Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4080
  • E-ISSN:

Abstract

Enzyme inhibition is a crucial mechanism for regulating biological processes and developing therapeutic interventions. This pharmacological review summarizes recent advances in enzyme inhibition, focusing on key developments and their implications for drug discovery and therapeutic strategies. It explains basic ideas, including the different kinds of inhibitors and how they work, and looks at recent advances in small-molecule inhibitor design, fragment-based drug discovery, and virtual screening techniques. The review also highlights the advances in targeting specific enzyme families, explaining the structural basis of enzyme-inhibitor interactions, optimizing inhibitor potency, selectivity, and pharmacokinetic properties, and new trends in enzyme inhibition. The clinical implications of recent advances in enzyme inhibition include the development of novel therapeutic agents for diseases like cancer, infectious diseases, and neurological disorders. The review addresses challenges and future directions in the field, such as optimizing drug safety, resistance mechanisms, and personalized medicine approaches. Overall, the insights provided in this review may inspire further research and collaborations to accelerate the translation of enzyme inhibitors into effective clinical treatments.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080271639231030093152
2024-03-01
2024-11-16
Loading full text...

Full text loading...

References

  1. RobinsonP.K. Enzymes: Principles and biotechnological applications.Essays Biochem.20155914110.1042/bse0590001
    [Google Scholar]
  2. de la FuenteM. LombarderoL. Gómez-GonzálezA. SolariC. Angulo-barturenI. AceraA. Enzyme therapy: Current challenges and future perspectives.Int. J. Mol. Sci.202122179181
    [Google Scholar]
  3. TandonA. KuriappanJ.A. DubeyV. Translocation tales: Unraveling the MYC deregulation in burkitt lymphoma for innovative therapeutic strategies.Lymphat2023197117[Available from: https://www.mdpi.com/2813-3307/1/2/10/htm
    [Google Scholar]
  4. GeronikakiA. Recent trends in enzyme inhibition and activation in drug design.Molecules202126117
    [Google Scholar]
  5. KabanovA.V. GendelmanH.E. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders.Prog. Polym. Sci.2007328-9105410.1016/j.progpolymsci.2007.05.014
    [Google Scholar]
  6. LinX. LiX. LinX. A review on applications of computational methods in drug screening and design.Mol2020256137510.3390/molecules25061375
    [Google Scholar]
  7. QuY. YeJ. LinB. LuoY. ZhangX. Organ mimicking technologies and their applications in drug discovery.Intell Pharm202312738910.1016/j.ipha.2023.05.003
    [Google Scholar]
  8. HoldgateG.A. MeekT.D. GrimleyR.L. Mechanistic enzymology in drug discovery: A fresh perspective.Nat. Rev. Drug Discov.20171722115132[Available from https://www.nature.com/articles/nrd.2017.219
    [Google Scholar]
  9. WiltschiB. CernavaT. DennigA. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications.Biotechnol. Adv.20204010752010.1016/j.biotechadv.2020.107520 31981600
    [Google Scholar]
  10. SpicerA.J. ColcombP.A. KraftA. Mind the gap: Closing the growing chasm between academia and industry.Nat. Biotechnol.202240111693169610.1038/s41587‑022‑01543‑4
    [Google Scholar]
  11. KrzyszczykP. AcevedoA. DavidoffE.J. TimminsL.M. Marrero-BerriosI. PatelM. The growing role of precision and personalized medicine for cancer treatment.Technology201863-47910.1142/S2339547818300020
    [Google Scholar]
  12. SinghK. GuptaJ.K. PathakD. KumarS. The use of enzyme inhibitors in drug discovery: Current strategies and future prospects.Curr. Enzym. Inhib.202319315716610.2174/1573408019666230731113105
    [Google Scholar]
  13. RuferA.C. Drug discovery for enzymes.Drug Discov. Today202126487588610.1016/j.drudis.2021.01.006 33454380
    [Google Scholar]
  14. XieN. ZhangL. GaoW. HuangC. HuberP.E. ZhouX. NAD+ metabolism: Pathophysiologic mechanisms and therapeutic potential.Signal Transduct. Target. Ther.202051137Available from: https://www.nature.com/articles/s41392-020-00311-7 (cited 2023 Jul 26).
    [Google Scholar]
  15. ColovicM.B. KrsticD.Z. Lazarevic-PastiT.D. BondzicA.M. VasicV.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology.Curr. Neuropharmacol.2013113315
    [Google Scholar]
  16. DelauneK.P. AlsayouriK. Physiology, Noncompetitive Inhibitor.StatPearls 2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK545242/(cited 2023 May 15).
    [Google Scholar]
  17. BlatY. Non-competitive inhibition by active site binders.Chem. Biol. Drug Des.201075653554010.1111/j.1747‑0285.2010.00972.x 20374252
    [Google Scholar]
  18. BoultonS. SelvaratnamR. BlondeauJ.P. Lezoualc’hF. MelaciniG. Mechanism of selective enzyme inhibition through uncompetitive regulation of an allosteric agonist.J. Am. Chem. Soc.2018140309624963710.1021/jacs.8b05044 30016089
    [Google Scholar]
  19. TuleyA. FastW. The taxonomy of covalent inhibitors.Biochemistry201857243326333710.1021/acs.biochem.8b00315
    [Google Scholar]
  20. LuR.M. HwangY.C. LiuI.J. LeeC.C. TsaiH.Z. LiH.J. Development of therapeutic antibodies for the treatment of diseases.J. Biomed. Sci.2020271130Available from: https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-019-0592-z(cited 2023 Jul 26).
    [Google Scholar]
  21. GeronikakiA. EleutheriouP.T. Enzymes and enzyme inhibitors: Applications in medicine and diagnosis.Int. J. Mol. Sci.20232465245
    [Google Scholar]
  22. LewisT. StoneW.L. Biochemistry, Proteins Enzymes.StatPearls 2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK554481/(cited 2023 Jul 26).
    [Google Scholar]
  23. LopinaO.D. LopinaO.D. Enzyme Inhibitors and Activators.Enzym Inhib Act. Intechopen201710.5772/67248
    [Google Scholar]
  24. MeghwanshiG.K. KaurN. VermaS. Enzymes for pharmaceutical and therapeutic applications.Biotechnol. Appl. Biochem.202067458660110.1002/bab.1919 32248597
    [Google Scholar]
  25. GoyalA. CusickA.S. ThielemierB. ACE Inhibitors. In: StatPearls.Treasure Island, (FL)StatPearls Publishing2022
    [Google Scholar]
  26. ZarghiA. ArfaeiS. Selective COX-2 inhibitors: A review of their structure-activity relationships.Iran. J. Pharm. Res.2011104655
    [Google Scholar]
  27. PatelM.S. HarrisR.A. Metabolic regulation.Encycl Cell Biol2016128829710.1016/B978‑0‑12‑394447‑4.10034‑3
    [Google Scholar]
  28. StrelowJ. DeweW. IversenP.W. BrooksH.B. RaddingJ.A. McGeeJ. Mechanism of Action Assays for Enzymes. In: Assay Guidance Manual.Bethesda, (MD)Eli Lilly & Company and the National Center for Advancing Translational Sciences2012
    [Google Scholar]
  29. UddinT.M. ChakrabortyA.J. KhusroA. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects.J. Infect. Public Health202114121750176610.1016/j.jiph.2021.10.020 34756812
    [Google Scholar]
  30. MohsR.C. GreigN.H. Drug discovery and development: Role of basic biological research.Alzheimer’s Dement Transl Res Clin Interv201734651
    [Google Scholar]
  31. SoutoA.L. SylvestreM. TölkeE.D. TavaresJ.F. Barbosa-FilhoJ.M. Cebrián-TorrejónG. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges.Molecules202126164835
    [Google Scholar]
  32. ZhongL. LiY. XiongL. WangW. WuM. YuanT. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216114810.1038/s41392‑021‑00572‑w
    [Google Scholar]
  33. Basics of enzyme kinetics graphs (article) | Khan Academy.Available from: https://www.khanacademy.org/science/apbiology/cellular-energetics/environmental-impacts-on-enzymefunction/a/basics-of-enzyme-kinetics-graphs
  34. PalmerT. BonnerP.L. Enzyme Inhibition.Enzymes201112615210.1533/9780857099921.2.126
    [Google Scholar]
  35. Fournié-ZaluskiM.C. CoricP. TurcaudS. Mixed-inhibitor-prodrug as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes.J. Med. Chem.199235132473248110.1021/jm00091a016 1352352
    [Google Scholar]
  36. GhoshA.K. SamantaI. MondalA. LiuW.R. Covalent inhibition in drug discovery.ChemMedChem201914988910.1002/cmdc.201900107
    [Google Scholar]
  37. RoemerT. DaviesJ. GiaeverG. NislowC. Bugs, drugs and chemical genomics.Nat. Chem. Biol.201281465610.1038/nchembio.744 22173359
    [Google Scholar]
  38. Edrada-EbelR.A. JasparsM. The 9th european conference on marine natural products.Mar. Drugs20151371507249[Available from https://www.mdpi.com/1660-3397/13/12/7059/htm
    [Google Scholar]
  39. DahlinJ.L. WaltersM.A. The essential roles of chemistry in high-throughput screening triage.Future Med. Chem.2014611126510.4155/fmc.14.60
    [Google Scholar]
  40. MonsE. RoetS. KimR.Q. MulderM.P.C. A comprehensive guide for assessing covalent inhibition in enzymatic assays illustrated with kinetic simulations.Curr. Protoc.202226e41910.1002/cpz1.419 35671150
    [Google Scholar]
  41. BrooksH.B. GeeganageS. KahlS.D. MontroseC. SittampalamS. SmithM.C. Basics of Enzymatic Assays for HTS.Assay Guid Man2012 Available from: https://www.ncbi.nlm.nih.gov/books/NBK92007/(cited 2023 May 13).
    [Google Scholar]
  42. GoldsteinA. The mechanism of enzyme-inhibitor-substrate reactions: Illustrated by the cholinesterase-physostigmine-acetylcholine system.J. Gen. Physiol.194427652958010.1085/jgp.27.6.529 19873399
    [Google Scholar]
  43. HafnerM. NiepelM. ChungM. SorgerP.K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs.Nat. Methods201613652110.1038/nmeth.3853
    [Google Scholar]
  44. KnightZ.A. ShokatK.M. Features of selective kinase inhibitors.Chem. Biol.200512662163710.1016/j.chembiol.2005.04.011 15975507
    [Google Scholar]
  45. MoffatJ.G. VincentF. LeeJ.A. EderJ. PrunottoM. Opportunities and challenges in phenotypic drug discovery: An industry perspective.Nat. Rev. Drug Discov.201716853154310.1038/nrd.2017.111
    [Google Scholar]
  46. LageO.M. RamosM.C. CalistoR. AlmeidaE. VasconcelosV. VicenteF. Current screening methodologies in drug discovery for selected human diseases.Mar. Drugs201816827910.3390/md16080279
    [Google Scholar]
  47. CecchiniC. PannilunghiS. TardyS. ScapozzaL. From conception to development: Investigating PROTACs features for improved cell permeability and successful protein degradation.Front Chem.2021967226710.3389/fchem.2021.672267 33959589
    [Google Scholar]
  48. BeaufilsC. ManH.M. de PoulpiquetA. MazurenkoI. LojouE. From enzyme stability to enzymatic bioelectrode stabilization processes.Catal202111449710.3390/catal11040497
    [Google Scholar]
  49. DueñasM.E. Peltier‐HeapR.E. LeveridgeM. AnnanR.S. BüttnerF.H. TrostM. Advances in high‐throughput mass spectrometry in drug discovery.EMBO Mol. Med.2023151e14850
    [Google Scholar]
  50. RamsayR.R. TiptonK.F. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs.Mol2017227119210.3390/molecules22071192
    [Google Scholar]
  51. RingB. WrightonS.A. MohutskyM. Reversible mechanisms of enzyme inhibition and resulting clinical significance.Methods Mol. Biol.20212342295010.1007/978‑1‑0716‑1554‑6_2 34272690
    [Google Scholar]
  52. CopelandR.A. Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists.John Wiley & Sons, Inc201312310.1002/9781118540398
    [Google Scholar]
  53. DuX. LiY. XiaY.L. AiS.M. LiangJ. SangP. Insights into protein–ligand interactions: Mechanisms, models, and methods.Int. J. Mol. Sci.2016172144
    [Google Scholar]
  54. Uncompetitive Inhibitor Uncompetitive Inhibitor : An overview | ScienceDirect Topics.Available from: https://www.sciencedirect.com/topics/neuroscience/uncompetitiveinhibitor (cited 2023 Jul 28).
  55. MagniC. SessaF. AccardoE. Conglutin? a lupin seed protein, binds insulin in vitro and reduces plasma glucose levels of hypergly-cemic rats.J. Nutr. Biochem.2004151164665010.1016/j.jnutbio.2004.06.009 15590267
    [Google Scholar]
  56. LentinkS. Salazar MarcanoD.E. MoussawiM.A. Parac-VogtT.N. Exploiting interactions between polyoxometalates and proteins for applications in (Bio)chemistry and medicine.Angew. Chem. Int. Ed.20236231e20230381710.1002/anie.202303817 37098776
    [Google Scholar]
  57. OchsR.S. Understanding enzyme inhibition.J. Chem. Educ.20007711145310.1021/ed077p1453
    [Google Scholar]
  58. Gimenez-BastidaJ.A. BoeglinW.E. BoutaudO. MalkowskiM.G. SchneiderC. Residual cyclooxygenase activity of aspirin-acetylated COX-2 forms 15R-prostaglandins that inhibit platelet aggregation.FASEB J.20193311033
    [Google Scholar]
  59. BansalA.B. CassagnolM. HMG-CoA Reductase Inhibitors2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK542212/ (cited 2023 Jul 28).
    [Google Scholar]
  60. HermanL.L. PadalaS.A. AhmedI. BashirK. Angiotensin- Converting Enzyme Inhibitors (ACEI).StatPearls 2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK431051/(cited 2023 May 13).
    [Google Scholar]
  61. HatlebakkJ.G. KatzP.O. Camacho-LobatoL. CastellD.O. Proton pump inhibitors: Better acid suppression when taken before a meal than without a meal.Aliment. Pharmacol. Ther.200014101267127210.1046/j.1365‑2036.2000.00829.x 11012470
    [Google Scholar]
  62. BevansC.G. KrettlerC. ReinhartC. Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase com-plex subunit-1 (VKORC1) using an in vitro DTT-driven assay.Biochim. Biophys. Acta, Gen. Subj.2013183084202421010.1016/j.bbagen.2013.04.018 23618698
    [Google Scholar]
  63. ZhouG. MyersR. LiY. Role of AMP-activated protein kinase in mechanism of metformin action.J. Clin. Invest.200110881167117410.1172/JCI13505 11602624
    [Google Scholar]
  64. AbosamakN.E.R. ShahinM.H. Beta2 Receptor Agonists and Antagonists.StatPearls 2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK559069/ (cited 2023 Jul 28).
    [Google Scholar]
  65. BoltonT.B. Rate of offset of action of slow-acting muscarinic antagonists is fast.Nat1977270563535435610.1038/270354a0
    [Google Scholar]
  66. BottingR. AyoubS.S. COX-3 and the mechanism of action of paracetamol/acetaminophen.Prostaglandins Leukot. Essent. Fatty Acids2005722858710.1016/j.plefa.2004.10.005 15626590
    [Google Scholar]
  67. DiBiancoR. Angiotensin converting enzyme inhibition.Postgrad Med 1985785229248 244, 247-248.10.1080/00325481.1985.11699167 2864682
    [Google Scholar]
  68. MarkowskaA. AntoszczakM. MarkowskaJ. HuczyńskiA. HMG-CoA reductase inhibitors as potential anticancer agents against malignant neoplasms in women.Pharm20201312422[Available from https://www.mdpi.com/1424-8247/13/12/422/htm
    [Google Scholar]
  69. QureshiO. DuaA. COX Inhibitors. In: Encycl Immunotoxicol.2022
    [Google Scholar]
  70. ChandrasekharanN.V. DaiH. RoosK.L.T. EvansonN.K. TomsikJ. EltonT.S. From the Cover: COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression.Proc Natl Acad Sci2002992113926
    [Google Scholar]
  71. DalyM.J. StablesR. In vitro actions of ranitidine, a new histamine H2-receptor antagonist.Agents Actions1980101-219019110.1007/BF02024210 6104417
    [Google Scholar]
  72. BardhanK.D. Pantoprazole: A new proton pump inhibitor in the management of upper gastrointestinal disease.Drugs Tod1999351077380810.1358/dot.1999.35.10.561696 12973372
    [Google Scholar]
  73. HerbertJ.M. SaviP. P2Y12, a new platelet ADP receptor, target of clopidogrel.Semin. Vasc. Med.20033211312210.1055/s‑2003‑40669 15199474
    [Google Scholar]
  74. HavlirD.V. O’MarroS.D. Atazanavir: new option for treatment of HIV infection.Clin. Infect. Dis.200438111599160410.1086/420932 15156449
    [Google Scholar]
  75. MarucciG. BuccioniM. BenD.D. LambertucciC. VolpiniR. AmentaF. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease.Neuropharmacology202119010835210.1016/j.neuropharm.2020.108352 33035532
    [Google Scholar]
  76. PathakR. BridgemanM.B. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes.Pharm Ther2010359509
    [Google Scholar]
  77. PerzbornE. RoehrigS. StraubA. KubitzaD. MueckW. LauxV. Rivaroxaban: A new oral factor Xa inhibitor.Arterioscler. Thromb. Vasc. Biol.201030337638110.1161/ATVBAHA.110.202978 20139357
    [Google Scholar]
  78. AzevedoE.R. KuboT. MakS. Nonselective versus selective β-adrenergic receptor blockade in congestive heart failure: Differential effects on sympathetic activity.Circulation2001104182194219910.1161/hc4301.098282 11684630
    [Google Scholar]
  79. OhningG.V. WalshJ.H. PisegnaJ.R. MurthyA. BarthJ. KovacsT.O.G. Rabeprazole is superior to omeprazole for the inhibition of peptone meal-stimulated gastric acid secretion in Helicobacter pylori-negative subjects.Aliment. Pharmacol. Ther.2003179110910.1046/j.1365‑2036.2003.01573.x
    [Google Scholar]
  80. GoldenbergM.M. Celecoxib, a selective cyclooxygenase-2 inhibitor for the treatment of rheumatoid arthritis and osteoarthritis.Clin. Ther.19992191497151310.1016/S0149‑2918(00)80005‑3 10509845
    [Google Scholar]
  81. MiuraS.I. KarnikS.S. SakuK. Angiotensin II type 1 receptor blockers: Class effects vs. Molecular effects.J. Renin Angiotensin Aldosterone Syst.20111211
    [Google Scholar]
  82. Cheng-LaiA. Rosuvastatin: A new HMG-CoA reductase inhibitor for the treatment of hypercholesterolemia.Heart Dis.200351727810.1097/01.HDX.0000050417.89309.F8 12549990
    [Google Scholar]
  83. PairetM. Van RynJ. MauzA. SchierokH. DiederenW. TürckD. Differential inhibition of COX-1 and COX-2 by NSAIDs: a summary of results obtained using various test systems. In: Selective COX-2 Inhibitors.DordrechtSpringer19982746
    [Google Scholar]
  84. ShiozakiA. MiyazakiH. NiisatoN. Furosemide, a blocker of Na+/K+/2Cl- cotransporter, diminishes proliferation of poorly differentiated human gastric cancer cells by affecting G0/G1 state.J. Physiol. Sci.200656640140610.2170/physiolsci.RP010806 17052386
    [Google Scholar]
  85. KumarS. KulshreshthaD.M. SahaS. Contribution of phosphodiesterase-5 (PDE5) inhibitors in the various diseases.Int J Sci Healthc Res20227416417210.52403/ijshr.20221023
    [Google Scholar]
  86. MatersonB.J. Adverse effects of angiotensin-converting enzyme inhibitors in antihypertensive therapy with focus on quinapril.Am. J. Cardiol.19926910C46C5310.1016/0002‑9149(92)90281‑3 1546639
    [Google Scholar]
  87. ÇiklerE. ErsoyY. ÇetinelŞ. ErcanF. The leukotriene d4 receptor antagonist, montelukast, inhibits mast cell degranulation in the dermis induced by water avoidance stress.Acta Histochem.2009111211211810.1016/j.acthis.2008.04.006 18617226
    [Google Scholar]
  88. PalleriaC. Di PaoloA. GiofrèC. CagliotiC. LeuzziG. SiniscalchiA. Pharmacokinetic drug-drug interaction and their implication in clinical management.J. Res. Med. Sci.2013187601
    [Google Scholar]
  89. MohamadN.R. MarzukiN.H.C. BuangN.A. HuyopF. WahabR.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes.Biotechnol. Biotechnol. Equip.201529220510.1080/13102818.2015.1008192
    [Google Scholar]
  90. WangS. DongG. ShengC. Structural simplification: An efficient strategy in lead optimization.Acta Pharm. Sin. B20199588010.1016/j.apsb.2019.05.004
    [Google Scholar]
  91. BorgoC. ChoudhuriS. YendluriM. PoddarS. LiA. MallickK. Recent advancements in computational drug design algorithms through machine learning and optimization.Kinases Phosphatases20231117140
    [Google Scholar]
  92. PajouheshH. LenzG.R. Medicinal chemical properties of successful central nervous system drugs.NeuroRx20052454110.1602/neurorx.2.4.541
    [Google Scholar]
  93. MengistH.M. DilnessaT. JinT. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease.Front Chem.2021962289810.3389/fchem.2021.622898 33889562
    [Google Scholar]
  94. BonM. BilslandA. BowerJ. McAulayK. Fragment‐based drug discovery—the importance of high‐quality molecule libraries.Mol. Oncol.202216213761
    [Google Scholar]
  95. SinghJ. PetterR.C. BaillieT.A. WhittyA. The resurgence of covalent drugs.Nat. Rev. Drug Discov.201110430731710.1038/nrd3410
    [Google Scholar]
  96. LiraA.L. FerreiraR.S. TorquatoR.J.S. OlivaM.L.V. SchuckP. SousaA.A. Allosteric inhibition of α-thrombin enzymatic activity with ul-trasmall gold nanoparticles.Nanoscale Adv.20191137810.1039/C8NA00081F
    [Google Scholar]
  97. RanaS. MallareddyJ.R. SinghS. BogheanL. NatarajanA. Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin-dependent kinase.Cancers20211321
    [Google Scholar]
  98. MaramaiS BenchekrounM GabrMT YahiaouiS Multitarget therapeutic strategies for alzheimer’s disease: Review on emerging target combinations. Biomed Res Int20202020
    [Google Scholar]
  99. BoikeL. HenningN.J. NomuraD.K. Advances in covalent drug discovery.Nat. Rev. Drug Discov.2022211288189810.1038/s41573‑022‑00542‑z
    [Google Scholar]
  100. MA X, XU S. TNF inhibitor therapy for rheumatoid arthritis.Biomed. Reports .201312177
    [Google Scholar]
  101. CicardiM. BanerjiA. BrachoF. MalbránA. RosenkranzB. RiedlM. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema.N. Engl. J. Med.20103636532
    [Google Scholar]
  102. MukhtarE. AdhamiV.M. MukhtarH. Targeting microtubules by natural agents for cancer therapy.Mol. Cancer Ther.201413227528410.1158/1535‑7163.MCT‑13‑0791
    [Google Scholar]
  103. GabrS.A. ElsaedW.M. EladlM.A. Curcumin modulates oxidative stress, fibrosis, and apoptosis in drug-resistant cancer cell lines.Life2022129142710.3390/life12091427 36143462
    [Google Scholar]
  104. DavidsM.S. BrownJ.R. Ibrutinib: A first in class covalent inhibitor of Bruton’s tyrosine kinase.Future Oncol.201410695796710.2217/fon.14.51 24941982
    [Google Scholar]
  105. SainiK. SharmaS. KhanY. DPP-4 inhibitors for treating T2DM: Hype or hope? an analysis based on the current literature.Front. Mol. Biosci.202310113062510.3389/fmolb.2023.1130625 37287751
    [Google Scholar]
  106. IqbalN. IqbalN. Imatinib: A breakthrough of targeted therapy in cancer.Chemother. Res. Pract.2014201435702710.1155/2014/357027
    [Google Scholar]
  107. Báez-SantosY.M. St. JohnS.E. MesecarA.D. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds.Antiviral Res.201511521
    [Google Scholar]
  108. O’SheaJ.J. KontziasA. YamaokaK. TanakaY. LaurenceA. Janus kinase inhibitors in autoimmune diseases.Ann. Rheum. Dis.20137202ii11110.1136/annrheumdis‑2012‑202576
    [Google Scholar]
  109. WettsteinL. KnaffP.M. KerstenC. MüllerP. WeilT. ConzelmannC. Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture.Commun. Biol.202251681
    [Google Scholar]
  110. HirshJ. AnandS.S. HalperinJ.L. FusterV. Mechanism of action and pharmacology of unfractionated heparin.Arterioscler. Thromb. Vasc. Biol.20012171094109610.1161/hq0701.093686 11451734
    [Google Scholar]
  111. MarchettiM. FaggianoS. MozzarelliA. Enzyme replacement therapy for genetic disorders associated with enzyme deficiency.Curr. Med. Chem.202229348952510.2174/0929867328666210526144654 34042028
    [Google Scholar]
  112. DasB. YanR. A close look at BACE1 inhibitors for alzheimer’s disease treatment.CNS Drugs201933325110.1007/s40263‑019‑00613‑7
    [Google Scholar]
  113. ZhangF. ChengW. The mechanism of bacterial resistance and potential bacteriostatic strategies.Antibiotics2022119121510.3390/antibiotics11091215
    [Google Scholar]
  114. PettitR.S. FellnerC. CFTR modulators for the treatment of cystic fibrosis.Pharm Ther2014397500
    [Google Scholar]
  115. WilkinsonD.G. FrancisP.T. SchwamE. Payne-ParrishJ. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: The relationship between pharmacological effects and clinical efficacy.Drugs Aging200421745347810.2165/00002512‑200421070‑00004 15132713
    [Google Scholar]
  116. HermanL.L. PadalaS.A. AhmedI. BashirK. Angiotensin- Converting Enzyme Inhibitors (ACEI). StatPearls 2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK431051/(cited 2023 Jul 28).
    [Google Scholar]
  117. WuH.F. Morris-NatschkeS.L. XuX.D. YangM.H. ChengY.Y. YuS.S. Recent advances in natural anti-HIV triterpenoids and analogues.Med. Res. Rev.20204062339
    [Google Scholar]
  118. CostaD.B. NguyenK.S.H. ChoB.C. SequistL.V. JackmanD.M. RielyG.J. Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib.Clin. Cancer Res.20081421706010.1158/1078‑0432.CCR‑08‑1455
    [Google Scholar]
  119. MishraT. ShrivastavP.S. Validation of simultaneous quantitative method of HIV protease inhibitors atazanavir, darunavir and ritonavir in human plasma by UPLC-MS/MS.Sci World J20142014482693
    [Google Scholar]
  120. JeffersonT. JonesM.A. DoshiP. Del MarC.B. HamaR. ThompsonM.J. Neuraminidase inhibitors for preventing and treating influenza in adults and children.Cochrane Database Syst. Rev.2014410.1002/14651858.CD008965.pub4
    [Google Scholar]
  121. SilvaP.J. Computational development of inhibitors of plasmid-borne bacterial dihydrofolate reductase.Antibiot202211677910.3390/antibiotics11060779
    [Google Scholar]
  122. EvansJ.D. HillS.R. A comparison of the available phosphodiesterase-5 inhibitors in the treatment of erectile dysfunction: A focus on avanafil.Patient Prefer. Adherence201591159
    [Google Scholar]
  123. NitissJ.L. Targeting DNA topoisomerase II in cancer chemotherapy.Nat. Rev. Cancer20099533810.1038/nrc2607
    [Google Scholar]
  124. ChumsriS. HowesT. BaoT. SabnisG. BrodieA. Aromatase, aromatase inhibitors, and breast cancer.J. Steroid Biochem. Mol. Biol.20111251-213
    [Google Scholar]
  125. GiassonC.J. NguyenT.Q.T. BoisjolyH.M. LeskM.R. AmyotM. CharestM. Dorzolamide and corneal recovery from edema in patients with glaucoma or ocular hypertension.Am. J. Ophthalmol.2000129214415010.1016/S0002‑9394(99)00274‑3 10682965
    [Google Scholar]
  126. TanY.Y. JennerP. ChenS. Monoamine oxidase-B inhibitors for the treatment of parkinson’s disease: Past, present, and future.J. Parkinsons Dis.2022122477
    [Google Scholar]
  127. JunJ.E.J. KinkadeA. TungA.C.H. TejaniA.M. 5α-reductase inhibitors for treatment of benign prostatic hyperplasia: A systematic review and meta-analysis.Can. J. Hosp. Pharm.2017702113
    [Google Scholar]
  128. FuJ. TongY. XuZ. Impact of TP53 mutations on EGFR tyrosine kinase inhibitor efficacy and potential treatment strategy.Clin. Lung Cancer2023241293910.1016/j.cllc.2022.08.007 36117108
    [Google Scholar]
  129. WangY. WangH. AChE inhibition-based multi-target-directed ligands, a novel pharmacological approach for the symptomatic and disease-modifying therapy of alzheimer’s disease.Curr. Neuropharmacol.2016144364
    [Google Scholar]
  130. PatelP.H. ZulfiqarH. Reverse transcriptase inhibitors.Front HIV Res20234461 Available from: https://www.ncbi.nlm.nih.gov/books/NBK551504/(cited 2023 Jul 29).
    [Google Scholar]
  131. AngeliniJ. TalottaR. RoncatoR. FornasierG. BarbieroG. CinL.D. JAK-inhibitors for the treatment of rheumatoid arthritis: A focus on the present and an outlook on the future.Biomolecules2020107140
    [Google Scholar]
  132. AokiF.Y. Antiviral drugs for influenza and other respiratory virus infections. Mand Douglas, Bennett’s Princ Pract.Infect Dis2015153110.1016/B978‑1‑4557‑4801‑3.00044‑8
    [Google Scholar]
  133. Binesh MarvastiT. AdeliK. Pharmacological management of metabolic syndrome and its lipid complications.DARU J Pharm Sci2010183146
    [Google Scholar]
  134. TauschE. CloseW. DolnikA. BloehdornJ. ChylaB. BullingerL. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia.Haematologica20191049e43410.3324/haematol.2019.222588
    [Google Scholar]
  135. GijtenbeekR.G.P. DamhuisR.A.M. van der WekkenA.J. HendriksL.E.L. GroenH.J.M. van GeffenW.H. Overall survival in advanced epidermal growth factor receptor mutated non-small cell lung cancer using different tyrosine kinase inhibitors in The Netherlands: A retrospective, nationwide registry study.Lancet Reg. Heal Eur.20232710059210.1016/j.lanepe.2023.100592
    [Google Scholar]
  136. SarichT.C. PetersG. BerkowitzS.D. Rivaroxaban: A novel oral anticoagulant for the prevention and treatment of several thrombosis‐mediated conditions.Ann. N. Y. Acad. Sci.201312911425510.1111/nyas.12136 23701516
    [Google Scholar]
  137. ShirleyM. Correction to: Bruton tyrosine kinase inhibitors in b-cell malignancies: Their use and differential features.Target. Oncol.20221719310.1007/s11523‑021‑00857‑8
    [Google Scholar]
  138. SinghK. GuptaJ.K. KumarS. SinghK. MeenakshiK. KumarK. PCSK9 Inhibitors: Pharmacology and therapeutic potential.Preprints2022
    [Google Scholar]
  139. GuptaR. LinM. MaitzT. Vericiguat: A novel soluble guanylate cyclase stimulator for use in patients with heart failure.Cardiol. Rev.2023312879210.1097/CRD.0000000000000431 35609251
    [Google Scholar]
  140. KothaK. ClancyJ.P. Ivacaftor treatment of cystic fibrosis patients with the G551D mutation: A review of the evidence.Ther. Adv. Respir. Dis.20137528829610.1177/1753465813502115 24004658
    [Google Scholar]
  141. LorussoD. García-DonasJ. SehouliJ. JolyF. Management of adverse events during rucaparib treatment for relapsed ovarian cancer: A review of published studies and practical guidance.Target. Oncol.202015339140610.1007/s11523‑020‑00715‑z 32495160
    [Google Scholar]
  142. OatesJ. LopezD. Pharmacogenetics: An important part of drug development with a focus on its application.Int. J. Biomed. Investig.201812116
    [Google Scholar]
  143. McDonnell PharmD. BCOP AM, Dang PharmD, BCPS CH. Basic review of the cytochrome P450 system.J. Adv. Pract. Oncol.201344263
    [Google Scholar]
  144. HakkolaJ. HukkanenJ. TurpeinenM. PelkonenO. Inhibition and induction of CYP enzymes in humans: An update.Arch. Toxicol.202094113671372210.1007/s00204‑020‑02936‑7 33111191
    [Google Scholar]
  145. OguC.C. MaxaJ.L. Drug interactions due to cytochrome P450.Proc. Bayl. Univ. Med. Cent.200013442110.1080/08998280.2000.11927719
    [Google Scholar]
  146. Lee VentolaC. Role of pharmacogenomic biomarkers in predicting and improving drug response: Part 1: The clinical significance of pharmacogenetic variants.Pharm Ther2013389545
    [Google Scholar]
  147. TaylorC. CrosbyI. YipV. MaguireP. PirmohamedM. TurnerR.M. A review of the important role of CYP2D6 in pharmacogenomics.Genes20201111129510.3390/genes11111295
    [Google Scholar]
  148. WangD. ChenH. MomaryK.M. CavallariL.H. JohnsonJ.A. SadéeW. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement.Blood200811241013
    [Google Scholar]
  149. HarmandP.O. SolassolJ. Thiopurine drugs in the treatment of ulcerative colitis: Identification of a novel deleterious mutation in TPMT.Genes202011101212[Available from https://www.mdpi.com/2073-4425/11/10/1212/htm
    [Google Scholar]
  150. AndersonJ.L. HorneB.D. StevensS.M. WollerS.C. SamuelsonK.M. MansfieldJ.W. Genetics and opioids: Towards more appropriate pre-scription in cancer pain.Cancers19511271951 Available from: https://www.mdpi.com/2072-6694/12/7/1951/htm (cited 2023 Jul 29).
    [Google Scholar]
  151. LeD. BrownL. MalikK. MurakamiS. Two opposing functions of angiotensin-converting enzyme (ACE) That links hypertension, dementia, and aging.Int. J. Mol. Sci.2021222413178Available from: https://www.mdpi.com/1422-0067/22/24/13178/htm(cited 2023 Jul 29).
    [Google Scholar]
  152. ShenJ. SwiftB. MamelokR. PineS. SinclairJ. AttarM. Design and conduct considerations for first‐in‐human trials.Clin. Transl. Sci.2019121610.1111/cts.12582
    [Google Scholar]
  153. SchenoneM. DančíkV. WagnerB.K. ClemonsP.A. Target identification and mechanism of action in chemical biology and drug discovery.Nat. Chem. Biol.20139423210.1038/nchembio.1199
    [Google Scholar]
  154. CoussensN.P. BraistedJ.C. PeryeaT. SittampalamG.S. SimeonovA. HallM.D. Small-molecule screens: A gateway to cancer therapeutic agents with case studies of food and drug administration: Approved drugs.Pharmacol. Rev.201769447910.1124/pr.117.013755
    [Google Scholar]
  155. HughesJ.P. ReesS.S. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.20111626123910.1111/j.1476‑5381.2010.01127.x
    [Google Scholar]
  156. MokhtariR.B. HomayouniT.S. BaluchN. MorgatskayaE. KumarS. DasB. Combination therapy in combating cancer.Oncotarget20178233802210.18632/oncotarget.16723
    [Google Scholar]
  157. AhmedS. ZhouZ. ZhouJ. ChenS.Q. Pharmacogenomics of drug metabolizing enzymes and transporters: Relevance to precision medicine.Genomics Proteomics Bioinformatics2016145298
    [Google Scholar]
  158. SteinmetzK.L. SpackE.G. The basics of preclinical drug development for neurodegenerative disease indications.BMC Neurol.20099Suppl. 1S210.1186/1471‑2377‑9‑S1‑S2
    [Google Scholar]
  159. LuanB. HuynhT. ChengX. LanG. WangH.R. Targeting proteases for treating COVID-19.J. Proteome Res.202019114316432610.1021/acs.jproteome.0c00430 33090793
    [Google Scholar]
  160. MellottD.M. TsengC.T. DrelichA. A clinical-stage cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells.ACS Chem. Biol.202116464265010.1021/acschembio.0c00875 33787221
    [Google Scholar]
  161. MahoneyM. DamalankaV.C. TartellM.A. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells.Proc. Natl. Acad. Sci.202111843e210872811810.1073/pnas.2108728118 34635581
    [Google Scholar]
/content/journals/cei/10.2174/0115734080271639231030093152
Loading
/content/journals/cei/10.2174/0115734080271639231030093152
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test