]
  10. (e LiuC. LinJ. PittS. ZhangR.F. SackJ.S. KieferS.E. KishK. DoweykoA.M. ZhangH. MaratheP.H. TrzaskosJ. MckinnonM. DoddJ.H. BarrishJ.C. SchievenG.L. LeftherisK. Benzothiazole based inhibitors of p38α MAP kinase.Bioorg. Med. Chem. Lett.20081861874187910.1016/j.bmcl.2008.02.01118296051
    [Google Scholar]
  11. BellaviaV. NatangeloM. FanelliR. RotilioD. Analysis of benzothiazole in Italian wines using headspace solid-phase microextraction and gas chromatography-mass spectrometry.J. Agric. Food Chem.20004841239124210.1021/jf990634t 10775378
    [Google Scholar]
  12. (a OnoM. Development of positron-emission tomography/single-photon emission computed tomography imaging probes for in vivo detection of beta-amyloid plaques in Alzheimer’s brains.Chem. Pharm. Bull. (Tokyo)200957101029103910.1248/cpb.57.102919801854
    [Google Scholar]
  13. (b HenriksenG. YousefiB.H. DrzezgaA. WesterH.J. Development and evaluation of compounds for imaging of β-amyloid plaque by means of positron emission tomography.Eur. J. Nucl. Med. Mol. Imaging200835S1758110.1007/s00259‑007‑0705‑x
    [Google Scholar]
  14. MathisC.A. BacskaiB.J. KajdaszS.T. McLellanM.E. FroschM.P. HymanB.T. HoltD.P. WangY. HuangG.F. DebnathM.L. KlunkW.E. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain.Bioorg. Med. Chem. Lett.200212329529810.1016/S0960‑894X(01)00734‑X 11814781
    [Google Scholar]
  15. ChenZ. ZengM. SongB. HouC. HuD. LiX. WangZ. FanH. BiL. LiuJ. YuD. Dufulin activates HrBP1 to produce antiviral responses in tobacco.PLos One201275e37944
    [Google Scholar]
  16. AlarcónA.B. Cuesta-RubioO. PérezJ.C. PiccinelliA.L. RastrelliL. Constituents of the cuban endemic species Calophyllum pinetorum.J. Nat. Prod.20087171283128610.1021/np800079c
    [Google Scholar]
  17. (a KumbhareR.M. DadmalT. KosurkarU. SridharV. RaoJ.V. Synthesis and cytotoxic evaluation of thiourea and N-bis-benzothiazole derivatives: A novel class of cytotoxic agents.Bioorg. Med. Chem. Lett.201222145345510.1016/j.bmcl.2011.10.10622115593
    [Google Scholar]
  18. (b WangZ. ShiX.H. WangJ. ZhouT. XuY.Z. HuangT.T. LiY.F. ZhaoY.L. YangL. YangS.Y. YuL.T. WeiY.Q. Synthesis, structure-activity relationships and preliminary antitumor evaluation of benzothiazole-2-thiol derivatives as novel apoptosis inducers.Bioorg. Med. Chem. Lett.20112141097110110.1016/j.bmcl.2010.12.124 21262571
    [Google Scholar]
  19. BolelliK. YalcinI. Ertan-BolelliT. ÖzgenS. Kaynak-OnurdagF. YildizI. AkiE. Synthesis of novel 2-[4-(4-substitutedbenzamido/phenylacetamido)phenyl]benzothiazoles as antimicrobial agents.Med. Chem. Res.201221113818382510.1007/s00044‑011‑9918‑4
    [Google Scholar]
  20. (a PorcariA.R. DevivarR.V. KuceraL.S. DrachJ.C. TownsendL.B. Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)-2-substituted-5,6-dichlorobenzimidazoles as nonnucleoside analogues of 2,5,6-trichloro-1-(β-D-ribofuranosyl) benzimidazole.J. Med. Chem.19984181252126210.1021/jm970559i9548815
    [Google Scholar]
  21. (b RothT. MorningstarM.L. BoyerP.L. HughesS.H. BuckheitR.W.Jr MichejdaC.J. Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-substituted benzimidazoles.J. Med. Chem.199740264199420710.1021/jm970096g 9435891
    [Google Scholar]
  22. Van ZandtM.C. JonesM.L. GunnD.E. GeraciL.S. JonesJ.H. SawickiD.R. SredyJ. JacotJ.L. DiCioccioA.T. PetrovaT. MitschlerA. PodjarnyA.D. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications.J. Med. Chem.20054893141315210.1021/jm0492094 15857120
    [Google Scholar]
  23. MylariB.L. LarsonE.R. BeyerT.A. ZembrowskiW.J. AldingerC.E. DeeM.F. SiegelT.W. SingletonD.H. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid (zopolrestat) and congeners.J. Med. Chem.199134110812210.1021/jm00105a018 1899452
    [Google Scholar]
  24. (a BradshawT. WestwellA. The development of the antitumour benzothiazole prodrug, Phortress, as a clinical candidate.Curr. Med. Chem.20041181009102110.2174/092986704345553015078163
    [Google Scholar]
  25. (b Rodrigues-RodriguesC. De GrootN.S. RimolaA. Alva- rez-Larena; Lloveras, A. V.; Vidal- Gancedo, J.; Ventura, S.; Vend- rell, J.; Sodupe, M.; Gonzalez-Duarte, P. Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer’s disease.J. Am. Chem. Soc.200913114361451
    [Google Scholar]
  26. Chen, j.; Mo, Y. Wireless electrochemical reactor for accelerated exploratory study of electroorganic synthesis.ACS Cent. Sci.202391820182610.1021/acscentsci.3c00856 37780362
    [Google Scholar]
  27. ClarazA. DjianA. MassonG. Electrochemical tandem trifluoromethylation of allylamines/formal (3 + 2)-cycloaddition for the rapid access to CF3-containing imidazolines and oxazolidines.Org. Chem. Front.20218228829610.1039/D0QO01307B
    [Google Scholar]
  28. ZhangY. XuS. ZhuY. XuQ. GaoH. LiangZ. YaoX. One‐pot synthesis of 4‐thiocyanato‐1 H‐pyrazoles through electrochemical multicomponent thiocyanation under metal‐ and oxidant‐free conditions.Eur. J. Org. Chem.2023262e20220127810.1002/ejoc.202201278
    [Google Scholar]
  29. ElinsonM.N. RyzhkovaY.E. VereshchaginA.N. RyzhkovF.V. KalashnikovaV.M. KorolevV.A. EgorovM.P. Electrochemically induced assembling of isatins, kojic acid, and malonic acid derivatives into substituted spiro[indole‐3,4′‐pyran]‐2(1H)‐one scaffold and predicting potential protein targets.J. Heterocycl. Chem.202360227729010.1002/jhet.4579
    [Google Scholar]
  30. MohammadiA.A. MakaremS. AhdenovR. NotashN.A. Green pseudo-multicomponent synthesis of some new spirocyclopropane derivatives via electro-catalyzed reaction.Mol. Divers.202024376377010.1007/s11030‑019‑09979‑8 31414305
    [Google Scholar]
  31. (a LittleR.D. MoellerK.D. Organic electrochemistry as a tool for synthesis.Electrochem. Soc. Interface20021143642
    [Google Scholar]
  32. (b MoellerK. TangF. ChenC. Electrochemistry and umpolung reactions: New tools for solving synthetic challenges of structure and location.Synthesis20072007213411342010.1055/s‑2007‑990835
    [Google Scholar]
  33. (a YoshidaJ.I. KataokaK. HorcajadaR. NagakiA. Modern strategies in electroorganic synthesis.Chem. Rev.200810872265229910.1021/cr0680843
    [Google Scholar]
  34. (b FranckeR. LittleR.D. Redox catalysis in organic electrosynthesis: basic principles and recent developments.Chem. Soc. Rev.20144382492252110.1039/C3CS60464K
    [Google Scholar]
  35. (c SperryJ.B. WrightD.L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules.Chem. Soc. Rev.200635760562110.1039/B512308A
    [Google Scholar]
  36. (d Frontana-UribeB.A. LittleR. D Organic electrosynthesis: A promising green methodology in organic chemistry.Green Chem.2010122099211910.1039/C0GC00382D
    [Google Scholar]
  37. (e OgawaK.A. BoydstonA.J. Recent developments in organocatalyzed electroorganic chemistry.Chem. Lett.2015441101610.1246/cl.140915
    [Google Scholar]
  38. BernardA. Frontana-UribeR. DanielL. JorgeG. banezI. AgustinP. RubenV. M. Organic electrosynthesis: A promising green methodology in organic chemistry.Green Chem.2010122099211910.1039/C0GC00382D
    [Google Scholar]
  39. (a AslamS. RaniS. LalK. FatimaM. HardwickT. ShirinfarB. AhmedN. Electrochemical hydrogen production: Sustainable hydrogen economy.Green Chem.2023259543957310.1039/D3GC02849F
    [Google Scholar]
  40. (b VladA. ChenJ. YaoY. Organic electrode materials and engineering for electrochemical energy storage.Batteries & Supercaps.202365e202300090
    [Google Scholar]
  41. (c XuC. ZhangX. DuanL. ZhangX. LiX. LüW. A photo-assisted rechargeable battery: synergy, compatibility and stability of a TiO2/dye/Cu2S bifunctional composite electrode.Nanoscale20201253053710.1039/C9NR09224B
    [Google Scholar]
  42. ArdakaniM.K. RostamiE. ZareA. Graphene oxide@polyaniline-FeF3 (GO@PANI-FeF3) as a novel and effectual catalyst for the construction of 4H-pyrimido[2,1-b]benzothiazoles. Adv.J. Chem., Section A.20247323624710.48309/ajca.2023.428749.1460
    [Google Scholar]
  43. MeghdadiS. AmirnasrM. FordP.C. A robust one-pot synthesis of benzothiazoles from carboxylic acids including examples with hydroxyl and amino substituents.Tetrahedron Lett.201253516950695310.1016/j.tetlet.2012.10.035
    [Google Scholar]
  44. WeekesA.A. BagleyM.C. WestwellA.D. An efficient synthetic route to biologically relevant 2-phenylbenzothiazoles substituted on the benzothiazole ring.Tetrahedron201167407743774710.1016/j.tet.2011.08.004
    [Google Scholar]
  45. ColeG.B. KeumG. LiuJ. SmallG.W. SatyamurthyN. KepeV. BarrioJ.R. Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates.Proc. Natl. Acad. Sci. USA2010107146222622710.1073/pnas.0914904107 20304798
    [Google Scholar]
  46. PrajapatiN.P. VekariyaR.H. BoradM.A. PatelH.D. Recent advances in the synthesis of 2-substituted benzothiazoles: A review.RSC Advances20144104601766020810.1039/C4RA07437H
    [Google Scholar]
  47. ZhangM. LuW.T. RuanW. ZhangH.J. WenT.B. Copper-catalyzed solvent-free redox condensation of benzothiazoles with aldehydes or benzylic alcohols.Tetrahedron Lett.201455101806180910.1016/j.tetlet.2014.01.120
    [Google Scholar]
  48. MalekiB. SalehabadiH. Ammonium chloride; as a mild and efficient catalyst for the synthesis of some 2-arylbenzothiazoles and bisbenzothiazole derivatives.Eur. J. Chem.20101437738010.5155/eurjchem.1.4.377‑380.165
    [Google Scholar]
  49. MalekiB. SalehabadiH. MoghaddamM.K. Room-temperature synthesis of 2-arylbenzothiazoles using sulfuric acid immobilized on silica as a reusable catalyst under heterogeneous condition.Acta Chim. Slov.2010573741745 24061824
    [Google Scholar]
  50. HyvlJ. SroglJ. Copper‐catalyzed activation of disulfides as a key step in the synthesis of benzothiazole moieties.Eur. J. Org. Chem.20102010152849285110.1002/ejoc.201000174
    [Google Scholar]
  51. WeekesA.A. FrydrychJ. WestwellA.D. Convenient synthesis of substituted 2-phenylbenzothiazoles using solid-supported triphenylphosphine.Synth. Commun.201343192656266210.1080/00397911.2012.730648
    [Google Scholar]
  52. LiuB. ZhuN. HongH. HanL. Novel synthesis of benzothiazole by self-redox tandem reaction of disulfide with aldehyde.Tetrahedron201571499287929210.1016/j.tet.2015.10.029
    [Google Scholar]
  53. RayS. DasP. BanerjeeB. BhaumikA. MukhopadhyayC. Piperazinylpyrimidine modified MCM-41 for the ecofriendly synthesis of benzothiazoles by the simple cleavage of disulfide in the presence of molecular O2.RSC Advances2015589727457275410.1039/C5RA14894D
    [Google Scholar]
  54. HutchinsonI. ChuaM.S. BrowneH.L. TrapaniV. BradshawT.D. WestwellA.D. StevensM.F.G. Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl)benzothiazoles.J. Med. Chem.20014491446145510.1021/jm001104n 11311068
    [Google Scholar]
  55. ShiD.Q. RongS.F. DouG.L. Efficient synthesis of 2-arylbenzothiazole derivatives with the aid of a low-valent titanium reagent.Synth. Commun.201040152302231010.1080/00397910903227230
    [Google Scholar]
  56. WangZ. TangR. XiaoQ. Na2S2O4‐mediated cyclocondensations of 2,2′‐disulfanediyldi‐ anilines with aldehydes: A facile and inexpensive method for the synthesis of 2‐substituted benzothiazoles.Chin. J. Chem.201129231432010.1002/cjoc.201190084
    [Google Scholar]
  57. SroglJ. HývlJ. RévészÁ. SchröderD. Mechanistic insights into a copper-disulfide interaction in oxidation of imines by disulfides.Chem. Commun. (Camb.)200923233463346510.1039/b904403e 19503905
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461307610240903094350
Loading
/content/journals/cgc/10.2174/0122133461307610240903094350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test