Skip to content
2000
Volume 11, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

The design and operation of distillation columns is based on vapor-liquid equilibrium data, which is a necessity for the chemical industry. In recent years, chemical industry has embraced green chemistry and sustainable development. Furthermore, green solvents are more environment-friendly and cleaner than conventional solvents and thus offer a good alternative. Very limited work has been reported in the literature that focuses on the generation of isobaric/isothermal vapor-liquid equilibrium (VLE) data of systems comprising green solvents. In this paper, reported VLE data are explored for three emerging green solvents, such as cyclopentyl methyl ether (CPME), γ-valerolactone (GVL), and 2-methyltetrahydrofuran (2-MeTHF). Emerging green solvents have favorable environmental, health, and safety characteristics, making them attractive alternatives for a wide range of applications. The study focuses on two critical separations; the extraction of formic acid from Power-to-X chemical processes and purification of acetic acid from chemical synthesis or fermentation processes. Both processes are integral parts of the chemical industry's sustainable development. To facilitate these separations, accurate VLE data for these green solvents with acetic acid/formic acid systems are essential. The paper reviews literature related to VLE data for systems involving these green solvents. It provides insights into the experimental conditions, equipment, analysis methods, thermodynamic models, and error-minimizing functions used in the previous studies. The researchers can refer to this information as a useful reference prior to the VLE experimentation and modeling of systems comprising these three green solvents. Moreover, the paper presents an overview of recent research on green solvents and their applications, illustrating their versatility and potential for various industrial processes. Research efforts are needed to generate VLE data for green solvent systems and support the chemical industry in transitions towards more sustainable practices.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461272026231101094324
2023-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. WintertonN. The green solvent: A critical perspective.Clean Technol. Environ. Policy20212392499252210.1007/s10098‑021‑02188‑834608382
    [Google Scholar]
  2. HäcklK. KunzW. Some aspects of green solvents.C. R. Chim.201821657258010.1016/j.crci.2018.03.010
    [Google Scholar]
  3. SchuurB. BrouwerT. SminkD. SprakelL.M.J. Green solvents for sustainable separation processes.Curr. Opin. Green Sustain. Chem.201918576510.1016/j.cogsc.2018.12.009
    [Google Scholar]
  4. CapelloC. FischerU. HungerbühlerK. What is a green solvent? A comprehensive framework for the environmental assessment of solvents.Green Chem.20079992793410.1039/b617536h
    [Google Scholar]
  5. MengesN. The role of green solvents and catalysts at the future of drug design and of synthesis. Green Chemistry.IntechOpen201710.5772/intechopen.71018
    [Google Scholar]
  6. ClarkeC.J. TuW.C. LeversO. BröhlA. HallettJ.P. Green and sustainable solvents in chemical processes.Chem. Rev.2018118274780010.1021/acs.chemrev.7b0057129300087
    [Google Scholar]
  7. ByrneF.P. JinS. PaggiolaG. PetcheyT.H.M. ClarkJ.H. FarmerT.J. HuntA.J. Robert McElroyC. SherwoodJ. Tools and techniques for solvent selection: Green solvent selection guides.Sustainable Chem. Proc.201641710.1186/s40508‑016‑0051‑z
    [Google Scholar]
  8. WeltonT. Solvents and sustainable chemistry.Proc.- Royal Soc., Math. Phys. Eng. Sci.201547121832015050210.1098/rspa.2015.050226730217
    [Google Scholar]
  9. PrasadW. WaniA.D. KhamruiK. HussainS.A. KhetraY. Green solvents, potential alternatives for petroleum based products in food processing industries.Cleaner Chem. Eng.2022310005210.1016/j.clce.2022.100052
    [Google Scholar]
  10. BraduP. BiswasA. NairC. SreevalsakumarS. PatilM. KannampuzhaS. MukherjeeA.G. WanjariU.R. RenuK. VellingiriB. GopalakrishnanA.V. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future.Environ. Sci. Pollut. Res. Int.202213210.1007/s11356‑022‑20024‑435397034
    [Google Scholar]
  11. ParsanaV.M. ParikhS. ZiniyaK. DaveH. GadhiyaP. JoshiK. GandhiD. VlugtT.J.H. RamdinM. Isobaric vapor–liquid equilibrium data for tetrahydrofuran + acetic acid and tetrahydrofuran + trichloroethylene mixtures.J. Chem. Eng. Data202368234935710.1021/acs.jced.2c0059336812039
    [Google Scholar]
  12. LohmannJ. GmehlingJ. Modified UNIFAC (Dortmund). Reliable model for the development of thermal separation processes.J. Chem. Eng. Jap.2001341435410.1252/jcej.34.43
    [Google Scholar]
  13. BanatF. Al-AshehS. SimandlJ. Vapor–liquid equilibria of propionic acid–water system in the presence of different types of inorganic salts: effect of temperature and salt concentration.Chem. Eng. Process.2003421191792310.1016/S0255‑2701(02)00156‑3
    [Google Scholar]
  14. IJmkerH.M. GrambličkaM. KerstenS.R.A. van der HamA.G.J. SchuurB. Acetic acid extraction from aqueous solutions using fatty acids.Separ. Purif. Tech.201412525626310.1016/j.seppur.2014.01.050
    [Google Scholar]
  15. RamdinM. MorrisonA.R.T. de GroenM. van HaperenR. de KlerR. IrtemE. LaitinenA.T. van den BroekeL.J.P. BreugelmansT. TruslerJ.P.M. JongW. VlugtT.J.H. High-pressure electrochemical reduction of CO2 to formic acid/formate: Effect of pH on the downstream separation process and economics.Ind. Eng. Chem. Res.20195851227182274010.1021/acs.iecr.9b03970
    [Google Scholar]
  16. Rego de VasconcelosB. LavoieJ.M. Recent advances in power-to-X technology for the production of fuels and chemicals.Front Chem.2019739210.3389/fchem.2019.0039231231632
    [Google Scholar]
  17. InceA.C. ColpanC.O. HagenA. SerincanM.F. Modeling and simulation of Power-to-X systems: A review.Fuel202130412135410.1016/j.fuel.2021.121354
    [Google Scholar]
  18. CentiG. PerathonerS. Catalytic Technologies for the Conversion and Reuse of CO2.Handbook of Climate Change Mitigation and Adaptation. LacknerM. SajjadiB. ChenW-Y. ChamSpringer International Publishing20221803185210.1007/978‑3‑030‑72579‑2_119
    [Google Scholar]
  19. PalysM.J. DaoutidisP. Power-to-X: A review and perspective.Comput. Chem. Eng.202216510794810.1016/j.compchemeng.2022.107948
    [Google Scholar]
  20. KountourisI. LangerL. BramstoftR. MünsterM. KelesD. Power-to-X in energy hubs: A Danish case study of renewable fuel production.Energy Policy202317511343910.1016/j.enpol.2023.113439
    [Google Scholar]
  21. BehrooziM. VahedpourM. ShardiM M. Separation of formic acid from aqueous solutions by liquid extraction technique at different temperatures.PCR20197120121510.22036/pcr.2019.154646.1557
    [Google Scholar]
  22. TimedjeghdineM. HasseineA. BinousH. BachaO. AttarakihM. Liquid–liquid equilibrium data for water + formic acid + solvent (butyl acetate, ethyl acetate, and isoamyl alcohol) at T = 291.15 K.Fluid Phase Equilib.2016415515710.1016/j.fluid.2016.01.045
    [Google Scholar]
  23. DeshmukhG. ManyarH. Production pathways of acetic acid and its versatile applications in the food industry.Biotechnological Applications of Biomass Peixoto BT. Olitta BT. Carlos BassoL. IntechOpen202110.5772/intechopen.92289
    [Google Scholar]
  24. KalckP. Le BerreC. SerpP. Recent advances in the methanol carbonylation reaction into acetic acid.Coord. Chem. Rev.202040221307810.1016/j.ccr.2019.213078
    [Google Scholar]
  25. XieQ. WanH. HanM. GuanG. Investigation on isobaric vapor–liquid equilibrium for acetic acid+water+methyl ethyl ketone+isopropyl acetate.Fluid Phase Equilib.20092801-212012810.1016/j.fluid.2009.03.008
    [Google Scholar]
  26. KarunanithiS. KapoorA. Senthil KumarP. BalasubramanianS. RangasamyG. Solvent extraction of acetic acid from aqueous solutions: A review.Sep. Sci. Technol.202358111985200710.1080/01496395.2023.2225734
    [Google Scholar]
  27. LeiZ. LiC. LiY. ChenB. Separation of acetic acid and water by complex extractive distillation.Separ. Purif. Tech.200436213113810.1016/S1383‑5866(03)00208‑9
    [Google Scholar]
  28. MajidM. RezaeiR. Separation of acetic acid from water using organic solvents: Liquid-liquid equilibrium thermodynamic investigation.Phy. Chem. Res.20208226728010.22036/pcr.2020.205810.1693
    [Google Scholar]
  29. Al MusaimiO. JadY.E. KumarA. CollinsJ.M. BassoA. de la TorreB.G. AlbericioF. Investigating green ethers for the precipitation of peptides after global deprotection in solid-phase peptide synthesis.Curr. Opin. Green Sustain. Chem.2018119910310.1016/j.cogsc.2018.06.017
    [Google Scholar]
  30. Bangalore AshokR.P. OinasP. ForssellS. Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from spruce.Renew. Energy202219039640710.1016/j.renene.2022.03.128
    [Google Scholar]
  31. de GonzaloG. AlcántaraA.R. Domínguez de MaríaP. Cyclopentyl Methyl Ether (CPME): A versatile eco‐friendly solvent for applications in biotechnology and biorefineries.ChemSusChem201912102083209710.1002/cssc.20190007930735610
    [Google Scholar]
  32. AlcantaraA.R. de MariaP.D. Recent advances on the use of 2-methyltetrahydrofuran (2-MeTHF) in biotransformations.Curr. Green Chem.2018528610310.2174/2213346105666180727100924
    [Google Scholar]
  33. AlonsoD.M. WettsteinS.G. DumesicJ.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass.Green Chem.201315358410.1039/c3gc37065h
    [Google Scholar]
  34. ParsanaV.M. ParsanaV.M. Measurement and correlation of vapour-liquid equilibria for cyclopentylmethyl ether + acetic acid at atmospheric pressure.Technology Drivers: Engine for Growth. MahajanA. ModiB.A. PatelP. CRC Press2018273510.1201/9780203713143‑4
    [Google Scholar]
  35. Al-LamiM. HavasiD. BathaB. PusztaiÉ. MikaL.T. Isobaric vapor–liquid equilibria for binary mixtures of biomass-derived γ-valerolactone + tetrahydrofuran and 2-methyltetrahydrofuran.J. Chem. Eng. Data20206563063307110.1021/acs.jced.0c00084
    [Google Scholar]
  36. HavasiD. FarkasD. MikaL.T. Isobaric vapor–liquid equilibria of binary mixtures of γ-valerolactone + acetone and ethyl acetate.J. Chem. Eng. Data202065241942510.1021/acs.jced.9b00379
    [Google Scholar]
  37. PatelA. ModiC. JoshipuraM. BhateN. Measurement and correlation of isobaric vapor liquid equilibrium data for cyclopentyl methyl ether and cyclopentanol.J. Chem. Eng. Data201964261962310.1021/acs.jced.8b00855
    [Google Scholar]
  38. HavasiD. MizseyP. MikaL.T. Vapor-liquid equilibrium study of the gamma-valerolactone-water binary system.J. Chem. Eng. Data20166141502150810.1021/acs.jced.5b00849
    [Google Scholar]
  39. HavasiD. PátzayG. KolarovszkiZ. MikaL.T. Isobaric vapor–liquid equilibria for binary mixtures of γ-valerolactone + methanol, ethanol, and 2-propanol.J. Chem. Eng. Data20166193326333310.1021/acs.jced.6b00384
    [Google Scholar]
  40. HavasiD. HajnalÁ. PátzayG. MikaL.T. Vapor–liquid equilibrium of γ-valerolactone and formic acid at p = 51 kPa.J. Chem. Eng. Data20176231058106210.1021/acs.jced.6b00867
    [Google Scholar]
  41. MejíaA. CartesM. Experimental determination of isobaric vapor–liquid equilibrium and isothermal interfacial tensions for the binary ethanol + cyclopentyl methyl ether mixture.J. Chem. Eng. Data20196451970197710.1021/acs.jced.8b01000
    [Google Scholar]
  42. PokkiJ.-P. LêH. Q. Uusi-KyynyP. SixtaH. AlopaeusV. Isobaric vapor–liquid equilibrium of furfural + γ-valerolactone at 30 kPa and isothermal liquid–liquid equilibrium of carbon dioxide + γ-valerolactone + water at 298 K.J. Chem. Eng. Data2018634381439110.1021/acs.jced.8b00451
    [Google Scholar]
  43. LaitinenA.T. ParsanaV.M. JauhiainenO. HuotariM. van den BroekeL.J.P. de JongW. VlugtT.J.H. RamdinM. Liquid–liquid extraction of formic acid with 2-methyltetrahydrofuran: Experiments, process modeling, and economics.Ind. Eng. Chem. Res.202160155588559910.1021/acs.iecr.1c0015934054211
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461272026231101094324
Loading
/content/journals/cgc/10.2174/0122133461272026231101094324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test