Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4080
  • E-ISSN:

Abstract

The present study examines the potential effect of (Boiss. & Reut.) on inhibiting various enzymes involved in many diseases.

Background

(Boiss. & Reut.) Ohle, a medicinal plant from the Mediterranean region and, more precisely, from the extreme northeast of Algeria, is characterized by its wide use in the traditional medicine of the local population. This is what prompted us to investigate some pharmacological benefits such as anti-diabetes and Alzheimer's activities, in addition to anti-oxidant activity.

The effects of extraction methods and solvents on the amount of phenolic profiles and the biological activity of the different parts of this plant were studied, where the aim was to obtain a high extraction yield of bioactive compounds and consequently high biological activities.

Methods

standard procedures were used to assess enzyme inhibitory activity (AChE, BChE, α-Amylase and α-Glucosidase) of , and the antioxidant activity was assessed using the DPPH, ABTS, CUPRAC, Reducing power and Ferrous ions assays.

Results

When using ultrasound, a significant increase in the amounts of (TPC, TFC and TFlas) and antioxidant activity (DPPH, ABTS, CUPRAC, Reducing power and Ferrous ions cheating assay) in addition to the inhibitory activity of enzymes (AChE, BChE, α-Amylase α-Glucosidase) was found, compared to the results of conventional extraction. Furthermore, the aqueous solvent of ethanol 70% is the very effective solvent for extraction compared to methanol 70% aqueous solvent.

Conclusion

Based on these results, it can be said that this plant contains important biological activities, so it can be used in phytotherapy.

Loading

Article metrics loading...

/content/journals/cei/10.2174/1573408019666230810115245
2024-03-01
2024-11-16
Loading full text...

Full text loading...

References

  1. AtanasovA.G. WaltenbergerB. Pferschy-WenzigE.M. Discovery and resupply of pharmacologically active plant-derived natural products: A review.Biotechnol. Adv.20153381582161410.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  2. SarikurkcuC. KirkanB. OzerM.S. Chemical characterization and biological activity of Onosma gigantea extracts.Ind. Crops Prod.201811532332910.1016/j.indcrop.2018.02.040
    [Google Scholar]
  3. ShenY. ZhangH. ChengL. WangL. QianH. QiX. in vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley.Food Chem.20161941003101210.1016/j.foodchem.2015.08.083 26471646
    [Google Scholar]
  4. SunY. TsaoR. ChenF. The phytochemical composition, metabolites, bioavailability and in vivo antioxidant activity of Tetrastigma hemsleyanum leaves in rats.J. Funct. Foods20173017919310.1016/j.jff.2017.01.004
    [Google Scholar]
  5. HuangW.J. ZhangX. ChenW.W. Role of oxidative stress in Alzheimer’s disease.Biomed. Rep.20164551952210.3892/br.2016.630 27123241
    [Google Scholar]
  6. MaritimA.C. SandersR.A. WatkinsJ.B.III Diabetes, oxidative stress, and antioxidants: A review.J. Biochem. Mol. Toxicol.2003171243810.1002/jbt.10058 12616644
    [Google Scholar]
  7. ZhaoY. ZhaoB. Oxidative stress and the pathogenesis of Alzheimer’s disease.Oxid. Med. Cell. Longev.2013201311010.1155/2013/316523 23983897
    [Google Scholar]
  8. OhleH. Contributions to the taxonomy and evolution of the genus Calendula L. IV. Revision of the algerian-tunisian perennial calendula genera considering some moroccan-algerian annuals and the moroccan and southern european perennial taxa mit 5 plates and 3 illustrations.Feddes Repert.1975869-1052554110.1002/fedr.19750860908
    [Google Scholar]
  9. SofianeI. SeridiR. CortesM.D.M. Phytochemical composition and evaluation of the antioxidant activity of the ethanolic extract of calendula suffruticosa subsp. suffruticosa Vahl.Pharmacogn. J.20181016470
    [Google Scholar]
  10. ZakariaS. NadiaT. Salah EddineD. Chemical composition and in vitro antioxidant, anti‐alzheimer, anti‐diabetic, anti‐tyrosinase, and antimicrobial properties of essential oils and extracts derived from various parts of the algerian calendula suffruticosa vahlsubsp. boissieri Lanza.Chem. Biodivers.2023201e202200620.
    [Google Scholar]
  11. AroraD. RaniA. SharmaA. A review on phytochemistry and ethnopharmacological aspects of genus Calendula.Pharmacogn. Rev.201371417918710.4103/0973‑7847.120520 24347926
    [Google Scholar]
  12. Grainger BissetN. WichtlM. Herbal drugs and phytopharmaceuticals.Stuttgart, GermanyCRC Press2001
    [Google Scholar]
  13. De TommasiN. PizzaC. ContiC. OrsiN. SteinM.L. Structure and in vitro antiviral activity of sesquiterpene glycosides from Calendula arvensis.J. Nat. Prod.1990534830835
    [Google Scholar]
  14. AndradeJ.M. FaustinoC. GarciaC. LadeirasD. ReisC.P. RijoP.J. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity.Future Sci. OA201844FSO28310.4155/fsoa‑2017‑0124 29682318
    [Google Scholar]
  15. ButnariuM. CoradiniC.Z. Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry.Chem. Cent. J.2012613510.1186/1752‑153X‑6‑35 22540963
    [Google Scholar]
  16. GazimZ.C. RezendeC.M. FragaS.R. Dias FilhoB.P. NakamuraC.V. CortezD.A.G. Analysis of the essential oils from Calendula officinalis growing in Brazil using three different extraction procedures.RBCF Rev. Bras. Cienc. Farm.200844339139510.1590/S1516‑93322008000300008
    [Google Scholar]
  17. SausserdeR. KampussK. Composition of carotenoids in calendula (Calendula officinalis L.) flowers.Proceedings of the 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being”. Jelgava, Latvia.2014138
    [Google Scholar]
  18. TosunG. YayliB. ArslanT. YasarA. KaraogluS.A. YayliN. Comparative essential oil analysis of Calendula arvensis L. Extracted by hydrodistillation and microwave distillation and antimicrobial activities.Asian J. Chem.20122451955
    [Google Scholar]
  19. WilenR.W. BarlB. SlinkardA.E. BandaraM.S. Feasibility of cultivation calendula as a dual purpose industrial oilseed and medicinal crop.Acta Hortic.200462919920610.17660/ActaHortic.2004.629.26
    [Google Scholar]
  20. TiwariP. KumarB. KaurM. KaurG. KaurH. Phytochemical screening and extraction: A review.Int Pharmaceut Sci20111198106
    [Google Scholar]
  21. ApelC. LyngJ.G. PapoutsisK. HarrisonS.M. BruntonN.P. Screening the effect of different extraction methods (ultrasound-assisted extrac-tion and solid–liquid extraction) on the recovery of glycoalkaloids from potato peels: Optimisation of the extraction conditions using chemometric tools.Food Bioprod. Process.202011927728610.1016/j.fbp.2019.06.018
    [Google Scholar]
  22. Rodríguez-RojoS. VisentinA. MaestriD. CoceroM.J. Assisted extraction of rosemary antioxidants with green solvents.J. Food Eng.201210919810310.1016/j.jfoodeng.2011.09.029
    [Google Scholar]
  23. Da PortoC. PorrettoE. DecortiD. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and poly-phenols from grape (Vitis vinifera L.) seeds.Ultrason. Sonochem.20132041076108010.1016/j.ultsonch.2012.12.002 23305938
    [Google Scholar]
  24. NadeemM. UbaidN. QureshiT.M. MunirM. MehmoodA. Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage.Ultrason. Sonochem.2018451610.1016/j.ultsonch.2018.02.034 29705302
    [Google Scholar]
  25. SingletonV.L. RossiJ.A.Jr Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents.Am. J. Enol. Vitic.196516314415810.5344/ajev.1965.16.3.144
    [Google Scholar]
  26. TopçuG. AyM. BiliciA. SarıkürkcüC. ÖztürkM. UlubelenA. A new flavone from antioxidant extracts of Pistacia terebinthus.Food Chem.2007103381682210.1016/j.foodchem.2006.09.028
    [Google Scholar]
  27. KumaranA. Joel KarunakaranR. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India.Lebensm. Wiss. Technol.200740234435210.1016/j.lwt.2005.09.011
    [Google Scholar]
  28. BloisM.S. Antioxidant determinations by the use of a stable free radical.Nature195818146171199120010.1038/1811199a0
    [Google Scholar]
  29. ReR. PellegriniN. ProteggenteA. PannalaA. YangM. Rice-EvansC. Antioxidant activity applying an improved ABTS radical cation de-colorization assay.Free Radic. Biol. Med.1999269-101231123710.1016/S0891‑5849(98)00315‑3 10381194
    [Google Scholar]
  30. ApakR. GüçlüK. ÖzyürekM. KarademirS.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.J. Agric. Food Chem.200452267970798110.1021/jf048741x 15612784
    [Google Scholar]
  31. DeckerE.A. WelchB. Role of ferritin as a lipid oxidation catalyst in muscle food.J. Agric. Food Chem.199038367467710.1021/jf00093a019
    [Google Scholar]
  32. OyaizuM. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosa-mine.Eiyogaku Zasshi198644630731510.5264/eiyogakuzashi.44.307
    [Google Scholar]
  33. EllmanG.L. CourtneyK.D. AndresV.Jr A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196178895
    [Google Scholar]
  34. BaessaM. RodriguesM.J. PereiraC. A comparative study of the in vitro enzyme inhibitory and antioxidant activities of Butea mono-sperma (Lam.) Taub. and Sesbania grandiflora (L.) Poiret from Pakistan: New sources of natural products for public health problems.S. Afr. J. Bot.201912014615610.1016/j.sajb.2018.04.006
    [Google Scholar]
  35. SuwalS. MarciniakA. Technologies for the extraction, separation and purification of polyphenols - A review.Nepal J. Biotechnol.201961749110.3126/njb.v6i1.22341
    [Google Scholar]
  36. SahaS. BaruaB. SikdarD. Phytochemical screening, phenolic content and antioxidant activity of wild date palm (Phoenix sylvestris Roxb.) fruit extracted with different solvents.Int. Food Res. J.201724625342542
    [Google Scholar]
  37. ZazouliS. ChigrM. JouaitiA. Effect of polar and nonpolar solvent on total phenolic and antioxidant activity of roots extracts of Caralluma europaea.Pharma Chem2016811191196
    [Google Scholar]
  38. DoQ.D. AngkawijayaA.E. Tran-NguyenP.L. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxi-dant activity of Limnophila aromatica.Yao Wu Shi Pin Fen Xi2014223296302 28911418
    [Google Scholar]
  39. SalehI.A. VinatoruM. MasonT.J. Abdel-AzimN.S. AboutablE.A. HammoudaF.M. A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves.Ultrason. Sonochem.20163133033610.1016/j.ultsonch.2016.01.002 26964956
    [Google Scholar]
  40. WenC. ZhangJ. ZhangH. Advances in ultrasound assisted extraction of bioactive compounds from cash crops - A review.Ultrason. Sonochem.20184853854910.1016/j.ultsonch.2018.07.018 30080583
    [Google Scholar]
  41. AbidM. JabbarS. WuT. Effect of ultrasound on different quality parameters of apple juice.Ultrason. Sonochem.20132051182118710.1016/j.ultsonch.2013.02.010 23522904
    [Google Scholar]
  42. SafdarM.N. KausarT. JabbarS. MumtazA. AhadK. SaddozaiA.A. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques.Yao Wu Shi Pin Fen Xi2017253488500 28911634
    [Google Scholar]
  43. OueslatiS. KsouriR. FallehH. PichetteA. AbdellyC. LegaultJ. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk.Food Chem.2012132294394710.1016/j.foodchem.2011.11.072
    [Google Scholar]
  44. ColakN. PrimettaA.K. RiihinenK.R. Phenolic compounds and antioxidant capacity in different-colored and non-pigmented berries of bilberry (Vaccinium myrtillus L.).Food Biosci.201720677810.1016/j.fbio.2017.06.004
    [Google Scholar]
  45. González-CentenoM.R. KnoerzerK. SabarezH. SimalS. RossellóC. FemeniaA. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - A response surface approach.Ultrason. Sonochem.20142162176218410.1016/j.ultsonch.2014.01.021 24548543
    [Google Scholar]
  46. LimmongkonA. NopprangP. ChaikeandeeP. SomboonT. WongshayaP. PilaisangsureeV. LC-MS/MS profiles and interrelationships between the anti-inflammatory activity, total phenolic content and antioxidant potential of Kalasin 2 cultivar peanut sprout crude extract.Food Chem.201823956957810.1016/j.foodchem.2017.06.162 28873607
    [Google Scholar]
  47. PanZ. QuW. MaH. AtunguluG.G. McHughT.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegran-ate peel.Ultrason. Sonochem.201219236537210.1016/j.ultsonch.2011.05.015 21784689
    [Google Scholar]
  48. CespedesC.L. BalbontinC. AvilaJ.G. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilen-sis leaves.Food Chem. Toxicol.2017109Pt 298499510.1016/j.fct.2017.05.009 28501487
    [Google Scholar]
  49. ZenginG BulutG MollicaA HaznedarogluMZ DoganA AktumsekA Bioactivities of Achillea phrygia and Bupleurum croceum based on the composition of phenolic compounds: in vitro and in silico approaches.Food Chem Toxicol2017107Pt B59760810.1016/j.fct.2017.03.037 28343034
    [Google Scholar]
  50. ChenY. ZhuJ. MoJ. Synthesis and bioevaluation of new tacrine-cinnamic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.201833129030210.1080/14756366.2017.1412314 29278947
    [Google Scholar]
  51. PicotM.C.N. ZenginG. MollicaA. StefanucciA. CarradoriS. MahomoodallyM.F. In vitro and in silico studies of mangiferin from Aphloia theiformis on key enzymes linked to diabetes type 2 and associated complications.Med. Chem.2017137633640 28290249
    [Google Scholar]
  52. MehmoodA. IshaqM. ZhaoL. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.).Ultrason. Sonochem.201951121910.1016/j.ultsonch.2018.10.013 30514481
    [Google Scholar]
  53. MajidH. SilvaF. ProcessingB. Improvement of butyrylcholinesterase enzyme inhibition and medicinal properties of extracts of Aristotelia serrata leaves by ultrasound extraction.Food Bioprod. Proc2020124445454
    [Google Scholar]
/content/journals/cei/10.2174/1573408019666230810115245
Loading
/content/journals/cei/10.2174/1573408019666230810115245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test