Skip to content
2000
image of Electro-sustainable Synthesis: Rapid and Efficient Production of Benzothiazole Derivatives through Electrochemical Means for Sustainable Chemistry

Abstract

Electro-organic synthesis suggested a mild, environmentally benign, and atom-efficient pathway to interesting and useful organic compounds. Organic electrochemistry offers an excellent alternative to conventional methods of organic synthesis, avoiding harsh, oxidizing and reducing agents, . In our reported work, electro-organic synthesis was carried out in an undivided cell at room temperature in the presence of lithium perchlorate as a supporting electrolyte. Electricity is utilized here instead of a chemical substance with a simple graphite-iron electrode combination. The generation of 2-substituted benzothiazoles was achieved through the amalgamation of bis(2-aminophenyl)disulfides with aromatic aldehydes under the influence of the electrodes. This synthetic process yielded a diverse array of 2-substituted benzothiazoles with satisfactory to excellent yields (64-91%). This is a gentle, sustainable, and metal-free condition for the synthesis of 2-substituted benzothiazoles. In this procedure, subsequent procedural steps encompassed the introduction of distilled water followed by filtration and drying processes to ensure the refinement of the final products.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461307610240903094350
2024-09-16
2024-11-01
Loading full text...

Full text loading...

References

  1. Schneider P. Schneider G. Privileged Structures Revisited. Angew. Chem. Int. Ed. 2017 56 27 7971 7974 10.1002/anie.201702816 28558125
    [Google Scholar]
  2. Bräse S. Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation. Cambridge RSC 2015 10.1039/9781782622246
    [Google Scholar]
  3. Yet L. Privileged Structures in Drug Discovery. Hoboken John Wiley & Sons, Inc. 2018 10.1002/9781118686263
    [Google Scholar]
  4. a Vicini P. Geronikaki A. Incerti M. Busonera B. Poni G. Cabras C.A. La Colla P. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem. 2003 11 22 4785 4789 10.1016/S0968‑0896(03)00493‑0
    [Google Scholar]
  5. b PMID: 14556794 Tale R.H. Novel synthesis of 2-arylbenzothiazoles mediated by ceric ammonium nitrate (CAN). Org. Lett. 2002 4 10 1641 1642 10.1021/ol020027i 12000262
    [Google Scholar]
  6. a Henriksen G. Hauser A.I. Westwell A.D. Yousefi B.H. Schwaiger M. Drzezga A. Wester H.J. Metabolically stabilized benzothiazoles for imaging of amyloid plaques. J. Med. Chem. 2007 50 6 1087 1089 10.1021/jm061466g
    [Google Scholar]
  7. b PMID: 17319654 Wang M. Gao M. Mock B.H. Miller K.D. Sledge G.W. Hutchins G.D. Zheng Q.H. Synthesis of carbon-11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents. Bioorg. Med. Chem. 2006 14 24 8599 8607 10.1016/j.bmc.2006.08.026
    [Google Scholar]
  8. c PMID: 16962783 Mortimer C.G. Wells G. Crochard J.P. Stone E.L. Bradshaw T.D. Stevens M.F.G. Westwell A.D. Antitumor Benzothiazoles. 26. 2-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a Simple Fluorinated 2-Arylbenzothiazole, Shows Potent and Selective Inhibitory Activity against Lung, Colon, and Breast Cancer Cell Lines. J. Med. Chem. 2006 49 1 179 185 10.1021/jm050942k
    [Google Scholar]
  9. d PMID: 16392802 Kamal A. Khan M.N.A. Reddy K.S. Srikanth Y.V.V. Sridhar B. Sridhar B. Synthesis, structural characterization and biological evaluation of novel [1,2,4]triazolo [1,5-b][1,2,4]benzothiadiazine-benzothiazole conjugates as potential anticancer agents. Chem. Biol. Drug Des. 2008 71 1 78 86 10.1111/j.1747‑0285.2007.00609.x
    [Google Scholar]
  10. e PMID: 18086151 Liu C. Lin J. Pitt S. Zhang R.F. Sack J.S. Kiefer S.E. Kish K. Doweyko A.M. Zhang H. Marathe P.H. Trzaskos J. Mckinnon M. Dodd J.H. Barrish J.C. Schieven G.L. Leftheris K. Benzothiazole based inhibitors of p38α MAP kinase. Bioorg. Med. Chem. Lett. 2008 18 6 1874 1879 10.1016/j.bmcl.2008.02.011 18296051
    [Google Scholar]
  11. Bellavia V. Natangelo M. Fanelli R. Rotilio D. Analysis of benzothiazole in Italian wines using headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Agric. Food Chem. 2000 48 4 1239 1242 10.1021/jf990634t 10775378
    [Google Scholar]
  12. a Ono M. Development of positron-emission tomography/single-photon emission computed tomography imaging probes for in vivo detection of beta-amyloid plaques in Alzheimer’s brains. Chem. Pharm. Bull. (Tokyo) 2009 57 10 1029 1039 10.1248/cpb.57.1029
    [Google Scholar]
  13. b PMID: 19801854 Henriksen G. Yousefi B.H. Drzezga A. Wester H.J. Development and evaluation of compounds for imaging of β-amyloid plaque by means of positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 2008 35 S1 75 81 10.1007/s00259‑007‑0705‑x
    [Google Scholar]
  14. Mathis C.A. Bacskai B.J. Kajdasz S.T. McLellan M.E. Frosch M.P. Hyman B.T. Holt D.P. Wang Y. Huang G.F. Debnath M.L. Klunk W.E. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett. 2002 12 3 295 298 10.1016/S0960‑894X(01)00734‑X 11814781
    [Google Scholar]
  15. Chen Z. Zeng M. Song B. Hou C. Hu D. Li X. Wang Z. Fan H. Bi L. Liu J. PLoS One 2012
    [Google Scholar]
  16. Alarcón A.B. Cuesta-Rubio O. Pérez J.C. Piccinelli A.L. Rastrelli L. Constituents of the Cuban Endemic Species Calophyllum pinetorum. J. Nat. Prod. 2008 71 7 1283 1286 10.1021/np800079c
    [Google Scholar]
  17. a Kumbhare R.M. Dadmal T. Kosurkar U. Sridhar V. Rao J.V. Synthesis and cytotoxic evaluation of thiourea and N-bis-benzothiazole derivatives: A novel class of cytotoxic agents. Bioorg. Med. Chem. Lett. 2012 22 1 453 455 10.1016/j.bmcl.2011.10.106
    [Google Scholar]
  18. b PMID: 22115593 Wang Z. Shi X.H. Wang J. Zhou T. Xu Y.Z. Huang T.T. Li Y.F. Zhao Y.L. Yang L. Yang S.Y. Yu L.T. Wei Y.Q. Synthesis, structure–activity relationships and preliminary antitumor evaluation of benzothiazole-2-thiol derivatives as novel apoptosis inducers. Bioorg. Med. Chem. Lett. 2011 21 4 1097 1101 10.1016/j.bmcl.2010.12.124 21262571
    [Google Scholar]
  19. Bolelli K. Yalcin I. Ertan-Bolelli T. Özgen S. Kaynak-Onurdag F. Yildiz I. Aki E. Synthesis of novel 2-[4-(4-substitutedbenzamido/phenylacetamido)phenyl]benzothiazoles as antimicrobial agents. Med. Chem. Res. 2012 21 11 3818 3825 10.1007/s00044‑011‑9918‑4
    [Google Scholar]
  20. a Porcari A.R. Devivar R.V. Kucera L.S. Drach J.C. Townsend L.B. Design, Synthesis, and Antiviral Evaluations of 1-(Substituted benzyl)-2-substituted-5,6-dichlorobenzimidazoles as Nonnucleoside Analogues of 2,5,6-Trichloro-1-(β- D -ribofuranosyl)benzimidazole. J. Med. Chem. 1998 41 8 1252 1262 10.1021/jm970559i
    [Google Scholar]
  21. b PMID: 9548815 Roth T. Morningstar M.L. Boyer P.L. Hughes S.H. Buckheit R.W. Jr Michejda C.J. Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-substituted benzimidazoles. J. Med. Chem. 1997 40 26 4199 4207 10.1021/jm970096g 9435891
    [Google Scholar]
  22. Van Zandt M.C. Jones M.L. Gunn D.E. Geraci L.S. Jones J.H. Sawicki D.R. Sredy J. Jacot J.L. DiCioccio A.T. Petrova T. Mitschler A. Podjarny A.D. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J. Med. Chem. 2005 48 9 3141 3152 10.1021/jm0492094 15857120
    [Google Scholar]
  23. Mylari B.L. Larson E.R. Beyer T.A. Zembrowski W.J. Aldinger C.E. Dee M.F. Siegel T.W. Singleton D.H. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J. Med. Chem. 1991 34 1 108 122 10.1021/jm00105a018 1899452
    [Google Scholar]
  24. a Bradshaw T. Westwell A. The development of the antitumour benzothiazole prodrug, Phortress, as a clinical candidate. Curr. Med. Chem. 2004 11 8 1009 1021 10.2174/0929867043455530
    [Google Scholar]
  25. b PMID: 15078163 Rodrigues-Rodrigues C. De Groot N.S. Rimola A. Alva- rez-Larena; Lloveras, A. V.; Vidal- Gancedo, J.; Ventura, S.; Vend- rell, J.; Sodupe, M.; Gonzalez-Duarte. P. J. Am. Chem. Soc. 2009 131 1436 1451
    [Google Scholar]
  26. Chen, j.; Mo, Y. Wireless Electrochemical Reactor for Accelerated Exploratory Study of Electroorganic Synthesis. ACS Cent. Sci. 2023 9 1820 1826 10.1021/acscentsci.3c00856 37780362
    [Google Scholar]
  27. Claraz A. Djian A. Masson G. Electrochemical tandem trifluoromethylation of allylamines/formal (3 + 2)-cycloaddition for the rapid access to CF 3 -containing imidazolines and oxazolidines. Org. Chem. Front. 2021 8 2 288 296 10.1039/D0QO01307B
    [Google Scholar]
  28. Zhang Y. Xu S. Zhu Y. Xu Q. Gao H. Liang Z. Yao X. One‐Pot Synthesis of 4‐Thiocyanato‐1 H ‐pyrazoles through Electrochemical Multicomponent Thiocyanation under Metal‐ and Oxidant‐Free Conditions. Eur. J. Org. Chem. 2023 26 2 e202201278 10.1002/ejoc.202201278
    [Google Scholar]
  29. Elinson M.N. Ryzhkova Y.E. Vereshchagin A.N. Ryzhkov F.V. Kalashnikova V.M. Korolev V.A. Egorov M.P. Electrochemically induced assembling of isatins, kojic acid, and malonic acid derivatives into substituted spiro[indole‐3,4′‐pyran]‐2(1H)‐one scaffold and predicting potential protein targets. J. Heterocycl. Chem. 2023 60 2 277 290 10.1002/jhet.4579
    [Google Scholar]
  30. Mohammadi A.A. Makarem S. Ahdenov R. Notash N.A. Green pseudo-multicomponent synthesis of some new spirocyclopropane derivatives via electro-catalyzed reaction. Mol. Divers. 2020 24 3 763 770 10.1007/s11030‑019‑09979‑8 31414305
    [Google Scholar]
  31. a Little R.D. Moeller K.D. Interface (Maynooth) 2002 11 36 42
    [Google Scholar]
  32. b Moeller K. Tang F. Chen C. Electrochemistry and Umpolung Reactions: New Tools for Solving Synthetic Challenges of Structure and Location. Synthesis 2007 2007 21 3411 3420 10.1055/s‑2007‑990835
    [Google Scholar]
  33. a Yoshida J.I. Kataoka K. Horcajada R. Nagaki A. Modern Strategies in Electroorganic Synthesis. Chem. Rev. 2008 108 7 2265 2299
    [Google Scholar]
  34. b http://10.1021/cr0680843 Francke R. Little R.D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 2014 43 8 2492 2521
    [Google Scholar]
  35. c http://10.1039/C3CS60464K Sperry J.B. Wright D.L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev. 2006 35 7 605 621
    [Google Scholar]
  36. d http://10.1039/B512308A Frontana-Uribe B.A. Little R. D Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem. 2010 12 2099 2119
    [Google Scholar]
  37. e http://10.1039/C0GC00382D Ogawa K.A. Boydston A.J. Recent Developments in Organocatalyzed Electroorganic Chemistry. Chem. Lett. 2015 44 1 10 16 10.1246/cl.140915
    [Google Scholar]
  38. Bernard A. Frontana-Uribe R. Daniel L. Jorge G.; banez, I.; Agustin, P.; Ruben, V. M. Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem. 2010 12 2099 2119 10.1039/C0GC00382D
    [Google Scholar]
  39. a Aslam S. Rani S. Lal K. Fatima M. Hardwick T. Shirinfar B. Ahmed N. Electrochemical hydrogen production: sustainable hydrogen economy. Green Chem. 2023 25 9543 9573 10.1039/D3GC02849F
    [Google Scholar]
  40. b Vlad A. Chen J. Yao Y. 2023 https://doi.org/10.1002/batt.202300090
  41. c Xu C. Zhang X. Duan L. Zhang X. Li X. Lü W. A photo-assisted rechargeable battery: synergy, compatibility and stability of a TiO2/dye/Cu2S bifunctional composite electrode. Nanoscale 2020 12 530 537 10.1039/C9NR09224B
    [Google Scholar]
  42. Ardakani M.K. Rostami E. Zare A. Graphene Oxide@Polyaniline-FeF3 (GO@PANI-FeF3) as a Novel and Effectual Catalyst for the Construction of 4H-Pyrimido [2,1-b] Benzothiazoles. Advanced Journal of Chemistry, Section A. 2024 7 3 236 247 10.48309/ajca.2023.428749.1460
    [Google Scholar]
  43. Meghdadi S. Amirnasr M. Ford P.C. A robust one-pot synthesis of benzothiazoles from carboxylic acids including examples with hydroxyl and amino substituents. Tetrahedron Lett. 2012 53 51 6950 6953 10.1016/j.tetlet.2012.10.035
    [Google Scholar]
  44. Weekes A.A. Bagley M.C. Westwell A.D. An efficient synthetic route to biologically relevant 2-phenylbenzothiazoles substituted on the benzothiazole ring. Tetrahedron 2011 67 40 7743 7747 10.1016/j.tet.2011.08.004
    [Google Scholar]
  45. Cole G.B. Keum G. Liu J. Small G.W. Satyamurthy N. Kepe V. Barrio J.R. Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proc. Natl. Acad. Sci. USA 2010 107 14 6222 6227 10.1073/pnas.0914904107 20304798
    [Google Scholar]
  46. Prajapati N.P. Vekariya R.H. Borad M.A. Patel H.D. Recent advances in the synthesis of 2-substituted benzothiazoles: a review. RSC Advances 2014 4 104 60176 60208 10.1039/C4RA07437H
    [Google Scholar]
  47. Zhang M. Lu W.T. Ruan W. Zhang H.J. Wen T.B. Copper-catalyzed solvent-free redox condensation of benzothiazoles with aldehydes or benzylic alcohols. Tetrahedron Lett. 2014 55 10 1806 1809 10.1016/j.tetlet.2014.01.120
    [Google Scholar]
  48. Maleki B. Salehabadi H. Ammonium chloride; as a mild and efficient catalyst for the synthesis of some 2-arylbenzothiazoles and bisbenzothiazole derivatives. Eur. J. Chem. 2010 1 4 377 380 10.5155/eurjchem.1.4.377‑380.165
    [Google Scholar]
  49. Maleki B. Salehabadi H. Moghaddam M.K. Room-Temperature Synthesis of 2-Arylbenzothiazoles using Sulfuric Acid Immobilized on Silica as a Reusable Catalyst under Heterogeneous Condition. Acta Chim. Slov. 2010 57 3 741 745 24061824
    [Google Scholar]
  50. Hyvl J. Srogl J. Copper‐Catalyzed Activation of Disulfides as a Key Step in the Synthesis of Benzothiazole Moieties. Eur. J. Org. Chem. 2010 2010 15 2849 2851 10.1002/ejoc.201000174
    [Google Scholar]
  51. Weekes A.A. Frydrych J. Westwell A.D. Convenient Synthesis of Substituted 2-Phenylbenzothiazoles Using Solid-Supported Triphenylphosphine. Synth. Commun. 2013 43 19 2656 2662 10.1080/00397911.2012.730648
    [Google Scholar]
  52. Liu B. Zhu N. Hong H. Han L. Novel synthesis of benzothiazole by self-redox tandem reaction of disulfide with aldehyde. Tetrahedron 2015 71 49 9287 9292 10.1016/j.tet.2015.10.029
    [Google Scholar]
  53. Ray S. Das P. Banerjee B. Bhaumik A. Mukhopadhyay C. Piperazinylpyrimidine modified MCM-41 for the ecofriendly synthesis of benzothiazoles by the simple cleavage of disulfide in the presence of molecular O 2. RSC Advances 2015 5 89 72745 72754 10.1039/C5RA14894D
    [Google Scholar]
  54. Hutchinson I. Chua M.S. Browne H.L. Trapani V. Bradshaw T.D. Westwell A.D. Stevens M.F.G. Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl)benzothiazoles. J. Med. Chem. 2001 44 9 1446 1455 10.1021/jm001104n 11311068
    [Google Scholar]
  55. Shi D.Q. Rong S.F. Dou G.L. Efficient Synthesis of 2-Arylbenzothiazole Derivatives with the Aid of a Low-Valent Titanium Reagent. Synth. Commun. 2010 40 15 2302 2310 10.1080/00397910903227230
    [Google Scholar]
  56. Wang Z. Tang R. Xiao Q. Na 2 S 2 O 4 ‐Mediated Cyclocondensations of 2,2′‐Disulfanediyldi‐ anilines with Aldehydes: A Facile and Inexpensive Method for the Synthesis of 2‐Substituted Benzothiazoles. Chin. J. Chem. 2011 29 2 314 320 10.1002/cjoc.201190084
    [Google Scholar]
  57. Srogl J. Hývl J. Révész Á. Schröder D. Mechanistic insights into a copper–disulfide interaction in oxidation of imines by disulfides. Chem. Commun. (Camb.) 2009 23 23 3463 3465 10.1039/b904403e 19503905
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461307610240903094350
Loading
/content/journals/cgc/10.2174/0122133461307610240903094350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test