Skip to content
2000
image of Exploring  Therapeutic  Potential of  Hydrotropic  Solid Dispersions of Hesperidin and Naringenin for the Management of Diabetes and Obesity

Abstract

The preclinical antidiabetic and anti-obesity potential of hydrotropic solid dispersions of hesperidin and naringenin was investigated in streptozotocin [STZ]/nicotinamide [NIC]-induced diabetic rats on a high-fat diet. The hydrotropic solid dispersions showed significant glycemic control, insulin sensitivity, and lipid profiles while reducing body weight, adipose tissue mass, and inflammatory markers. These formulations showed superior efficacy over pure compounds, likely due to enhanced solubility compared to the pure drugs. Findings suggested that hesperidin and naringenin hydrotropic solid dispersions are promising agents for showing antihyperglycemic, antidyslipidemic, and cardiac function-improving potential in high-fat diet/STZ-induced type 2 diabetic rats, supporting their potential clinical application as adjunct therapies. These findings support the utility of the tested samples in clinical applications as an adjunct therapy.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855341080241113095244
2024-12-17
2024-12-27
Loading full text...

Full text loading...

References

  1. Sugandh F.N.U. Chandio M. Raveena F.N.U. Kumar L. Karishma F.N.U. Khuwaja S. Memon U.A. Bai K. Kashif M. Varrassi G. Khatri M. Kumar S. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023 15 8 e43697 10.7759/cureus.43697 37724233
    [Google Scholar]
  2. Yadav K.S. Yadav N.P. Shanker K. Thomas S.C. Srivastav S. Srivastava S. Rai V.K. Mishra N. Sinha P. Assessment of antidiabetic potential of Cissampelos pareira leaf extract in streptozotocin–nicotinamide induced diabetic mice. J. Pharm. Res. 2013 6 8 874 878 10.1016/j.jopr.2013.06.027
    [Google Scholar]
  3. Rai V.K. Mishra N. Agrawal A.K. Jain S. Yadav N.P. Novel drug delivery system: An immense hope for diabetics. Drug Deliv. 2016 23 7 2371 2390 10.3109/10717544.2014.991001 25544604
    [Google Scholar]
  4. Zhang X. Zhao Y. Chen S. Shao H. Anti‐diabetic drugs and sarcopenia: Emerging links, mechanistic insights, and clinical implications. J. Cachexia Sarcopenia Muscle 2021 12 6 1368 1379 10.1002/jcsm.12838 34676695
    [Google Scholar]
  5. Hruby A. Hu F.B. The epidemiology of obesity: A big picture. PharmacoEconomics 2015 33 7 673 689 10.1007/s40273‑014‑0243‑x 25471927
    [Google Scholar]
  6. Gochhi M. Kar B. Pradhan D. Halder J. Dash P. Das C. A comprehensive review of edible mushrooms for the management of diabetes. Bioactive Carbohydr. Diet. Fibre 2024 31 100405 10.1016/j.bcdf.2024.100405
    [Google Scholar]
  7. Kim K.S. Lee B.W. Beneficial effect of anti-diabetic drugs for nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2020 26 4 430 443 10.3350/cmh.2020.0137 32791578
    [Google Scholar]
  8. Vaz de Castro P.A.S. Bitencourt L. de Oliveira Campos J.L. Fischer B.L. Soares de Brito S.B.C. Soares B.S. Drummond J.B. Simões e Silva A.C. Nephrogenic diabetes insipidus: A comprehensive overview. J. Pediatr. Endocrinol. Metab. 2022 35 4 421 434 10.1515/jpem‑2021‑0566 35146976
    [Google Scholar]
  9. Galicia-Garcia U. Benito-Vicente A. Jebari S. Larrea-Sebal A. Siddiqi H. Uribe K.B. Ostolaza H. Martín C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020 21 17 6275 10.3390/ijms21176275 32872570
    [Google Scholar]
  10. Nauck M.A. Wefers J. Meier J.J. Treatment of type 2 diabetes: Challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 2021 9 8 525 544 10.1016/S2213‑8587(21)00113‑3 34181914
    [Google Scholar]
  11. Uppal S. Italiya K.S. Chitkara D. Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater. 2018 81 20 42 10.1016/j.actbio.2018.09.049 30268916
    [Google Scholar]
  12. Grover M. Utreja P. Recent advances in drug delivery systems for anti-diabetic drugs: A review. Curr. Drug Deliv. 2014 11 4 444 457 10.2174/1567201811666140118225021 24438443
    [Google Scholar]
  13. Rasouli H. Hosseini-Ghazvini S.M-B. Khodarahmi R. Therapeutic potentials of the most studied flavonoids: Highlighting antibacterial and antidiabetic functionalities. Studies in Natural Products Chemistry Atta ur R. Elsevier 2019 85 122
    [Google Scholar]
  14. Negi H. Gupta M. Walia R. Khataibeh M. Sarwat M. Medicinal plants and natural products: More effective and safer pharmacological treatment for the management of obesity. Curr. Drug Metab. 2021 22 12 918 930 10.2174/1389200222666210729114456 34325629
    [Google Scholar]
  15. Mahboob A. Samuel S.M. Mohamed A. Wani M.Y. Ghorbel S. Miled N. Büsselberg D. Chaari A. Role of flavonoids in controlling obesity: Molecular targets and mechanisms. Front. Nutr. 2023 10 1177897 10.3389/fnut.2023.1177897 37252233
    [Google Scholar]
  16. Ramos-Hryb A.B. Cunha M.P. Kaster M.P. Rodrigues A.L.S. Natural polyphenols and terpenoids for depression treatment: Current status. Studies in Natural Products Chemistry Atta ur R. Elsevier 2018 181 221
    [Google Scholar]
  17. Alam M Subhan N Rahman MM Uddin S Reza H Sarker S Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Advances in nutrition 2014 5 404 417
    [Google Scholar]
  18. Stabrauskiene J. Kopustinskiene D.M. Lazauskas R. Bernatoniene J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines 2022 10 7 1686 10.3390/biomedicines10071686 35884991
    [Google Scholar]
  19. Mirzaei A. Mirzaei A. Najjar Khalilabad S. Askari V.R. Baradaran Rahimi V. Promising influences of hesperidin and hesperetin against diabetes and its complications: A systematic review of molecular, cellular, and metabolic effects. EXCLI J. 2023 22 1235 1263 38234970
    [Google Scholar]
  20. Murugesan N. Woodard K. Ramaraju R. Greenway F.L. Coulter A.A. Rebello C.J. Naringenin increases insulin sensitivity and metabolic rate: A case study. J. Med. Food 2020 23 3 343 348 10.1089/jmf.2019.0216 31670603
    [Google Scholar]
  21. Sharma A. Bhardwaj P. Arya S.K. Naringin: A potential natural product in the field of biomedical applications. Carbohydr. Polym. Technol. Appl. 2021 2 100068 10.1016/j.carpta.2021.100068
    [Google Scholar]
  22. Fu R. Batool A. Qadir R. Aslam M. Hesperidin and naringenin. A Centum of Valuable Plant Bioactives Elsevier Academic Press 1st ed 2021 403 29
    [Google Scholar]
  23. Kanaze F.I. Bounartzi M.I. Georgarakis M. Niopas I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur. J. Clin. Nutr. 2007 61 4 472 477 10.1038/sj.ejcn.1602543 17047689
    [Google Scholar]
  24. Arora B Lather V Pathalingappa MB Walia R Enhancement of aqueous solubility of hesperidin and naringenin utilizing hydrotropic solubilization technique: Characterization and in vitro evaluation. J Asian Nat Prod Res. 26 10 1207 1218 10.1080/10286020.2024.2358831
    [Google Scholar]
  25. Ahmed O. Mahmoud A. Abdel Moneim A. Ashour. Antidiabetic effects of hesperidin and naringin in type 2 diabetic rats. Diabetol. Croat. 2012 41 53 67
    [Google Scholar]
  26. Ji H. Zhao X. Chen X. Fang H. Gao H. Wei G. Zhang M. Kuang H. Yang B. Cai X. Su Y. Piao C. Zhao S. Li L. Sun W. Xu T. Xu Q. Fan Y. Ye J. Yao C. Shang M. Song G. Chen L. Zheng Q. Xiao X. Yan L. Lian F. Tong X. Jia Z. Lun L. Hu S. Liu H. Cai G. Li H. Huang L. Tian M. Wan J. Song P. Zhang Y. Li F. Hu X. Xu J. Pang Y. Shi J. Cheng H. Tian W. Wang H. Qin G. Zhao Q. Wang L. Luo J. Liu L. Zhao L. Xie W. Cai X. Qiao G. Song A. Li J. Zhang W. Wu Q. Wang Y. Fang Q. Yue L. Zhang Y. Hu L. You Q. Wang L. Zhao S. Zhang L. Guo H. Dai L. Niu W. Gao W. Li M. Zhang R. Liu Y. Wang J. Zhang C. Li S. Feng Y. Dai Y. Sa R. Sang L. Wang H. Yin W. Zhang H. Sun F. Ma L. Yang J. Zhang X. Gan X. Sheng Y. Zhou Y. Lu J. Xu T. Li H. Li Z. Pan X. Zhang L. Han J. Yu A. Jing J. Huang L. Chen X. Wang X. Shi J. Wang B. Sun G. Li K. Zhou T. Shi M. Liu H. Sun X. Zhang H. Hong W. Huang N. Chen X. Zheng J. Juan Y. Zhou R. Wang H. Zang C. Lai Y. Peng Z. Chen R. Liu X. Cai M. Han X. FOCUS Trial Committees and Investigators Jinlida for diabetes prevention in impaired glucose tolerance and multiple metabolic abnormalities. JAMA Intern. Med. 2024 184 7 727 735 10.1001/jamainternmed.2024.1190 38829648
    [Google Scholar]
  27. Ueno H. Shiiya T. Nagamine K. Tsuchimochi W. Sakoda H. Shiomi K. Kangawa K. Nakazato M. Clinical application of ghrelin for diabetic peripheral neuropathy. Endocr. J. 2017 64 Suppl. S53 S57 10.1507/endocrj.64.S53 28652546
    [Google Scholar]
  28. Annadurai T. Muralidharan A.R. Joseph T. Hsu M.J. Thomas P.A. Geraldine P. T A Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin–nicotinamide-induced experimental diabetic rats. J. Physiol. Biochem. 2012 68 3 307 318 10.1007/s13105‑011‑0142‑y 22234849
    [Google Scholar]
  29. Pires Mendes C. Postal B.G. Silva Frederico M.J. Gonçalves Marques Elias R. Aiceles de Medeiros Pinto V. da Fonte Ramos C. Devantier Neuenfeldt P. Nunes R.J. Mena Barreto Silva F.R. Synthesis of a novel glibenclamide-pioglitazone hybrid compound and its effects on glucose homeostasis in normal and insulin-resistant rats. Bioorg. Chem. 2021 114 105157 10.1016/j.bioorg.2021.105157 34328855
    [Google Scholar]
  30. Gomaa H.F. Abdelmalek I.B. Abdel-Wahhab K.G. The anti-diabetic effect of some plant extracts against streptozotocin - Induced diabetes type 2 in male albino rats. Endocr. Metab. Immune Disord. Drug Targets 2021 21 8 1431 1440 10.2174/1871530320666201016145502 33069202
    [Google Scholar]
  31. Ding Y. Wang L. Im S. Hwang O. Kim H.S. Kang M.C. Lee S.H. Anti-obesity effect of diphlorethohydroxycarmalol isolated from brown alga Ishige okamurae in high-fat diet-induced obese mice. Mar. Drugs 2019 17 11 637 10.3390/md17110637 31717668
    [Google Scholar]
  32. Tan X. Yang X. Xu X. Peng Y. Li X. Deng Y. Zhang X. Qiu W. Wu D. Ruan Y. Zhi C. Investigation of anti-diabetic effect of a novel coenzyme Q10 derivative. Front Chem. 2023 11 1280999 10.3389/fchem.2023.1280999 37927560
    [Google Scholar]
  33. Yang C. Lai S. Chen Y. Liu D. Liu B. Ai C. Wan X. Gao L. Chen X. Zhao C. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food Chem. Toxicol. 2019 131 110562 10.1016/j.fct.2019.110562 31181236
    [Google Scholar]
  34. Abdelfattah D.S.E. Fouad M.A. Elmeshad A.N. El-Nabarawi M.A. Elhabal S.F. Anti-obesity effect of combining white kidney bean extract, propolis ethanolic extract and CrPi3 on sprague-dawley rats fed a high-fat diet. Nutrients 2024 16 2 310 10.3390/nu16020310 38276548
    [Google Scholar]
  35. Bai Y. Zang X. Ma J. Xu G. Anti-diabetic effect of Portulaca oleracea L. Polysaccharideandits mechanism in diabetic rats. Int. J. Mol. Sci. 2016 17 8 1201 10.3390/ijms17081201 27463713
    [Google Scholar]
  36. Kim H.Y. Kim J.H. Jeong H.G. Jin C.H. Anti‑diabetic effect of the lupinalbin A compound isolated from Apios americana : In vitro analysis and molecular docking study. Biomed. Rep. 2021 14 4 39 10.3892/br.2021.1415 33692902
    [Google Scholar]
  37. Shah P.P. Desai P.R. Patel A.R. Singh M.S. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials 2012 33 5 1607 1617 10.1016/j.biomaterials.2011.11.011 22118820
    [Google Scholar]
  38. Raza K. Katare O.P. Setia A. Bhatia A. Singh B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J. Microencapsul. 2013 30 3 225 236 10.3109/02652048.2012.717115 23088318
    [Google Scholar]
  39. Ilić V Vukmirović S Stilinović N Čapo I Arsenović M Milijašević B Insight into anti-diabetic effect of low dose of stevioside. Biomed Pharmacother. 2017 90 216 221 10.1016/j.biopha.2017.03.045 28363166
    [Google Scholar]
  40. Esakki A. Ramadoss R. Ananthapadmanabhan L. Sundar S. Panneerselvam S. Ramani P. Quantification of the anti-diabetic effect of Allium cepa. Cureus 2024 16 4 e59174 10.7759/cureus.59174 38807798
    [Google Scholar]
  41. Wang M. Yang F. Yan X. Chao X. Zhang W. Yuan C. Zeng Q. Anti‐diabetic effect of banana peel dietary fibers on type 2 diabetic mellitus mice induced by streptozotocin and high‐sugar and high‐fat diet. J. Food Biochem. 2022 46 10 e14275 10.1111/jfbc.14275 35765856
    [Google Scholar]
  42. Tang S. Fang C. Liu Y. Tang L. Xu Y. Anti-obesity and anti-diabetic effect of ursolic acid against streptozotocin/high fat induced obese in diabetic rats. J. Oleo Sci. 2022 71 2 289 300 10.5650/jos.ess21258 35034940
    [Google Scholar]
  43. Yang D.K. Kang H.S. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol. Ther. 2018 26 2 130 138 10.4062/biomolther.2017.254 29462848
    [Google Scholar]
  44. Desser A. Ringerike T. Klemp M. NIPH systematic reviews: Executive summaries. Effect of new anti-diabetic medications in combination with metformin compared to sulfonylurea in combination with metformin in patients with type 2 diabetes. Oslo, Norway: Knowledge Centre for the Health Services at The Norwegian Institute of Public Health (NIPH) Copyright ©2014 by The Norwegian Institute of Public Health (NIPH). 2014
    [Google Scholar]
  45. Ganesan K. Xu B. Anti-diabetic effects and mechanisms of dietary polysaccharides. Molecules 2019 24 14 2556 10.3390/molecules24142556 31337059
    [Google Scholar]
  46. Nishiguchi T. Yoshikawa Y. Yasui H. Anti-diabetic effect of organo-chalcogen (sulfur and selenium) zinc complexes with hydroxy-pyrone derivatives on leptin-deficient type 2 diabetes model ob/ob mice. Int. J. Mol. Sci. 2017 18 12 2647 10.3390/ijms18122647 29215553
    [Google Scholar]
  47. Liu Y. Dong M. Yang Z. Pan S. Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway. Int. J. Biol. Macromol. 2016 89 484 488 10.1016/j.ijbiomac.2016.05.015 27164497
    [Google Scholar]
  48. Thupakula S Nimmala SSR Dawood SM Padiya R Synergistic anti-diabetic effect of phloroglucinol and total procyanidin dimer isolated from Vitisvinifera methanolic seed extract potentiates via suppressing oxidative stress: In-vitro evaluation studies. 3 Biotech. 2024 14 3 76
    [Google Scholar]
  49. Zhao X. Lin G. Liu T. Anti-diabetic effect of Ornithogalum caudatum Jacq. polysaccharides via the PI3K/Akt/GSK-3β signaling pathway and regulation of gut microbiota. Heliyon 2023 9 10 e20808 10.1016/j.heliyon.2023.e20808 37860571
    [Google Scholar]
  50. Greco A. Coperchini F. Croce L. Magri F. Teliti M. Rotondi M. Drug repositioning in thyroid cancer treatment: The intriguing case of anti-diabetic drugs. Front. Pharmacol. 2023 14 1303844 10.3389/fphar.2023.1303844 38146457
    [Google Scholar]
  51. Gan Q. Wang J. Hu J. Lou G. Xiong H. Peng C. Zheng S. Huang Q. The role of diosgenin in diabetes and diabetic complications. J. Steroid Biochem. Mol. Biol. 2020 198 105575 10.1016/j.jsbmb.2019.105575 31899316
    [Google Scholar]
  52. Szkudelski T. Szkudelska K. The anti-diabetic potential of baicalin: Evidence from rodent studies. Int. J. Mol. Sci. 2023 25 1 431 10.3390/ijms25010431 38203600
    [Google Scholar]
  53. Jiang S. Young J. Wang K. Qian Y. Cai L. Diabetic‑induced alterations in hepatic glucose and lipid metabolism: The role of type 1 and type 2 diabetes mellitus (Review). Mol. Med. Rep. 2020 22 2 603 611 10.3892/mmr.2020.11175 32468027
    [Google Scholar]
  54. Parsons J.A. Bartke A. Sorenson R.L. Number and size of islets of Langerhans in pregnant, human growth hormone-expressing transgenic, and pituitary dwarf mice: Effect of lactogenic hormones. Endocrinology 1995 136 5 2013 2021 10.1210/endo.136.5.7720649 7720649
    [Google Scholar]
  55. Arrojo e Drigo R. Ali Y. Diez J. Srinivasan D.K. Berggren P.O. Boehm B.O. New insights into the architecture of the islet of Langerhans: A focused cross-species assessment. Diabetologia 2015 58 10 2218 2228 10.1007/s00125‑015‑3699‑0 26215305
    [Google Scholar]
  56. Rajan P Natraj P Ranaweera SS Dayarathne LA Lee YJ Han CH Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food research international 2022 162 Pt B 112059
    [Google Scholar]
  57. Blüher M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019 15 5 288 298 10.1038/s41574‑019‑0176‑8 30814686
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855341080241113095244
Loading
/content/journals/cdth/10.2174/0115748855341080241113095244
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: solid dispersions ; Hesperidin ; naringenin ; Hydrotropy ; obesity ; diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test