Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Plastic waste is a current issue worldwide that is already negatively influencing and threatening the lives of human beings, with residual micro- and nanoplastics entering water and soil bodies inducing recalcitrant pollution and health issues. The proposed perspective has been aimed to provide an overview of the potential of plastic waste valorization to green hydrogen and carbonaceous nanostructures. The overall concept additionally includes the utilization of the generated carbonaceous nanostructures to design advanced functional materials in combination with the obtained green hydrogen from plastic waste in a number of batch-to-flow catalytic hydrogenations to close the circle of sustainable integrated valorization of plastic waste. The concept also includes insightful Life-Cycle Assessment (LCA) and techno-economic studies in order to select the most relevant lines from the sustainability and cost-competitive standpoints.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461291112240404032247
2024-04-15
2024-11-22
Loading full text...

Full text loading...

References

  1. MacLeodM. ArpH.P.H. TekmanM.B. JahnkeA. The global threat from plastic pollution.Science20213736550616510.1126/science.abg5433 34210878
    [Google Scholar]
  2. MartínA.J. MondelliC. JaydevS.D. Pérez-RamírezJ. Catalytic processing of plastic waste on the rise.Chem2021761487153310.1016/j.chempr.2020.12.006
    [Google Scholar]
  3. CheC.A. HeynderickxP.M. Hydrothermal carbonization of plastic waste: A review of its potential in alternative energy applications.Fuel Communications20241810010310.1016/j.jfueco.2023.100103
    [Google Scholar]
  4. HarussaniM.M. SapuanS.M. RashidU. KhalinaA. IlyasR.A. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic.Sci. Total Environ.202280314991110.1016/j.scitotenv.2021.149911 34525745
    [Google Scholar]
  5. JambeckJ.R. GeyerR. WilcoxC. SieglerT.R. PerrymanM. AndradyA. NarayanR. LawK.L. Plastic waste inputs from land into the ocean.Science2015347622376877110.1126/science.1260352 25678662
    [Google Scholar]
  6. ErikssonO. FinnvedenG. Plastic waste as a fuel - CO2-neutral or not?Energy Environ. Sci.20092990791410.1039/b908135f
    [Google Scholar]
  7. GeyerR. JambeckJ.R. LawK.L. Production, use, and fate of all plastics ever made.Sci. Adv.201737e170078210.1126/sciadv.1700782 28776036
    [Google Scholar]
  8. JiaX. QinC. FriedbergerT. GuanZ. HuangZ. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions.Sci. Adv.201626e150159110.1126/sciadv.1501591 27386559
    [Google Scholar]
  9. (a ZhouH. WangY. RenY. LiZ. KongX. ShaoM. DuanH. Plastic waste valorization by leveraging multidisciplinary catalytic technologies.ACS Catal.202212159307932410.1021/acscatal.2c02775
    [Google Scholar]
  10. (b ZhangF. ZhaoY. WangD. YanM. ZhangJ. ZhangP. DingT. ChenL. ChenC. Current technologies for plastic waste treatment: A review.J. Clean. Prod.202128212452310.1016/j.jclepro.2020.124523
    [Google Scholar]
  11. AgarwalN.K. KumarM. GhoshP. KumarS.S. SinghL. VijayV.K. KumarV. Anaerobic digestion of sugarcane bagasse for biogas production and digestate valorization.Chemosphere202229513389310.1016/j.chemosphere.2022.133893 35134407
    [Google Scholar]
  12. ChaudharyV. KajlaP. VermaD. SinghT.P. KothakotaA. PrasathV.A. JeevarathinamG. KumarM. RamniwasS. RustagiS. PandiselvamR. Valorization of dairy wastes into wonder products by the novel use of microbial cell factories.Trends Food Sci. Technol.202314210422110.1016/j.tifs.2023.104221
    [Google Scholar]
  13. OkoriF. LedererJ. KomakechA.J. SchwarzböckT. FellnerJ. Plastics and other extraneous matter in municipal solid waste compost: A systematic review of sources, occurrence, implications, and fate in amended soils.Environ. Adv.20241510049410.1016/j.envadv.2024.100494
    [Google Scholar]
  14. ZhouX. WuB. QianX. XuL. XuA. ZhouJ. JiangM. DongW. Valorization of PE plastic waste into lipid cells through tandem catalytic pyrolysis and biological conversion.J. Environ. Chem. Eng.202311511101610.1016/j.jece.2023.111016
    [Google Scholar]
  15. GluthA. XuZ. FifieldL.S. YangB. Advancing biological processing for valorization of plastic wastes.Renew. Sustain. Energy Rev.202217011296610.1016/j.rser.2022.112966
    [Google Scholar]
  16. TanK.Q. AhmadM.A. OhW.D. LowS.C. Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis.Renew. Sustain. Energy Rev.202318211334610.1016/j.rser.2023.113346
    [Google Scholar]
  17. Díaz-PereteD. Hermoso-OrzáezM.J. Terrados-CepedaJ. Silva-RomanoP. Martin-DoñateC. WEEE polymers valorization, its use as fuel in the gasification process and revaluation of the inert by-products obtained: Sustainable mortars as a solution.Heliyon202399e2019410.1016/j.heliyon.2023.e20194 37809432
    [Google Scholar]
  18. FarghaliM. ShimahataA. MohamedI.M.A. IwasakiM. LuJ. IharaI. UmetsuK. Integrating anaerobic digestion with hydrothermal pretreatment for bioenergy production: Waste valorization of plastic containing food waste and rice husk.Biochem. Eng. J.202218610854610.1016/j.bej.2022.108546
    [Google Scholar]
  19. Ebrahimi FarshchiM. Madadian BozorgN. EhsaniA. AghdasiniaH. ChenZ. RostamniaS. NiB.J. Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol.J. Environ. Manage.202334511884210.1016/j.jenvman.2023.118842 37619388
    [Google Scholar]
  20. (a OufkirJ. ZerrafS. BelaaouadS. Valorization of agricultural polyolefin plastic waste in the kingdom of morocco through thermal pyrolysis: Influence of thermal parameters on pyrolytic oil yields.Sci. Am.202423e01991
    [Google Scholar]
  21. (b OlazarL. SaldarriagaJ.F. LopezG. SantamariaL. AmutioM. OlazarM. ArtetxeM. Insight into the joint valorization of CO2 and waste plastics by pyrolysis and in line dry reforming for syngas production.Fuel Process. Technol.202425310802410.1016/j.fuproc.2023.108024
    [Google Scholar]
  22. (a Maria Coelho ViannaL. de OliveiraL. Durante MühlD. Waste valorization in agribusiness value chains.Waste Management Bulletin20241419520410.1016/j.wmb.2023.10.009
    [Google Scholar]
  23. (b ValizadehS. HakimianH. FarooqA. JeonB.H. ChenW.H. Hoon LeeS. JungS.C. Won SeoM. ParkY.K. Valorization of biomass through gasification for green hydrogen generation: A comprehensive review.Bioresour. Technol.202236512814310.1016/j.biortech.2022.128143 36265786
    [Google Scholar]
  24. (a Ibarra-EsparzaF.E. González-LópezM.E. Ibarra-EsparzaJ. Lara-TopeteG.O. Senés-GuerreroC. CansdaleA. ForresterS. ChongJ.P.J. Gradilla-HernándezM.S. Implementation of anaerobic digestion for valorizing the organic fraction of municipal solid waste in developing countries: Technical insights from a systematic review.J. Environ. Manage.202334711899310.1016/j.jenvman.2023.11899337751665
    [Google Scholar]
  25. (b SabaB. BharathidasanA.K. EzejiT.C. CornishK. Characterization and potential valorization of industrial food processing wastes.Sci. Total Environ.202386816155010.1016/j.scitotenv.2023.161550 36652966
    [Google Scholar]
  26. OkopiS.I. WangJ. KongW. YuZ. NdudiE.A. CheL. GuZ. XuF. Valorization of food waste impurities by catalytic co-pyrolysis for production of pyrolysis oil with high energy potential.J. Anal. Appl. Pyrolysis202317010591810.1016/j.jaap.2023.105918
    [Google Scholar]
  27. KamaliA.R. LiS. Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance.Appl. Energy202333412069210.1016/j.apenergy.2023.120692
    [Google Scholar]
  28. (a ZhangZ. LiX. LiuH. ZamyadiA. GuoW. WenH. GaoL. NghiemL.D. WangQ. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review.Bioresour. Technol.2022344Pt A12619710.1016/j.biortech.2021.12619734710608
    [Google Scholar]
  29. (b KraakmanN.J.R. DiazI. Fdz-PolancoM. MuñozR. Large-scale micro-aerobic digestion studies at municipal water resource recovery facilities for process-integrated biogas desulfurization.J. Water Process Eng.20235310364310.1016/j.jwpe.2023.103643
    [Google Scholar]
  30. (a PasciuccoF. FranciniG. PecoriniI. BaccioliA. LombardiL. FerrariL. Valorization of biogas from the anaerobic co-treatment of sewage sludge and organic waste: Life cycle assessment and life cycle costing of different recovery strategies.J. Clean. Prod.202340113676210.1016/j.jclepro.2023.136762
    [Google Scholar]
  31. (b AmbayeT.G. DjellabiR. VaccariM. PrasadS. M AminabhaviT. RtimiS. Emerging technologies and sustainable strategies for municipal solid waste valorization: Challenges of circular economy implementation.J. Clean. Prod.202342313870810.1016/j.jclepro.2023.138708
    [Google Scholar]
  32. PengX.Y. WangS.P. ChuX.L. SunZ.Y. XiaZ.Y. XieC.Y. GouM. TangY.Q. Valorizing kitchen waste to produce value-added fertilizer by thermophilic semi-continuous composting followed by static stacking: Performance and bacterial community succession analysis.Bioresour. Technol.202337312873210.1016/j.biortech.2023.128732 36774986
    [Google Scholar]
  33. AzeleeN.I.W. DahiyaD. AyothiramanS. NoorN.M. RasidZ.I.A. RamliA.N.M. RavindranB. IwuchukwuF.U. SelvasembianR. Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications - A review.Int. J. Biol. Macromol.2023253Pt 212649210.1016/j.ijbiomac.2023.126492 37634772
    [Google Scholar]
  34. (a ZhangP. LiangC. WuM. LiY. ChenX. LiuD. MaJ. Sustainable microwave-driven CO2 gasification of plastic waste for high-yield H2 and CO production.Appl. Catal. B202434512371810.1016/j.apcatb.2024.123718
    [Google Scholar]
  35. (b Salgado-RamosM. Martí-QuijalF.J. Huertas-AlonsoA.J. Sánchez-VerdúM.P. BarbaF.J. MorenoA. Microwave heating for sustainable valorization of almond hull towards high-added-value chemicals.Ind. Crops Prod.202218911576610.1016/j.indcrop.2022.115766
    [Google Scholar]
  36. LopezG. SantamariaL. Microwaving plastic into hydrogen and carbons.Nat. Catal.202031186186210.1038/s41929‑020‑00538‑1
    [Google Scholar]
  37. RamzanF. ShoukatB. NazM.Y. ShukrullahS. AhmadF. NazI. MakhloufM.M. FarooqM.U. KamranK. Single step microwaves assisted catalytic conversion of plastic waste into valuable fuel and carbon nanotubes.Thermochim. Acta202271517929410.1016/j.tca.2022.179294
    [Google Scholar]
  38. ParmarK.R. TuliV. CaiolaA. HuJ. WangY. Sustainable production of hydrogen and carbon nanotubes/nanofibers from plastic waste through microwave degradation.Int. J. Hydrogen Energy20245148849810.1016/j.ijhydene.2023.08.224
    [Google Scholar]
  39. ZhaoJ. GaoJ. WangD. ChenY. ZhangL. MaW. ZhaoS. Microwave-intensified catalytic upcycling of plastic waste into hydrogen and carbon nanotubes over self-dispersing bimetallic catalysts.Chem. Eng. J.202448314927010.1016/j.cej.2024.149270
    [Google Scholar]
  40. (a ZhangL. WuQ. FanL. LiaoR. ZhangJ. ZouR. CobbK. RuanR. WangY. Monocyclic aromatic hydrocarbons production from NaOH pretreatment metallized food plastic packaging waste through microwave pyrolysis coupled with ex-situ catalytic reforming.Chem. Eng. J.202448414977710.1016/j.cej.2024.149777
    [Google Scholar]
  41. (b FanS. ZhangY. CuiL. MaqsoodT. NižetićS. Cleaner production of aviation oil from microwave-assisted pyrolysis of plastic wastes.J. Clean. Prod.202339013610210.1016/j.jclepro.2023.136102
    [Google Scholar]
  42. (a MengY. ZhouY. ShaoY. ZhouD. ShenD. LongY. Evaluating the potential of the microwave hydrothermal method for valorizing food waste by producing 5-hydroxymethylfurfural.Fuel202130612176910.1016/j.fuel.2021.121769
    [Google Scholar]
  43. (b WangB. ChenY. ChenW. HuJ. ChangC. PangS. LiP. Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field.Energy202429313071110.1016/j.energy.2024.130711
    [Google Scholar]
  44. c NguyenB.N.T. LimJ.Y.C. Emerging green approaches for valorization of plastics with saturated carbon backbones.Trends Chem.20246310011410.1016/j.trechm.2024.01.001
    [Google Scholar]
  45. KumarV. VermaP. Pulp-paper industry sludge waste biorefinery for sustainable energy and value-added products development: A systematic valorization towards waste management.J. Environ. Manage.202435212005210.1016/j.jenvman.2024.120052 38244409
    [Google Scholar]
  46. LiuQ. JiangD. ZhouH. YuanX. WuC. HuC. LuqueR. WangS. ChuS. XiaoR. ZhangH. Pyrolysis–catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy.Proc. Natl. Acad. Sci. USA202312039e230507812010.1073/pnas.2305078120 37695879
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461291112240404032247
Loading
/content/journals/cgc/10.2174/0122133461291112240404032247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test