Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1573-4080
  • E-ISSN:

Abstract

The aim is to systematize data from literature sources on the study of changes in the activity of HMGR enzymes and lipid metabolism under the influence of cyclic lactones, identify among them new potential inhibitors of HMGR and formulate hypotheses about the details of the mechanism of action of the enzyme in relation to the product - mevalonolactone.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080298814240528092106
2024-10-01
2024-11-16
Loading full text...

Full text loading...

References

  1. RiyadP. PurohitA. SenK. PanwarA. RamH. HMG – CoA reductase inhibition mediated hypocholesterolemic potential of myricetin and quercetin: in-silico and in-vivo studies.CYTA J. Food202321111512510.1080/19476337.2022.2162976
    [Google Scholar]
  2. ZhouY. TashiroJ. KamataniS. HMG-CoA reductase degrader, SR-12813, counteracts statin-induced upregulation of HMG-CoA reductase and augments the anticancer effect of atorvastatin.Biochem. Biophys. Res. Commun.2023677131910.1016/j.bbrc.2023.07.056 37541087
    [Google Scholar]
  3. PakV.V. KimS.H. KooM. LeeN. ShakhidoyatovK.M. KwonD.Y. Peptide design of a competitive inhibitor for HMG-CoA reductase based on statin structure.Biopolymers200684658659410.1002/bip.20580 16886212
    [Google Scholar]
  4. SamizoS. KanekoH. Predictive Modeling of HMG-CoA Reductase Inhibitory Activity and Design of New HMG-CoA Reductase Inhibitors.ACS Omega2023830272472725510.1021/acsomega.3c02567 37546661
    [Google Scholar]
  5. MarahathaR BasnetS BhattaraiB R Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis.BMC compl med therap2021211110.1186/s12906‑020‑03162‑5
    [Google Scholar]
  6. BoseS. SteussyC.N. López-PérezD. Targeting Enterococcus faecalis HMG-CoA reductase with a non-statin inhibitor.Commun. Biol.20236136010.1038/s42003‑023‑04639‑y 37012403
    [Google Scholar]
  7. OjhaS. IslamB. CharuC. AdemA. AburawiE. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking.Drug Des. Devel. Ther.201594943495110.2147/DDDT.S86705 26357462
    [Google Scholar]
  8. SuganyaS. NandagopalB. AnbarasuA. Natural inhibitors of HMG-CoA reductase—An in silico approach through molecular docking and simulation studies.J. Cell. Biochem.20171181525710.1002/jcb.25608 27216569
    [Google Scholar]
  9. JaitrongM. BoonsriP. SamosornS. Molecular docking studies of berberine derivative as novel multitarget pcsk9 and hmgcr inhibitors.Science Essence Journal2021371124142
    [Google Scholar]
  10. GarcíaI. FallY. GómezG. Review of synthesis, biological assay, and QSAR studies of HMGR inhibitors.Curr. Top. Med. Chem.201212889591910.2174/156802612800166729 22352916
    [Google Scholar]
  11. Abu MellalA. HussainN. SaidA. The clinical significance of statins-macrolides interaction: comprehensive review of in vivo studies, case reports, and population studies.Ther. Clin. Risk Manag.20191592193610.2147/TCRM.S214938 31413581
    [Google Scholar]
  12. Gallego-ColonE. DaumA. YosefyC. Statins and PCSK9 inhibitors: A new lipid-lowering therapy.Eur. J. Pharmacol.202087817311410.1016/j.ejphar.2020.173114 32302598
    [Google Scholar]
  13. ParkM.S. YounJ.C. KimE.J. Efficacy and safety of fenofibrate-statin combination therapy in patients with inadequately controlled triglyceride levels despite previous statin monotherapy: A Multicenter, Randomized, double-blind, Phase IV study.Clin. Ther.202143101735174710.1016/j.clinthera.2021.08.005 34518033
    [Google Scholar]
  14. EngellA.E. SvendsenA.L.O. LindB.S. Drug-drug interaction between warfarin and statins: A Danish cohort study.Br. J. Clin. Pharmacol.202187269469910.1111/bcp.14428 32533893
    [Google Scholar]
  15. RuszkowskiP. Masajtis-ZagajewskaA. NowickiM. Effects of combined statin and ACE inhibitor therapy on endothelial function and blood pressure in essential hypertension - a randomised double-blind, placebo controlled crossover study.J. Renin Angiotensin Aldosterone Syst.201920310.1177/1470320319868890 31486700
    [Google Scholar]
  16. KohK.K. SakumaI. ShimadaK. HayashiT. QuonM.J. Combining potent statin therapy with other drugs to optimize simultaneous cardiovascular and metabolic benefits while minimizing adverse events.Korean Circ. J.201747443243910.4070/kcj.2016.0406 28765731
    [Google Scholar]
  17. MasanaL. IbarretxeD. PlanaN. Reasons Why Combination Therapy should be the new standard of care to achieve the LDL-cholesterol targets.Curr. Cardiol. Rep.20202286610.1007/s11886‑020‑01326‑w 32562015
    [Google Scholar]
  18. ChungS. KoY.G. KimJ.S. Effect of FIXed-dose combination of ARb and statin on adherence and risk factor control: The randomized FIXAR study.Cardiol. J.202229581582310.5603/CJ.a2020.0167 33346375
    [Google Scholar]
  19. AlmalkiH.H. AlshibaniT.M. AlhifanyA.A. AlmohammedO.A. Comparative efficacy of statins, metformin, spironolactone and combined oral contraceptives in reducing testosterone levels in women with polycystic ovary syndrome: a network meta-analysis of randomized clinical trials.BMC Womens Health20202016810.1186/s12905‑020‑00919‑5 32248801
    [Google Scholar]
  20. RheeM.Y. KimC.H. AhnY. Efficacy and safety of nebivolol and rosuvastatin combination treatment in patients with concomitant hypertension and hyperlipidemia.Drug Des. Devel. Ther.2020145005501710.2147/DDDT.S280055 33235439
    [Google Scholar]
  21. VögeliB. ShimaS. ErbT.J. WagnerT. Crystal structure of archaeal HMG -CoA reductase: insights into structural changes of the C-terminal helix of the class-I enzyme.FEBS Lett.2019593554355310.1002/1873‑3468.13331 30702149
    [Google Scholar]
  22. LinF. DasD. LinX.N. MarshE.N.G. Aldehyde-forming fatty acyl-C o A reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme.FEBS J.2013280194773478110.1111/febs.12443 23895371
    [Google Scholar]
  23. HainesB.E. WiestO. StauffacherC.V. The increasingly complex mechanism of HMG-CoA reductase.Acc. Chem. Res.201346112416242610.1021/ar3003267 23898905
    [Google Scholar]
  24. GestoD.S. PereiraC.M.S. CerqueiraN.M.F.S. SousaS.F. An atomic-level perspective of HMG-CoA-reductase: The target enzyme to treat hypercholesterolemia.Molecules20202517389110.3390/molecules25173891 32859023
    [Google Scholar]
  25. MushkabarovN.N. Moscow - Flinta: Monograph. Publisher 2020.Metabolism: structural-chemical and thermodynamic analysis: in 3 vol.Moscow - Flinta: Monograph. Publisher2020
    [Google Scholar]
  26. YogevY. ShorerZ. KoifmanA. Limb girdle muscular disease caused by HMGCR mutation and statin myopathy treatable with mevalonolactone.Proc. Natl. Acad. Sci. USA20231207e221783112010.1073/pnas.2217831120 36745799
    [Google Scholar]
  27. Gómez-BombarelliR. CalleE. CasadoJ. Mechanisms of lactone hydrolysis in acidic conditions.J. Org. Chem.201378146880688910.1021/jo4002596 23731203
    [Google Scholar]
  28. FatokiT.H. Effect of pH on structural dynamics of HMG-CoA reductase and binding affinity to β-sitosterol.J. Biomol. Struct. Dyn.202341104398440410.1080/07391102.2022.2067240 35470784
    [Google Scholar]
  29. HoutenS.M. SchneidersM.S. WandersR.J.A. WaterhamH.R. Regulation of isoprenoid/cholesterol biosynthesis in cells from mevalonate kinase-deficient patients.J. Biol. Chem.200327885736574310.1074/jbc.M206564200 12477733
    [Google Scholar]
  30. McCloryJ. LinJ.T. TimsonD.J. ZhangJ. HuangM. Catalytic mechanism of mevalonate kinase revisited, a QM/MM study.Org. Biomol. Chem.20191792423243110.1039/C8OB03197E 30735219
    [Google Scholar]
  31. EdwardsP.A. LanS.F. TanakaR.D. FogelmanA.M. Mevalonolactone inhibits the rate of synthesis and enhances the rate of degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat hepatocytes.J. Biol. Chem.1983258127272727510.1016/S0021‑9258(18)32171‑9 6863245
    [Google Scholar]
  32. ChenT. GaoY. ZhangS. WangY. SuiC. YangL. Methylmalonic acidemia: Neurodevelopment and neuroimaging.Front. Neurosci.202317111094210.3389/fnins.2023.1110942 36777632
    [Google Scholar]
  33. ZhouX. CuiY. HanJ. Methylmalonic acidemia: Current status and research priorities.Intractable Rare Dis. Res.201872737810.5582/irdr.2018.01026 29862147
    [Google Scholar]
  34. GoedekeL. Canfrán-DuqueA. RotllanN. MMAB promotes negative feedback control of cholesterol homeostasis.Nat. Commun.2021121644810.1038/s41467‑021‑26787‑7 34750386
    [Google Scholar]
  35. GermanC.A. LiaoJ.K. Understanding the molecular mechanisms of statin pleiotropic effects.Arch. Toxicol.20239761529154510.1007/s00204‑023‑03492‑6 37084080
    [Google Scholar]
  36. LeeY.J. HongS.J. KangW.C. Rosuvastatin versus atorvastatin treatment in adults with coronary artery disease: secondary analysis of the randomised LODESTAR trial.BMJ2023383e07583710.1136/bmj‑2023‑075837 37852649
    [Google Scholar]
  37. AdamsS.P. AlaeiilkhchiN. TasnimS. WrightJ.M. Pravastatin for lowering lipids.Cochrane Libr.202099CD01367310.1002/14651858.CD013673 37721222
    [Google Scholar]
  38. AdamsS.P. TielletN. AlaeiilkhchiN. WrightJ.M. Cerivastatin for lowering lipids.Cochrane Libr.202011CD01250110.1002/14651858.CD012501.pub2 31981471
    [Google Scholar]
  39. Pinal-FernandezI. Casal-DominguezM. MammenA.L. Statins: pros and cons.Med. Clin. (Barc.)20181501039840210.1016/j.medcli.2017.11.030 29292104
    [Google Scholar]
  40. PretaG. Role of Lactone and Acid Forms in the Pleiotropic Effects of Statins.Pharmaceutics2022149189910.3390/pharmaceutics14091899 36145647
    [Google Scholar]
  41. YinW. AlwabliR.I. AttwaM.W. RahmanA.F.M.M. KadiA.A. Simvastatin: In vitro metabolic profiling of a potent competitive HMG-CoA reductase inhibitor.Separations202291240010.3390/separations9120400
    [Google Scholar]
  42. BalasubramanianR. MaideenN.M.P. HMG-CoA reductase inhibitors (Statins) and their drug interactions involving CYP enzymes, P-glycoprotein and OATP transporters-an overview.Curr. Drug Metab.202122532834110.2174/18755453MTEz9MzEj5 33459228
    [Google Scholar]
  43. YeeJ. KimH. HeoY. YoonH.Y. SongG. GwakH.S. Association between CYP3A5 polymorphism and statin-induced adverse events: A systemic review and meta-analysis.J. Pers. Med.202111767710.3390/jpm11070677 34357144
    [Google Scholar]
  44. ZhengE MaduraP GrandosJ When the same treatment has different response: The role of pharmacogenomics in statin therapy.Biomed pharmacoth202417011596610.1016/j.biopha.2023.115966
    [Google Scholar]
  45. YowH Y HamzahS Abdul RahimN SuppiahV. Pharmacogenomics of response to statin treatment and susceptibility to statin-induced adverse drug reactions in Asians: a scoping review.As biomed20231739511410.2478/abm‑2023‑0050
    [Google Scholar]
  46. NeuvonenP.J. BackmanJ.T. NiemiM. Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin.Clin. Pharmacokinet.200847746347410.2165/00003088‑200847070‑00003 18563955
    [Google Scholar]
  47. ParkJ.E. KimK.B. BaeS.K. MoonB.S. LiuK.H. ShinJ.G. Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin.Xenobiotica20083891240125110.1080/00498250802334391 18720283
    [Google Scholar]
  48. GorabiA.M. KiaieN. HajighasemiS. Statin-induced nitric oxide signaling: mechanisms and therapeutic implications.J. Clin. Med.2019812205110.3390/jcm8122051 31766595
    [Google Scholar]
  49. TennakoonM. KankanamgeD. SenarathK. FasihZ. KarunarathneA. Statins perturb G βγ signaling and cell behavior in a G γ subtype dependent manner.Mol. Pharmacol.201995436137510.1124/mol.118.114710 30765461
    [Google Scholar]
  50. NennaA. NappiF. LusiniM. Effect of statins on platelet activation and function: from molecular pathways to clinical effects.BioMed Res. Int.2021202111010.1155/2021/6661847 33564680
    [Google Scholar]
  51. SikoraJ. KostkaB. MarczykI. KrajewskaU. ChałubińskiM. BroncelM. Effect of statins on platelet function in patients with hyperlipidemia.Arch. Med. Sci.20134462262810.5114/aoms.2013.36905 24049520
    [Google Scholar]
  52. SafitriN. AlainaM.F. PitalokaD.A.E. AbdulahR. A narrative review of statin-induced rhabdomyolysis: molecular mechanism, risk factors, and management.Drug Healthc. Patient Saf.20211321121910.2147/DHPS.S333738 34795533
    [Google Scholar]
  53. DohlmannT.L. KuhlmanA.B. MorvilleT. Coenzyme Q10 supplementation in statin treated patients: A double-blinded randomized placebo-controlled trial.Antioxidants2022119169810.3390/antiox11091698 36139772
    [Google Scholar]
  54. CoenzymeQ. 10 and statin-related myopathy.Drug Ther. Bull.2015535545610.1136/dtb.2015.5.0325
    [Google Scholar]
  55. EzadS. CheemaH. CollinsN. Statin-induced rhabdomyolysis: a complication of a commonly overlooked drug interaction.Oxf. Med. Case Rep.201820183omx10410.1093/omcr/omx104 29593874
    [Google Scholar]
  56. ChenC.W. LeimerN. SyroeginE.A. Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A.Nat. Commun.2023141419610.1038/s41467‑023‑39653‑5 37452045
    [Google Scholar]
  57. Miklasińska-MajdanikM. Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus.Antibiotics (Basel)20211011140610.3390/antibiotics10111406 34827344
    [Google Scholar]
  58. FyfeC. GrossmanT.H. KersteinK. SutcliffeJ. Resistance to macrolide antibiotics in public health pathogens.Cold Spring Harb. Perspect. Med.2016610a02539510.1101/cshperspect.a025395 27527699
    [Google Scholar]
  59. DesjardinsM. DelgatyK.L. RamotarK. SeetaramC. ToyeB. Prevalence and mechanisms of erythromycin resistance in group A and group B Streptococcus: implications for reporting susceptibility results.J. Clin. Microbiol.200442125620562310.1128/JCM.42.12.5620‑5623.2004 15583291
    [Google Scholar]
  60. ChiouC.S. HongY.P. WangY.W. Antimicrobial resistance and mechanisms of azithromycin resistance in nontyphoidal salmonella isolates in Taiwan, 2017 to 2018.Microbiol. Spectr.2023111e03364e2210.1128/spectrum.03364‑22 36688703
    [Google Scholar]
  61. HeidaryM. Ebrahimi SamanganiA. KargariA. Mechanism of action, resistance, synergism, and clinical implications of azithromycin.J. Clin. Lab. Anal.2022366e2442710.1002/jcla.24427 35447019
    [Google Scholar]
  62. ReygaertW C An overview of the antimicrobial resistance mechanisms of bacteria.AIMS microbiology4348250110.3934/microbiol.2018.3.482
    [Google Scholar]
  63. MaslubM.G. RadwanM.A. DaudN.A.A. Sha’abanA. Association between CYP3A4/CYP3A5 genetic polymorphisms and treatment outcomes of atorvastatin worldwide: is there enough research on the Egyptian population?Eur. J. Med. Res.202328138110.1186/s40001‑023‑01038‑1 37759317
    [Google Scholar]
  64. HennessyE. AdamsC. ReenF.J. O’GaraF. Is there potential for repurposing statins as novel antimicrobials?Antimicrob. Agents Chemother.20166095111512110.1128/AAC.00192‑16 27324773
    [Google Scholar]
  65. WeiZ. LiT. GuY. Design, synthesis, and biological evaluation of N-acyl-homoserine lactone analogs of quorum sensing in Pseudomonas aeruginosa.Front Chem.20221094868710.3389/fchem.2022.948687 35873042
    [Google Scholar]
  66. HennessyE. MooijM.J. LegendreC. Statins inhibit in vitro virulence phenotypes of Pseudomonas aeruginosa.J. Antibiot. (Tokyo)20136629910110.1038/ja.2012.95 23149514
    [Google Scholar]
  67. ZhangY. ChenZ. WenQ. An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin.Food Funct.20201175738574810.1039/D0FO00691B 32555902
    [Google Scholar]
  68. El-TantawyW.H. Biochemical effects, hypolipidemic and anti-inflammatory activities of Artemisia vulgaris extract in hypercholesterolemic rats.J. Clin. Biochem. Nutr.2015571333810.3164/jcbn.14‑141 26236098
    [Google Scholar]
  69. KonovalovD.A. ShevchukO.M. LogvinenkoL.A. KhamiloA.A. Biologically active compounds of annual wormwood. Sesquiterpene lactones.Pharmacy & Pharmacology20164543510.19163/2307‑9266‑2016‑4‑5‑4‑35
    [Google Scholar]
  70. El MihyaouiA. Esteves da SilvaJ.C.G. CharfiS. Candela CastilloM.E. LamartiA. ArnaoM.B. Chamomile (Matricaria chamomilla L.): A review of ethnomedicinal use, phytochemistry and pharmacological uses.Life202212447910.3390/life12040479 35454969
    [Google Scholar]
  71. AyoobiF. ShamsizadehA. FatemiI. Bio-effectiveness of the main flavonoids of Achillea millefolium in the pathophysiology of neurodegenerative disorders- a review.Iran. J. Basic Med. Sci.201720660461210.22038/IJBMS.2017.8827 28868116
    [Google Scholar]
  72. VillalvaM. SilvanJ.M. Alarcón-CaveroT. Antioxidant, anti-inflammatory, and antibacterial properties of an Achillea millefolium L. extract and its fractions obtained by supercritical anti-solvent fractionation against Helicobacter pylori.Antioxidants20221110184910.3390/antiox11101849 36290572
    [Google Scholar]
  73. RolnikA. OlasB. The plants of the Asteraceae family as agents in the protection of human health.Int. J. Mol. Sci.2021226300910.3390/ijms22063009 33809449
    [Google Scholar]
  74. SokovićM. SkaltsaH. FerreiraI.C.F.R. Editorial: Bioactive phytochemicals in asteraceae: Structure, function, and biological activity.Front Plant Sci201910146410.3389/fpls.2019.01464 31798612
    [Google Scholar]
  75. OzalpL. DanışÖ. Yuce-DursunB. DemirS. GündüzC. OganA. Investigation of HMG-CoA reductase inhibitory and antioxidant effects of various hydroxycoumarin derivatives.Arch Pharm202035310190037810.1002/ardp.201900378 32648617
    [Google Scholar]
  76. AhmedM.G. MehmoodM.H. MehdiS. FarrukhM. Caryopteris odorata and its metabolite coumarin attenuate characteristic features of cardiometabolic syndrome in high-refined carbohydrate-high fat-cholesterol-loaded feed-fed diet rats.Front. Pharmacol.202314109740710.3389/fphar.2023.1097407 37033655
    [Google Scholar]
  77. AgrawalS. HeissM.S. FenterR.B. Impact of CYP2C9-interacting drugs on warfarin pharmacogenomics.Clin. Transl. Sci.202013594194910.1111/cts.12781 32270628
    [Google Scholar]
  78. ForoozeshM. SridharJ. GoyalN. LiuJ. Coumarins and P450s, studies reported to-date.Molecules2019248162010.3390/molecules24081620 31022888
    [Google Scholar]
  79. LiJ WangS BaroneJ MaloneB. Warfarin pharmacogenomics.peer-rev j formul management20093484227
    [Google Scholar]
  80. GuaschL. PeachM.L. NicklausM.C. Tautomerism of warfarin: combined chemoinformatics, quantum chemical, and NMR investigation.J. Org. Chem.201580209900990910.1021/acs.joc.5b01370 26372257
    [Google Scholar]
  81. SoliemanabadS K RasouliK ZakariaeiZ SoleymaniM AliabadiP K Rhabdomyolysis due to warfarin and atorvastatin combination therapy in a patient with ischemic heart disease: (A drug interaction).Annal med surg20227510338410.1016/j.amsu.2022.103384
    [Google Scholar]
  82. AzmiM.B. KhanF. AsifU. In silico characterization of Withania coagulans bioactive compounds as potential inhibitors of hydroxymethylglutaryl (HMG-CoA) reductase of Mus musculus.ACS Omega2023855057507110.1021/acsomega.2c07893 36777558
    [Google Scholar]
  83. Flores-MoralesV. Villasana-RuízA.P. Garza-VelozI. González-DelgadoS. Martinez-FierroM.L. Therapeutic effects of coumarins with different substitution patterns.Molecules2023285241310.3390/molecules28052413 36903660
    [Google Scholar]
  84. HarwoodH.J.Jr GreeneY.J. StacpooleP.W. Inhibition of human leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by ascorbic acid. An effect mediated by the free radical monodehydroascorbate.J. Biol. Chem.1986261167127713510.1016/S0021‑9258(17)38365‑5 3711081
    [Google Scholar]
  85. AinembabaziD. ZhangY. TurchiJ.J. The mechanistic role of cardiac glycosides in DNA damage response and repair signalling. Cellular and molecular life sciences.Cell. Mol. Life Sci.202380925010.1007/s00018‑023‑04910‑9 37584722
    [Google Scholar]
  86. PakV.V. KooM. KwonD.Y. YunL. Design of a highly potent inhibitory peptide acting as a competitive inhibitor of HMG-CoA reductase.Amino Acids20124352015202510.1007/s00726‑012‑1276‑0 22451276
    [Google Scholar]
  87. Andrade-PavónD. Gómez-GarcíaO. Villa-TanacaL. Molecular recognition of citroflavonoids naringin and naringenin at the active site of the HMG-CoA reductase and DNA topoisomerase Type II Enzymes of Candida spp. and Ustilago maydis.Indian J. Microbiol.2022621798710.1007/s12088‑021‑00980‑0 35068607
    [Google Scholar]
  88. SungJ.H. ChoiS.J. LeeS.W. ParkK.H. MoonT.W. Isoflavones found in Korean soybean paste as 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitors.Biosci. Biotechnol. Biochem.20046851051105810.1271/bbb.68.1051 15170109
    [Google Scholar]
  89. LeopoldiniM. MalajN. ToscanoM. SindonaG. RussoN. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme.J. Agric. Food Chem.20105819107681077310.1021/jf102576j 20843083
    [Google Scholar]
  90. SrivastavaS. SonkarR. MishraS.K. Antidyslipidemic and antioxidant effects of novel Lupeol-derived chalcones.Lipids201348101017102710.1007/s11745‑013‑3824‑0 23943005
    [Google Scholar]
  91. SunP. ZhaoL. ZhangN. Bioactivity of dietary polyphenols: the role in LDL-C lowering.Foods20211011266610.3390/foods10112666 34828946
    [Google Scholar]
  92. BurseA. FrickS. SchmidtA. Implication of HMGR in homeostasis of sequestered and de novo produced precursors of the iridoid biosynthesis in leaf beetle larvae.Insect Biochem. Mol. Biol.2008381768810.1016/j.ibmb.2007.09.006 18070667
    [Google Scholar]
  93. DhyaniP. SatiP. SharmaE. Sesquiterpenoid lactones as potential anti-cancer agents: an update on molecular mechanisms and recent studies.Cancer Cell Int.202222130510.1186/s12935‑022‑02721‑9 36207736
    [Google Scholar]
  94. PaçoA. BrásT. SantosJ.O. SampaioP. GomesA.C. DuarteM.F. Anti-inflammatory and immunoregulatory action of sesquiterpene lactones.Molecules2022273114210.3390/molecules27031142 35164406
    [Google Scholar]
  95. MazurM. MasłowiecD. Antimicrobial activity of lactones.Antibiotics20221110132710.3390/antibiotics11101327 36289985
    [Google Scholar]
/content/journals/cei/10.2174/0115734080298814240528092106
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test