Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Memory loss or dementia is the key symptom of Alzheimer's disease (AD). In AD, significant interference in a progressive manner is observed in memory, behaviour, and cognitive abilities that affect the daily life of a person. At present, more than 50 million people are affected worldwide with Alzheimer's disease. Urgent attention is needed for the symptomatic regulation and management of this disease. The significant pharmacotherapy research in the last two decades gave only four drug compounds galanthamine, donepezil, rivastigmine, and memantine that inhibit the enzyme acetylcholinesterase (AChE) to elevate the availability of acetylcholine in the brain for symptomatic relief in AD patients. Plant-based AChE inhibitors from many plant families, mainly including Rutaceae, Papaveraceae, , Rubiaceae, Amaryllidaceae, Liliaceae, Lycopodiaceae, Fabaceae, Lamiaceae, ., have been characterized for the management of AD progression. AD progression is described by cholinergic, amyloid, Tau protein, oxidative stress, and neuroinflammatory hypothesis. To date, there is no comprehensive review in the literature that combined all plants of the family showing anti-AChE activity. Therefore, the current review aims to present significant literature, especially on plant-derived compounds from the family that inhibit AChE. The review compiled all plants showing potent anti-acetylcholinesterase activity. The anti-AChE activity of more than 30 plants is described, which may be potential targets to find new drug molecules by attracting the attention of researchers toward the family. More than 8 species of genus of have been investigated for indole alkaloids, demonstrating AChE inhibitory activity. The majority of anti-AChE compounds belong to the class of alkaloids.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080296802240528073027
2024-10-01
2025-01-24
Loading full text...

Full text loading...

References

  1. MullardA. News in focus.Nature202159430910.1038/d41586‑021‑01546‑2 34103732
    [Google Scholar]
  2. RoyS.K. WangJ.J. XuY.M. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.13016 36918389
    [Google Scholar]
  3. LeccaD. JungY.J. ScerbaM.T. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis.Alzheimers Dement.202218112327234010.1002/alz.12610 35234334
    [Google Scholar]
  4. HebertL.E. WeuveJ. ScherrP.A. EvansD.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census.Neurology201380191778178310.1212/WNL.0b013e31828726f5 23390181
    [Google Scholar]
  5. SelkoeD.J. Treatments for Alzheimer’s disease emerge.Science2021373655562462610.1126/science.abi6401 34353940
    [Google Scholar]
  6. KangJ. LemaireH.G. UnterbeckA. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor.Nature1987325610673373610.1038/325733a0 2881207
    [Google Scholar]
  7. KolarovaM. García-SierraF. BartosA. RicnyJ. RipovaD. Structure and pathology of tau protein in Alzheimer disease.Int. J. Alzheimers Dis.2012201211310.1155/2012/731526 22690349
    [Google Scholar]
  8. Mietelska-PorowskaA. WasikU. GorasM. FilipekA. NiewiadomskaG. Tau protein modifications and interactions: their role in function and dysfunction.Int. J. Mol. Sci.20141534671471310.3390/ijms15034671 24646911
    [Google Scholar]
  9. PerssonT. PopescuB.O. Cedazo-MinguezA. Oxidative stress in Alzheimer’s disease: Why did antioxidant therapy fail?Oxid. Med. Cell. Longev.2014201442731810.1155/2014/427318
    [Google Scholar]
  10. CraigL.A. HongN.S. McDonaldR.J. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease.Neurosci. Biobehav. Rev.20113561397140910.1016/j.neubiorev.2011.03.001 21392524
    [Google Scholar]
  11. AnandP. SinghB. A review on cholinesterase inhibitors for Alzheimer’s disease.Arch. Pharm. Res.201336437539910.1007/s12272‑013‑0036‑3 23435942
    [Google Scholar]
  12. AndrieuS. ColeyN. LovestoneS. AisenP.S. VellasB. Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions.Lancet Neurol.201514992694410.1016/S1474‑4422(15)00153‑2 26213339
    [Google Scholar]
  13. SantosT.C. GomesT.M. PintoB.A.S. CamaraA.L. PaesA.M.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy.Front. Pharmacol.20189119210.3389/fphar.2018.01192 30405413
    [Google Scholar]
  14. ThomsenT. KewitzH. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo.Life Sci.199046211553155810.1016/0024‑3205(90)90429‑U 2355800
    [Google Scholar]
  15. SchrattenholzA. PereiraE.F. RothU. WeberK.H. AlbuquerqueE.X. MaelickeA. Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands.Mol. Pharmacol.199649116 8569694
    [Google Scholar]
  16. HeinrichM. Galanthamine from Galanthus and other Amaryllidaceae chemistry and biology based on traditional use.Alkaloids Chem. Biol.20106815716510.1016/S1099‑4831(10)06804‑5 20334038
    [Google Scholar]
  17. MurrayA. FaraoniM. CastroM. AlzaN. CavallaroV. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy.Curr. Neuropharmacol.201311438841310.2174/1570159X11311040004 24381530
    [Google Scholar]
  18. HuangL. SuT. LiX. Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease.Curr. Top. Med. Chem.201313151864187810.2174/15680266113139990142 23931437
    [Google Scholar]
  19. DhageP.A. SharbidreA.A. DakuaS.P. BalakrishnanS. Leveraging hallmark Alzheimer’s molecular targets using phytoconstituents: Current perspective and emerging trends.Biomed. Pharmacother.202113911163410.1016/j.biopha.2021.111634 33965726
    [Google Scholar]
  20. RussoP. FrustaciA. Del BufaloA. FiniM. CesarioA. From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer’s disease: Acetylcholinesterase inhibitors.Curr. Med. Chem.2013208976983 23210783
    [Google Scholar]
  21. ChopraK. MisraS. KuhadA. Current perspectives on pharmacotherapy of Alzheimer’s disease.Expert Opin. Pharmacother.201112333535010.1517/14656566.2011.520702 21222549
    [Google Scholar]
  22. CrismonM.L. Tacrine: First drug approved for Alzheimer’s disease.Ann. Pharmacother.199428674475110.1177/106002809402800612 7919566
    [Google Scholar]
  23. QizilbashN. BirksJ. Lopez ArrietaJ. LewingtonS. SzetoS. WITHDRAWN: Tacrine for Alzheimer’s disease.Cochrane Database Syst. Rev.20073CD000202 17636619
    [Google Scholar]
  24. SharmaK. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review).Mol. Med. Rep.201920214791487 31257471
    [Google Scholar]
  25. DooleyM. LambH.M. Donepezil.Drugs Aging200016319922610.2165/00002512‑200016030‑00005 10803860
    [Google Scholar]
  26. CacabelosR. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics.Neuropsychiatr. Dis. Treat.200733303333 19300564
    [Google Scholar]
  27. KumarA. GuptaV. SharmaS. Donepezil.StatPearls Publishing2021
    [Google Scholar]
  28. EllmanG.L. CourtneyK.D. AndresV.Jr FeatherstoneR.M. A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.196172889510.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  29. RheeI.K. van de MeentM. IngkaninanK. VerpoorteR. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining.J. Chromatogr. A20019151-221722310.1016/S0021‑9673(01)00624‑0 11358251
    [Google Scholar]
  30. LópezS. BastidaJ. ViladomatF. CodinaC. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts.Life Sci.200271212521252910.1016/S0024‑3205(02)02034‑9 12270757
    [Google Scholar]
  31. MarstonA. KisslingJ. HostettmannK. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants.Phytochem. Anal.2002131515410.1002/pca.623 11899607
    [Google Scholar]
  32. Di GiovanniS. BorlozA. UrbainA. in vitro screening assays to identify natural or synthetic acetylcholinesterase inhibitors: Thin layer chromatography versus microplate methods.Eur. J. Pharm. Sci.200833210911910.1016/j.ejps.2007.10.004 18082383
    [Google Scholar]
  33. BallardC. GauthierS. CorbettA. BrayneC. AarslandD. JonesE. Alzheimer’s disease.Lancet2011377977010191031
    [Google Scholar]
  34. BabicT. FrancisP.T. PalmerA.M. SnapeM. WilcockG.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress.J. Neurol. Neurosurg. Psychiatry199967455810.1136/jnnp.67.4.558 10610396
    [Google Scholar]
  35. BartusR.T. DeanR.L.III BeerB. LippaA.S. The cholinergic hypothesis of geriatric memory dysfunction.Science1982217455840841410.1126/science.7046051 7046051
    [Google Scholar]
  36. DumasJ.A. NewhouseP.A. The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation.Pharmacol. Biochem. Behav.201199225426110.1016/j.pbb.2011.02.022 21382398
    [Google Scholar]
  37. García-AyllónM.S. Riba-LlenaI. Serra-BasanteC. AlomJ. BoopathyR. Sáez-ValeroJ. Altered levels of acetylcholinesterase in Alzheimer plasma.PLoS One201051e870110.1371/journal.pone.0008701 20090844
    [Google Scholar]
  38. HalderN. LalG. Cholinergic system and its therapeutic importance in inflammation and autoimmunity.Front. Immunol.20211266034210.3389/fimmu.2021.660342 33936095
    [Google Scholar]
  39. ZhouS. HuangG. Synthesis and activities of acetylcholinesterase inhibitors.Chem. Biol. Drug Des.2021986997100610.1111/cbdd.13958 34570966
    [Google Scholar]
  40. JiangY. GaoH. TurduG. Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review.Bioorg. Chem.201775506110.1016/j.bioorg.2017.09.004 28915465
    [Google Scholar]
  41. PatilP. ThakurA. SharmaA. FloraS.J.S. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease.Drug Dev. Res.202081216518310.1002/ddr.21587 31820476
    [Google Scholar]
  42. XiaY. WuQ. MakS. Regulation of acetylcholinesterase during the lipopolysaccharide‐induced inflammatory responses in microglial cells.FASEB J.2022363e2218910.1096/fj.202101302RR 35129858
    [Google Scholar]
  43. LiangZ. LiX. LuoX. The Aptamer Ob2, a novel AChE inhibitor, restores cognitive deficits and alleviates amyloidogenesis in 5×FAD transgenic mice.Mol. Ther. Nucleic Acids20222811412310.1016/j.omtn.2022.02.018 35402070
    [Google Scholar]
  44. DobsonC.M. The amyloid phenomenon and its links with human disease.Cold Spring Harb. Perspect. Biol.201796a02364810.1101/cshperspect.a023648 28062560
    [Google Scholar]
  45. ZhangZ. WangS. TanH. Advances in polysaccharides of natural source of the anti-Alzheimer’s disease effect and mechanism.Carbohydr. Polym.202229611996110.1016/j.carbpol.2022.119961 36088034
    [Google Scholar]
  46. ZhangY. ThompsonR. ZhangH. XuH. APP processing in Alzheimer’s disease.Mol. Brain201141310.1186/1756‑6606‑4‑3 21214928
    [Google Scholar]
  47. ShinW.S. DiJ. CaoQ. Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation.Alzheimers Res. Ther.20191118610.1186/s13195‑019‑0541‑9 31627745
    [Google Scholar]
  48. AvilaJ. LucasJ.J. PérezM. HernándezF. Role of tau protein in both physiological and pathological conditions.Physiol. Rev.200484236138410.1152/physrev.00024.2003 15044677
    [Google Scholar]
  49. PîrşcoveanuD.F.V. PiriciI. TudoricăV. Tau protein in neurodegenerative diseases a review.Rom. J. Morphol. Embryol.201758411411150 29556602
    [Google Scholar]
  50. JouanneM. RaultS. Voisin-ChiretA.S. Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents.Eur. J. Med. Chem.201713915316710.1016/j.ejmech.2017.07.070 28800454
    [Google Scholar]
  51. NooriT. DehpourA.R. SuredaA. Sobarzo-SanchezE. ShirooieS. Role of natural products for the treatment of Alzheimer’s disease.Eur. J. Pharmacol.202189817397410.1016/j.ejphar.2021.173974 33652057
    [Google Scholar]
  52. ZhangH. WeiW. ZhaoM. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease.Int. J. Biol. Sci.20211792181219210.7150/ijbs.57078 34239348
    [Google Scholar]
  53. DongY. YuH. LiX. Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease.J. Neuroinflammation202219120510.1186/s12974‑022‑02567‑y 35971179
    [Google Scholar]
  54. PraticòD. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal.Trends Pharmacol. Sci.2008291260961510.1016/j.tips.2008.09.001 18838179
    [Google Scholar]
  55. CheignonC. TomasM. Bonnefont-RousselotD. FallerP. HureauC. CollinF. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease.Redox Biol.20181445046410.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  56. BenziG. MorettiA. Are reactive oxygen species involved in Alzheimer’s disease?Neurobiol. Aging199516466167410.1016/0197‑4580(95)00066‑N 8544918
    [Google Scholar]
  57. Llanos-GonzálezE. Henares-ChavarinoÁ.A. Pedrero-PrietoC.M. Interplay between mitochondrial oxidative disorders and proteostasis in Alzheimer’s disease.Front. Neurosci.202013144410.3389/fnins.2019.01444 32063825
    [Google Scholar]
  58. da RosaM.M. de AmorimL.C. AlvesJ.V.O. The promising role of natural products in Alzheimer’s disease.Brain Disorders2022710004910.1016/j.dscb.2022.100049
    [Google Scholar]
  59. CisbaniG. RivestS. Targeting innate immunity to protect and cure Alzheimer’s disease: opportunities and pitfalls.Mol. Psychiatry202126105504551510.1038/s41380‑021‑01083‑4 33854189
    [Google Scholar]
  60. HenekaM.T. O’BanionM.K. TerwelD. KummerM.P. Neuroinflammatory processes in Alzheimer’s disease.J. Neural Transm.2010117891994710.1007/s00702‑010‑0438‑z 20632195
    [Google Scholar]
  61. GyengesiE. MünchG. In search of an anti-inflammatory drug for Alzheimer disease.Nat. Rev. Neurol.202016313113210.1038/s41582‑019‑0307‑9 31919414
    [Google Scholar]
  62. CummingsJ. JonesR. WilkinsonD. Effect of donepezil on cognition in severe Alzheimer’s disease: A pooled data analysis.J. Alzheimers Dis.201021384385110.3233/JAD‑2010‑100078 20634594
    [Google Scholar]
  63. VasudevanM. ParleM. Pharmacological actions of Thespesia populnea relevant to Alzheimer’s disease.Phytomedicine2006139-1067768710.1016/j.phymed.2006.01.007 16860552
    [Google Scholar]
  64. NakdookW. KhongsombatO. TaepavaraprukP. TaepavaraprukN. IngkaninanK. The effects of Tabernaemontana divaricata root extract on amyloid β-peptide 25–35 peptides induced cognitive deficits in mice.J. Ethnopharmacol.2010130112212610.1016/j.jep.2010.04.027 20435125
    [Google Scholar]
  65. JahanshahiM. NikmahzarE. YadollahiN. RamazaniK. Protective effects of Ginkgo biloba extract (EGB 761) on astrocytes of rat hippocampus after exposure with scopolamine.Anat. Cell Biol.2012452929610.5115/acb.2012.45.2.92 22822463
    [Google Scholar]
  66. JungH.A. KarkiS. KimJ.H. ChoiJ.S. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos.Arch. Pharm. Res.20153861178118710.1007/s12272‑014‑0492‑4 25300425
    [Google Scholar]
  67. DubeyT. ChinnathambiS. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease.Arch. Biochem. Biophys.201967610815310.1016/j.abb.2019.108153 31622587
    [Google Scholar]
  68. SuganthyN. PandianS.K. DeviK.P. Cholinesterase inhibitors from plants: Possible treatment strategy for neurological disorders-a review.Int J Biomed Pharm Sci20093187103
    [Google Scholar]
  69. BaligaM.S. Alstonia scholaris Linn R Br in the treatment and prevention of cancer: past, present, and future.Integr. Cancer Ther.20109326126910.1177/1534735410376068 20702494
    [Google Scholar]
  70. SinghS.K. SinghA. Molluscicidal and anticholinesterase activity of Alstonia scholaris plant against freshwater snail Lymnaea acuminata.Pak. J. Biol. Sci.20036161442144610.3923/pjbs.2003.1442.1446
    [Google Scholar]
  71. BhowmikS. KsS. PraveenT. Evaluation of antioxidant and anticholinesterase potential of bark extracts of Alstonia scholaris.J. Pharm. Pharmacol.201524203205
    [Google Scholar]
  72. AremuA.O. HlopheN.P. Van StadenJ. FinnieJ.F. Ethnobotanical uses, nutritional composition, phytochemicals, biological activities, and propagation of the genus brachystelma (Apocynaceae).Horticulturae20228212210.3390/horticulturae8020122
    [Google Scholar]
  73. PareD HilouA Yhi-pênê N’DOJ, et al Phytochemical study and evaluation of the biological activity of anorectic plants used in the Seno province (Burkina Faso).J. Sci. Res. Rep.201923411310.9734/jsrr/2019/v23i430125
    [Google Scholar]
  74. Kareti SRP.S. In silico molecular docking analysis of potential anti-alzheimer’s compounds present in chloroform extract of Carissa carandas leaf using gas chromatography MS/MS.Curr. Ther. Res. Clin. Exp.20209310061510.1016/j.curtheres.2020.100615 33306055
    [Google Scholar]
  75. PereiraD.M. FerreresF. OliveiraJ.M.A. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission.Phytomedicine2010178-964665210.1016/j.phymed.2009.10.008 19962870
    [Google Scholar]
  76. HindmarchI. FuchsH.H. ErzigkeitH. Efficacy and tolerance of vinpocetine in ambulant patients suffering from mild to moderate organic psychosyndromes.Int. Clin. Psychopharmacol.199161314410.1097/00004850‑199100610‑00005 2071888
    [Google Scholar]
  77. SzS. WhitehouseP.J. Vinpocetine for cognitive impairment and dementia (Cochrane Review).The Cochrane Library20042
    [Google Scholar]
  78. DeshmukhR. SharmaV. MehanS. SharmaN. BediK.L. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine a PDE1 inhibitor.Eur. J. Pharmacol.20096201-3495610.1016/j.ejphar.2009.08.027 19699735
    [Google Scholar]
  79. ZhanZ.J. YuQ. WangZ.L. ShanW.G. Indole alkaloids from Ervatamia hainanensis with potent acetylcholinesterase inhibition activities.Bioorg. Med. Chem. Lett.201020216185618710.1016/j.bmcl.2010.08.123 20850311
    [Google Scholar]
  80. IngkaninanK. TemkitthawonP. ChuenchomK. YuyaemT. ThongnoiW. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies.J. Ethnopharmacol.2003892-326126410.1016/j.jep.2003.08.008 14611889
    [Google Scholar]
  81. LimaJ.A. CostaR.S. EpifânioR.A. CastroN.G. RochaM.S. PintoA.C. Geissospermum vellosii stembark.Pharmacol. Biochem. Behav.200992350851310.1016/j.pbb.2009.01.024 19463267
    [Google Scholar]
  82. FerreiraH.C. SerraC.P. EndringerD.C. LemosV.S. BragaF.C. CôrtesS.F. Endothelium-dependent vasodilation induced by Hancornia speciosa in rat superior mesenteric artery.Phytomedicine2007147-847347810.1016/j.phymed.2006.11.008 17174539
    [Google Scholar]
  83. MarquesS.P. OliveiraI.R. OwenR.W. TrevisanM.T. Antioxidant capacity, angiotensin I converting enzyme (ACE) and acetylcholinesterase inhibition by extracts of the leaves and bark of Hancornia speciosa Gomes.Human J20154171183
    [Google Scholar]
  84. PenidoA.B. De MoraisS.M. RibeiroA.B. Medicinal plants from northeastern Brazil against Alzheimer’s disease.Evid. Based Complement. Alternat. Med.201720171710.1155/2017/1753673 28316633
    [Google Scholar]
  85. Llanos-RomeroR.E. CárdenasR. ZúñigaB. Herrera-SantoyoJ. Guevara-FeferP. Acetylcholinesterase inhibitory activity of Haplophyton cimicidum.Nat. Prod. Res.2014281075775910.1080/14786419.2013.879131 24484055
    [Google Scholar]
  86. MroueM. AlamM. Crooksiine, a bisindole alkaloid from Haplophyton crooksii.Phytochemistry19913051741174410.1016/0031‑9422(91)84255‑Q
    [Google Scholar]
  87. MroueM.A. GhumanM.A. AlamM. Crooksidine, an indole alkaloid from Haplophyton crooksii.Phytochemistry199333121721910.1016/0031‑9422(93)85426‑R
    [Google Scholar]
  88. MroueM.A. EulerK.L. GhumanM.A. AlamM. Indole alkaloids of Haplophyton crooksii.J. Nat. Prod.199659989089310.1021/np960070c
    [Google Scholar]
  89. PenumalaM. ZinkaR.B. ShaikJ.B. MallepalliS.K.R. VaddeR. AmooruD.G. Phytochemical profiling and in vitro screening for anticholinesterase, antioxidant, antiglucosidase and neuroprotective effect of three traditional medicinal plants for Alzheimer’s Disease and Diabetes Mellitus dual therapy.BMC Complement. Altern. Med.20181817710.1186/s12906‑018‑2140‑x 29499679
    [Google Scholar]
  90. KunduA. MitraA. Flavoring extracts of Hemidesmus indicus roots and Vanilla planifolia pods exhibit in vitro acetylcholinesterase inhibitory activities.Plant Foods Hum. Nutr.201368324725310.1007/s11130‑013‑0363‑z 23715789
    [Google Scholar]
  91. SamaradivakaraS.P. SamarasekeraR. HandunnettiS.M. WeerasenaO.V.D.S.J. Cholinesterase, protease inhibitory and antioxidant capacities of Sri Lankan medicinal plants.Ind. Crops Prod.20168322723410.1016/j.indcrop.2015.12.047
    [Google Scholar]
  92. LobineD. MahomoodallyM.F. Himatanthus lancifolius (Müll. Arg.) Woodson.In: Naturally Occurring Chemicals Against Alzheimer's Disease.Academic Press2021463466
    [Google Scholar]
  93. SeidlC. CorreiaB.L. StinghenA.E.M. SantosC.A.M. Acetylcholinesterase inhibitory activity of uleine from Himatanthus lancifolius.Z. Naturforsch. C J. Biosci.2010657-844044410.1515/znc‑2010‑7‑804 20737911
    [Google Scholar]
  94. SeidlC. SantosC.A.M. SimoneA.D. BartoliniM. Weffort-SantosA.M. AndrisanoV. Uleine disrupts key enzymatic and non-enzymatic biomarkers that leads to Alzheimer’s disease.Curr. Alzheimer Res.201714331732610.2174/1567205013666161026150455 27784218
    [Google Scholar]
  95. MukemS. Acetylcholinesterase Inhibitory, Anti-inflammatory and Antioxidant Activities of Holarrhena antidysenterica Bark.Prince of Songkla University2011
    [Google Scholar]
  96. YangZ.D. DuanD.Z. XueW.W. YaoX.J. LiS. Steroidal alkaloids from Holarrhena antidysenterica as acetylcholinesterase inhibitors and the investigation for structure–activity relationships.Life Sci.20129023-2492993310.1016/j.lfs.2012.04.017 22569298
    [Google Scholar]
  97. CheenprachaS. JitonnomJ. KomekM. RitthiwigromT. LaphookhieoS. Acetylcholinesterase inhibitory activity and molecular docking study of steroidal alkaloids from Holarrhena pubescens barks.Steroids2016108929810.1016/j.steroids.2016.01.018 26850468
    [Google Scholar]
  98. NamasudraS. PhukanP. BawariM. GC-MS analysis of bioactive compounds and safety assessment of the ethanol extract of the barks of Holarrhena pubescens Wall. ex.G.Don (Family Apocynaceae): Sub-acute toxicity studies in swiss albino mice.Pharmacogn. J.202113116217110.5530/pj.2021.13.23
    [Google Scholar]
  99. BulbulI. FashiuddinS. AsaduzzamanM. Evaluation of antioxidant and cholinesterase inhibitory activities of Hoya parasitica Variegata: An in-vitro study.Annu. Res. Rev. Biol.201826411210.9734/ARRB/2018/39925
    [Google Scholar]
  100. HajimehdipoorH. AraL. MoazzeniH. EsmaeiliS. Evaluating the antioxidant and acetylcholinesterase inhibitory activities of some plants from Kohgiluyeh va Boyerahmad province, Iran.Res J Pharmac20163417
    [Google Scholar]
  101. SinghD. SinghA. The toxicity of four native Indian plants: Effect on AChE and acid/alkaline phosphatase level in fish Channa marulius.Chemosphere200560113514010.1016/j.chemosphere.2004.12.078 15910912
    [Google Scholar]
  102. Atay Balkanİ. DoğanH.T. ZenginG. Enzyme inhibitory and antioxidant activities of Nerium oleander L. flower extracts and activity guided isolation of the active components.Ind. Crops Prod.2018112243110.1016/j.indcrop.2017.10.058
    [Google Scholar]
  103. PrasadW.C. VirajM.M. PhilipR. RaniJ. SwethaB.N. GuruprasadR. Extraction of acetylcholine esterase inhibitors from Plumeria pudica and analyzing its activity on zebrafish brain.World J. Pharm. Pharm. Sci.20165417811791
    [Google Scholar]
  104. MoshiM.J. OtienoD.F. WeisheitA. Ethnomedicine of the Kagera Region, north western Tanzania. Part 3: plants used in traditional medicine in Kikuku village, Muleba District.J. Ethnobiol. Ethnomed.2012811410.1186/1746‑4269‑8‑14 22472473
    [Google Scholar]
  105. FadaeinasabM. HadiA. KiaY. BasiriA. MurugaiyahV. Cholinesterase enzymes inhibitors from the leaves of Rauvolfia reflexa and their molecular docking study.Molecules20131843779378810.3390/molecules18043779 23529036
    [Google Scholar]
  106. FadaeinasabM. BasiriA. KiaY. KarimianH. AliH.M. MurugaiyahV. New indole alkaloids from the bark of Rauvolfia reflexa and their cholinesterase inhibitory activity.Cell. Physiol. Biochem.20153751997201110.1159/000438560 26584298
    [Google Scholar]
  107. Atta-ur-RahmanMM Qureshi KZ. S. Malik, and SS Ali.Fitoterapia198960291
    [Google Scholar]
  108. ShadatA.A. IbrahimA.Y. EzzeldinE. AlsaidM.S. Acetylcholinesterase inhibition and antioxidant activity of some medicinal plants for treating neuro degenarative disease.Afr. J. Tradit. Complement. Altern. Med.20151239710310.4314/ajtcam.v12i3.12
    [Google Scholar]
  109. DemmakR.G. BordageS. BensegueniA. Chemical constituents from solenostemma argel and their cholinesterase inhibitory activity.Nat. Prod. Sci.201925211512110.20307/nps.2019.25.2.115
    [Google Scholar]
  110. AndradeM.T. LimaJ.A. PintoA.C. RezendeC.M. CarvalhoM.P. EpifanioR.A. Indole alkaloids from Tabernaemontana australis (Müell. Arg) Miers that inhibit acetylcholinesterase enzyme.Bioorg. Med. Chem.200513124092409510.1016/j.bmc.2005.03.045 15911323
    [Google Scholar]
  111. NaidooC.M. NaidooY. DewirY.H. MurthyH.N. El-HendawyS. Al-SuhaibaniN. Major bioactive alkaloids and biological activities of Tabernaemontana species (Apocynaceae).Plants202110231310.3390/plants10020313 33562893
    [Google Scholar]
  112. NicolaC. SalvadorM. Escalona GowerA. MouraS. EcheverrigarayS. Chemical constituents antioxidant and anticholinesterasic activity of Tabernaemontana catharinensis.ScientWorldJ2013201311010.1155/2013/519858 23983637
    [Google Scholar]
  113. MarinhoF.F. SimõesA.O. BarcellosT. MouraS. Brazilian Tabernaemontana genus: Indole alkaloids and phytochemical activities.Fitoterapia201611412713710.1016/j.fitote.2016.09.002 27639415
    [Google Scholar]
  114. MusquiariB CrevelinEJ BertoniBW Precursor-directed biosynthesis in Tabernaemontana catharinensis as a new avenue for Alzheimerʼs disease-modifying agents.Planta Medica20218701/0213647
    [Google Scholar]
  115. ChattipakornS. PongpanparadornA. PratchayasakulW. PongchaidachaA. IngkaninanK. ChattipakornN. Tabernaemontana divaricata extract inhibits neuronal acetylcholinesterase activity in rats.J. Ethnopharmacol.20071101616810.1016/j.jep.2006.09.007 17023131
    [Google Scholar]
  116. PratchayasakulW. PongchaidechaA. ChattipakornN. ChattipakornS. Ethnobotany & ethnopharmacology of Tabernaemontana divaricata.Indian J. Med. Res.20081274317335 18577786
    [Google Scholar]
  117. PatelS.S. RaghuwanshiR. MasoodM. AcharyaA. JainS.K. Medicinal plants with acetylcholinesterase inhibitory activity.Rev. Neurosci.201829549152910.1515/revneuro‑2017‑0054 29303784
    [Google Scholar]
  118. ChaiyanaW. SchripsemaJ. IngkaninanK. OkonogiS. 3′-R/S-Hydroxyvoacamine, a potent acetylcholinesterase inhibitor from Tabernaemontana divaricata.Phytomedicine201320654354810.1016/j.phymed.2012.12.016 23375813
    [Google Scholar]
  119. MonneratC.S. SouzaJ.J. MathiasL. Braz-FilhoR. VieiraI.J.C. A new indole alkaloid isolated from Tabernaemontana hystrix steud (Apocynaceae).J. Braz. Chem. Soc.2005166b1331133510.1590/S0103‑50532005000800004
    [Google Scholar]
  120. VieiraI.J.C. MedeirosW.L.B. MonneratC.S. Two fast screening methods (GC-MS and TLC-ChEI assay) for rapid evaluation of potential anticholinesterasic indole alkaloids in complex mixtures.An. Acad. Bras. Cienc.200880341942610.1590/S0001‑37652008000300003 18797794
    [Google Scholar]
  121. AlperK. ReithM.E.A. SershenH. Ibogaine and the inhibition of acetylcholinesterase.J. Ethnopharmacol.2012139387988210.1016/j.jep.2011.12.006 22200647
    [Google Scholar]
  122. MedeirosW.L.B. VieiraI.J.C. MathiasL. Two known bis-indole alkaloids isolated fromTabernaemontana laeta: complete1H and13C chemical shift assignments.Magn. Reson. Chem.199937967668110.1002/(SICI)1097‑458X(199909)37:9676:AID‑MRC5133.0.CO;2‑F
    [Google Scholar]
  123. MedeirosW.L.B. VieiraI.J.C. MathiasL. Braz-FilhoR. SchripsemaJ. A new natural auaternary indole slkaloid isolated from Tabernaemontana laeta Mart. (Apocynaceae).J. Braz. Chem. Soc.200112336837210.1590/S0103‑50532001000300008
    [Google Scholar]
  124. AthipornchaiA KetpooP SaeengR. Acetylcholinesterase inhibitor from Tabernaemontana pandacaqui flowers.Nat Prod Communic20201531934578X20911488
    [Google Scholar]
  125. Abbas-MohammadiM. Moridi FarimaniM. SalehiP. Molecular networking based dereplication of AChE inhibitory compounds from the medicinal plant Vincetoxicum funebre (Boiss. & Kotschy).J. Biomol. Struct. Dyn.20224051942195110.1080/07391102.2020.1834455 33054569
    [Google Scholar]
  126. BahadoriF TopçuG BoǧaM TürkekulA KolakU KartalM. Indole alkaloids from Vinca major and V. minor growing in Turkey.Nat Prod Communic2012761934578X1200700610
    [Google Scholar]
/content/journals/cei/10.2174/0115734080296802240528073027
Loading
/content/journals/cei/10.2174/0115734080296802240528073027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test