Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

In this modern era, the environment is being contaminated with toxic pollutants as a result of anthropogenic activities. To overcome the harmful effects of pollutants, scientists have developed ideas and technologies. Biotechnology provides a green approach for decontaminating the environment, ., bioremediation. Several organisms have been explored for their enzymes. Enzymes belonging to various classes are useful for degrading, transforming, or removal of pollutants. Oxidoreductases produced by different plants, bacteria, and fungi are useful for deterioration of toxic pollutants, like compounds having aroma, called aromatic compounds (benzene, chlorine, phenols, phenanthrene, .), PAHs (Polyaromatic Hydrocarbons), various dyes, . Oxidoreductases are further classified as laccases, peroxidases, and oxygenases. All three classes have proven to be efficacious in the field of bioremediation. Microorganism strains have also been genetically engineered for the production of enzymes. Oxidoreductases can be used to remove pollutants from industrial waste. This review has classified all the species that produce oxidoreductase enzymes, their mechanism of action, and the pollutants that have been removed by using oxidoreductases.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080313745240802110504
2024-10-01
2025-01-24
Loading full text...

Full text loading...

References

  1. El-SheekhM.M. MahmoudY.A. Technological approach of bioremediation using microbial tools: Bacteria, fungi, and algae. Handbook of Research on Inventive Bioremediation Techniques.Hershey, PennsylvaniaIGI Global201713415410.4018/978‑1‑5225‑2325‑3.ch006
    [Google Scholar]
  2. Abd El-RahimW.M. El-ArdyO.A.M. MohammadF.H.A. The effect of pH on bioremediation potential for the removal of direct violet textile dye by Aspergillus niger.Desalination200924931206121110.1016/j.desal.2009.06.037
    [Google Scholar]
  3. QiuM. LiuL. LingQ. Biochar for the removal of contaminants from soil and water: A review.Biochar2022411910.1007/s42773‑022‑00146‑1
    [Google Scholar]
  4. KiyonoM. Pan-HouH. Genetic engineering of bacteria for environmental remediation of mercury.J. Health Sci.200652319920410.1248/jhs.52.199
    [Google Scholar]
  5. GuW. LiX. LiQ. HouY. ZhengM. LiY. Combined remediation of polychlorinated naphthalene-contaminated soil under multiple scenarios: An integrated method of genetic engineering and environmental remediation technology.J. Hazard. Mater.202140512413910.1016/j.jhazmat.2020.124139 33092886
    [Google Scholar]
  6. SharmaP. BanoA. SinghS.P. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals.Chemosphere202230613553810.1016/j.chemosphere.2022.135538 35792210
    [Google Scholar]
  7. KumarK. ShindeA. AeronV. VermaA. ArifN.S. Genetic engineering of plants for phytoremediation: Advances and challenges.J. Plant Biochem. Biotechnol.2023321123010.1007/s13562‑022‑00776‑3
    [Google Scholar]
  8. SharmaB. DangiA.K. ShuklaP. Contemporary enzyme based technologies for bioremediation: A review.J. Environ. Manage.2018210102210.1016/j.jenvman.2017.12.075 29329004
    [Google Scholar]
  9. BhandariS. PoudelD.K. MarahathaR. Microbial enzymes used in bioremediation.J. Chem.2021202111710.1155/2021/8849512
    [Google Scholar]
  10. DaveS. DasJ. Role of microbial enzymes for biodegradation and bioremediation of environmental pollutants: Challenges and future prospects.Bioremediation for Environmental Sustainability.AmsterdamElsevier2021325346
    [Google Scholar]
  11. JugderB.E. ErtanH. BohlS. LeeM. MarquisC.P. ManefieldM. Organohalide respiring bacteria and reductive dehalogenases: Key tools in organohalide bioremediation.Front. Microbiol.2016724910.3389/fmicb.2016.00249 26973626
    [Google Scholar]
  12. RoumaniM. BesseauS. GagneulD. RobinC. LarbatR. Phenolamides in plants: An update on their function, regulation, and origin of their biosynthetic enzymes.J. Exp. Bot.20217272334235510.1093/jxb/eraa582 33315095
    [Google Scholar]
  13. DayM.A. JarromD. ChristoffersonA.J. The structures of E. coli NfsA bound to the antibiotic nitrofurantoin; to 1,4-benzoquinone and to FMN.Biochem. J.2021478132601261710.1042/BCJ20210160 34142705
    [Google Scholar]
  14. BhattP. GangolaS. BhandariG. New insights into the degradation of synthetic pollutants in contaminated environments.Chemosphere202126812882710.1016/j.chemosphere.2020.128827 33162154
    [Google Scholar]
  15. PathakA. GuptaM.K. RabaniM.S. Enzymatic approach for phytoremediation.Aquatic Contamination: Tolerance and Bioremediation.Hoboken, New JerseyWiley2024123130
    [Google Scholar]
  16. DemkivO.M. GaydaG.Z. BrodaD. GoncharM.V. Extracellular laccase from Monilinia fructicola: Isolation, primary characterization and application.Cell Biol. Int.202145353654810.1002/cbin.11316 32052524
    [Google Scholar]
  17. ChenM. YaoS. ZhangH. LiangX. Purification and characterization of a versatile peroxidase from edible mushroom Pleurotus eryngii.Chin. J. Chem. Eng.201018582482910.1016/S1004‑9541(09)60134‑8
    [Google Scholar]
  18. SellamiK. CouvertA. NasrallahN. MaachiR. AbouseoudM. AmraneA. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review.Sci. Total Environ.2022806Pt 215050010.1016/j.scitotenv.2021.150500 34852426
    [Google Scholar]
  19. BansalN. KanwarS.S. Peroxidase(s) in environment protection.ScientificWorldJournal20132013714639
    [Google Scholar]
  20. SadaqatB. KhatoonN. MalikA.Y. Enzymatic decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium.Sci. Rep.20201012024010.1038/s41598‑020‑76376‑9 33214596
    [Google Scholar]
  21. EmamiE. ZolfaghariP. GolizadehM. Effects of stabilizers on sustainability, activity and decolorization performance of Manganese Peroxidase enzyme produced by Phanerochaete chrysosporium.J. Environ. Chem. Eng.20208610445910.1016/j.jece.2020.104459
    [Google Scholar]
  22. DhagatS. JujjavarapuS.E. Utility of lignin‐modifying enzymes: A green technology for organic compound mycodegradation.J. Chem. Technol. Biotechnol.202297234335810.1002/jctb.6807
    [Google Scholar]
  23. NakazawaT. YamaguchiI. ZhangY. Experimental evidence that lignin‐modifying enzymes are essential for degrading plant cell wall lignin by Pleurotus ostreatus using CRISPR/Cas9.Environ. Microbiol.202325101909192410.1111/1462‑2920.16427 37218079
    [Google Scholar]
  24. ZhuX. WangX. WangL. FanX. LiX. JiangY. Biodegradation of lincomycin in wastewater by two-level bio-treatment using chloroperoxidase and activated sludge: Degradation route and eco-toxicity evaluation.Environ Technol Innov20202010111410.1016/j.eti.2020.101114
    [Google Scholar]
  25. ZhangX. LiX. JiangY. HuM. LiS. ZhaiQ. Combination of enzymatic degradation by chloroperoxidase with activated sludge treatment to remove sulfamethoxazole: Performance, and eco-toxicity assessment.J. Chem. Technol. Biotechnol.201691112802280910.1002/jctb.4888
    [Google Scholar]
  26. LinL. WangX. CaoL. XuM. Lignin catabolic pathways reveal unique characteristics of dye‐decolorizing peroxidases in Pseudomonas putida.Environ. Microbiol.20192151847186310.1111/1462‑2920.14593 30882973
    [Google Scholar]
  27. EllouzeM. SayadiS. White-Rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation.Management of Hazardous Wastes.LondonIntechOpen Ltd2016
    [Google Scholar]
  28. RegaladoC. García-AlmendárezB.E. Duarte-VázquezM.A. Biotechnological applications of peroxidases.Phytochem. Rev.200431-224325610.1023/B:PHYT.0000047797.81958.69
    [Google Scholar]
  29. CazaN. BewtraJ.K. BiswasN. TaylorK.E. Removal of phenolic compounds from synthetic wastewater using soybean peroxidase.Water Res.199933133012301810.1016/S0043‑1354(98)00525‑9
    [Google Scholar]
  30. YadavA.N. MishraS. SinghS. GuptaA. Recent advancement in white biotechnology through fungi: Volume 1: Diversity and enzymes perspectives.Berlin, HeidelbergSpringer2019
  31. VaraS. KarnenaM. Fungal enzymatic degradation of industrial effluents – A review.Curr. Res. Environ. Appl. Mycol.202010141744210.5943/cream/10/1/33
    [Google Scholar]
  32. ChengM. ChenD. ParalesR.E. JiangJ. Oxygenases as powerful weapons in the microbial degradation of pesticides.Annu. Rev. Microbiol.202276132534810.1146/annurev‑micro‑041320‑091758 35650666
    [Google Scholar]
  33. ShiT. SunX. YuanQ. WangJ. ShenX. Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds.Biotechnology for Biofuels and Bioproducts20241714610.1186/s13068‑024‑02490‑9 38520003
    [Google Scholar]
  34. LiZ. JiangY. GuengerichF.P. MaL. LiS. ZhangW. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications.J. Biol. Chem.2020295383384910.1016/S0021‑9258(17)49939‑X 31811088
    [Google Scholar]
  35. KaurT LakhawatSS KumarV SharmaV NeerajRRK SharmaPK Polyaromatic hydrocarbon specific ring hydroxylating dioxygenases: diversity, structure, function, and protein engineering.Curr Protein Pept Sci.202324172110.2174/1389203724666221108114537 36366847
    [Google Scholar]
  36. LiX. ChenS. GuoX. Development and application of TK6-derived cells expressing human cytochrome P450s for genotoxicity testing.Toxicol. Sci.2020175225126510.1093/toxsci/kfaa035 32159784
    [Google Scholar]
  37. KumarS. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation.Expert Opin. Drug Metab. Toxicol.20106211513110.1517/17425250903431040 20064075
    [Google Scholar]
  38. SharmaS. BhattK. ShrivastavaR. NaddaA.K. Tyrosinase and oxygenases: Fundamentals and applications.Biotechnology of Microbial Enzymes.AmsterdamElsevier202332334010.1016/B978‑0‑443‑19059‑9.00014‑1
    [Google Scholar]
  39. Andrade-CollantesE. Landeros-RiveraB. Sixto-LópezY. Molecular insight into endosulfan degradation by Ese protein from Arthrobacter: Evidence‐based structural bioinformatics and quantum mechanical calculations.Proteins202492230231310.1002/prot.26610 37864384
    [Google Scholar]
  40. LinY.W. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective.Coord. Chem. Rev.202143421377410.1016/j.ccr.2021.213774
    [Google Scholar]
  41. ZubrovaA. MichalikovaK. SemeradJ. Biphenyl 2, 3-dioxygenase in Pseudomonas alcaliphila JAB1 is both induced by phenolics and monoterpenes and involved in their transformation.Front. Microbiol.20211265731110.3389/fmicb.2021.657311 33995321
    [Google Scholar]
  42. XuT. LiuT. JiangD. YuanZ. JiaX. Attainment and characterization of a microbial consortium that efficiently degrades biphenyl and related substances.Biochem. Eng. J.202117310807310.1016/j.bej.2021.108073
    [Google Scholar]
  43. MutandaI. SunJ. JiangJ. ZhuD. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications.Biotechnol. Adv.20225910795210.1016/j.biotechadv.2022.107952 35398204
    [Google Scholar]
  44. MedićA.B. KaradžićI.M. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds- key catabolic degradation enzymes and new analytical platforms for comprehensive investigation.World J. Microbiol. Biotechnol.2022381016510.1007/s11274‑022‑03349‑7 35861883
    [Google Scholar]
  45. KarimiB. HabibiM. EsvandM. Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic–aerobic continuous flow combined bioreactor.J. Environ. Health Sci. Eng.20151312610.1186/s40201‑015‑0175‑1 25859393
    [Google Scholar]
  46. BilalM. BagheriA.R. BhattP. ChenS. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds.J. Environ. Manage.202129111268510.1016/j.jenvman.2021.112685 33930637
    [Google Scholar]
  47. AvellanedaH. ArbeliZ. TeranW. RoldanF. Transformation of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109 and exploration of the associated enzymes.World J. Microbiol. Biotechnol.2020361219010.1007/s11274‑020‑02962‑8 33247357
    [Google Scholar]
  48. ChakrabortyN. BegumP. PatelB.K. Counterbalancing common explosive pollutants (TNT, RDX, and HMX) in the environment by microbial degradation.Development in Wastewater Treatment Research and Processes.AmsterdamElsevier2022263310
    [Google Scholar]
  49. MongaD. KaurP. SinghB. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals.Current Research in Microbial Sciences2022310009210.1016/j.crmicr.2021.100092 35005657
    [Google Scholar]
  50. BudikafaM.J. Rumiyati, Riyanto S, Rohman A. 2,2′-Diphenyl-1-picrylhydrazyl and 2,2′-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid) scavenging assay of Extract and Fractions of Rambutan (Nephelium Lappaceum L.) Seed.Dhaka Uni J Pharmaceut Sci201918214515210.3329/dujps.v18i2.43256
    [Google Scholar]
  51. HoriK. YamashitaS. IshiiS.I. KitagawaM. TanjiY. UnnoH. Isolation, characterization and application to off-gas treatment of toluene-degrading bacteria.J. Chem. Eng. of Jpn20013491120112610.1252/jcej.34.1120
    [Google Scholar]
  52. DölekGN Evaluation of BTEX concentrations in selected industries producing and applying paint based on human health risks through inhalation2014
    [Google Scholar]
  53. ChandrasekaranM. ParamasivanM. Plant growth-promoting bacterial (PGPB) mediated degradation of hazardous pesticides: A review.Int. Biodeterior. Biodegradation202419010576910.1016/j.ibiod.2024.105769
    [Google Scholar]
  54. DíazL.F. MuñozR. BordelS. VillaverdeS. Toluene biodegradation by Pseudomonas putida F1: Targeting culture stability in long-term operation.Biodegradation200819219720810.1007/s10532‑007‑9126‑6 17487552
    [Google Scholar]
  55. GuptaS. DangiL. PatraJ.K. RaniR. Application of enzymes in bioremediation of contaminated hydrosphere and soil environment. bioprospecting of enzymes in industry.Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment.Berlin, HeidelbergSpringer2021128
    [Google Scholar]
  56. da Silva VilarD. BilalM. BharagavaR.N. Lignin‐modifying enzymes: A green and environmental responsive technology for organic compound degradation.J. Chem. Technol. Biotechnol.202297232734210.1002/jctb.6751
    [Google Scholar]
  57. AtiweshG. ParrishC.C. BanoubJ. LeT.A.T. Lignin degradation by microorganisms: A review.Biotechnol. Prog.2022382e322610.1002/btpr.3226 34854261
    [Google Scholar]
  58. OkozideO.E. AdebusoyeS.A. ObayoriO.S. RodriguesD.F. Aerobic degradation of 2,4,6-trinitrophenol by Proteus sp. strain OSES2 obtained from an explosive contaminated tropical soil.Biodegradation202132664366210.1007/s10532‑021‑09958‑7 34487282
    [Google Scholar]
  59. SinghD. GuptaN. Microbial Laccase: A robust enzyme and its industrial applications.Biologia (Bratisl.)20207581183119310.2478/s11756‑019‑00414‑9
    [Google Scholar]
  60. KhatamiS.H. VakiliO. MovahedpourA. GhesmatiZ. GhasemiH. Taheri-AnganehM. Laccase: Various types and applications.Biotechnol. Appl. Biochem.20226962658267210.1002/bab.2313 34997643
    [Google Scholar]
  61. KaurM. SharmaS. SodhiH. An eco-friendly approach for the degradation of azo dyes and their effluents by Pleurotus florida.Microbial Consortium and Biotransformation for Pollution Decontamination.AmsterdamElsevier202220924210.1016/B978‑0‑323‑91893‑0.00006‑7
    [Google Scholar]
  62. Granja-TravezR.S. PersinotiG.F. SquinaF.M. BuggT.D.H. Functional genomic analysis of bacterial lignin degraders: Diversity in mechanisms of lignin oxidation and metabolism.Appl. Microbiol. Biotechnol.202010483305332010.1007/s00253‑019‑10318‑y 32088760
    [Google Scholar]
  63. KimS. Mushroom ligninolytic enzymes—features and application of potential enzymes for conversion of lignin into bio-based chemicals and materials.Appl. Sci. (Basel)20211113616110.3390/app11136161
    [Google Scholar]
  64. FerrariR GautierV SilarP Lignin degradation by ascomycetes. Advances in botanical research.Amsterdam: Elsevier20219977113
    [Google Scholar]
  65. ValmasedaM. MartínezM.J. MartinezA.T. Kinetics of wheat straw solid-state fermentation with Trametes versicolor and Pleurotus ostreatus—lignin and polysaccharide alteration and production of related enzymatic activities.Appl. Microbiol. Biotechnol.19913581782310.1007/BF00169902
    [Google Scholar]
/content/journals/cei/10.2174/0115734080313745240802110504
Loading
/content/journals/cei/10.2174/0115734080313745240802110504
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Environment; enzymes; mechanism; microorganisms; oxidoreductases; pollutants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test