Skip to content
2000
image of Comprehensive Insights into Cephalosporins: Spectrum, Generations, and Clinical Applications

Abstract

Cephalosporins, a widely utilized class of antibiotics in clinical settings for bacterial infections, are the focus of this critical analysis. This examination aims to provide a comprehensive description, encompassing their range, generational distinctions, and therapeutic applications. Renowned for their versatility against both Gram-positive and Gram-negative bacteria, cephalosporins have evolved over generations, enhancing efficacy and addressing resistance patterns. Each generation possesses unique characteristics crucial for clinical utility. Primarily targeting Gram-positive cocci, first-generation cephalosporins exhibit a broadened spectrum in subsequent generations, encompassing Gram-negative species. Advancements in penetration into tissues and resistance against beta-lactamases contribute to increased effectiveness as generations progress. Clinically, cephalosporins find application across diverse medical disciplines, from intricate hospital environments to community-acquired illnesses. A comprehensive understanding of each generation's distinct features empowers clinicians to tailor treatment regimens, optimizing therapeutic outcomes and mitigating resistance risks. This meticulous examination consolidates the latest available information on cephalosporins, serving as an invaluable resource for medical professionals involved in antibiotic prescription and infection management. A profound understanding of cephalosporin characteristics and generations proves indispensable in navigating the dynamic landscape of bacterial resistance, ultimately enhancing patient care.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855339119241204071146
2024-12-17
2025-06-20
Loading full text...

Full text loading...

References

  1. Lin X. Kück U. Cephalosporins as key lead generation beta-lactam antibiotics. Appl. Microbiol. Biotechnol. 2022 106 24 8007 8020 10.1007/s00253‑022‑12272‑8 36401643
    [Google Scholar]
  2. Anugulruengkitt S. Charoenpong L. Kulthanmanusorn A. Thienthong V. Usayaporn S. Kaewkhankhaeng W. Rueangna O. Sophonphan J. Moolasart V. Manosuthi W. Tangcharoensathien V. Point prevalence survey of antibiotic use among hospitalized patients across 41 hospitals in Thailand. JAC Antimicrob. Resist. 2022 5 1 dlac140 10.1093/jacamr/dlac140 36628340
    [Google Scholar]
  3. Global antimicrobial resistance and use surveillance system (GLASS) 2022 Available from: https://dataindonesia.id/sektor-riil/detail/angka-konsumsi-ikan-ri-naik-jadi-5648-kgkapita-pada-2022
  4. Murray C.J.L. Ikuta K.S. Sharara F. Swetschinski L. Robles Aguilar G. Gray A. Han C. Bisignano C. Rao P. Wool E. Johnson S.C. Browne A.J. Chipeta M.G. Fell F. Hackett S. Haines-Woodhouse G. Kashef Hamadani B.H. Kumaran E.A.P. McManigal B. Achalapong S. Agarwal R. Akech S. Albertson S. Amuasi J. Andrews J. Aravkin A. Ashley E. Babin F-X. Bailey F. Baker S. Basnyat B. Bekker A. Bender R. Berkley J.A. Bethou A. Bielicki J. Boonkasidecha S. Bukosia J. Carvalheiro C. Castañeda-Orjuela C. Chansamouth V. Chaurasia S. Chiurchiù S. Chowdhury F. Clotaire Donatien R. Cook A.J. Cooper B. Cressey T.R. Criollo-Mora E. Cunningham M. Darboe S. Day N.P.J. De Luca M. Dokova K. Dramowski A. Dunachie S.J. Duong Bich T. Eckmanns T. Eibach D. Emami A. Feasey N. Fisher-Pearson N. Forrest K. Garcia C. Garrett D. Gastmeier P. Giref A.Z. Greer R.C. Gupta V. Haller S. Haselbeck A. Hay S.I. Holm M. Hopkins S. Hsia Y. Iregbu K.C. Jacobs J. Jarovsky D. Javanmardi F. Jenney A.W.J. Khorana M. Khusuwan S. Kissoon N. Kobeissi E. Kostyanev T. Krapp F. Krumkamp R. Kumar A. Kyu H.H. Lim C. Lim K. Limmathurotsakul D. Loftus M.J. Lunn M. Ma J. Manoharan A. Marks F. May J. Mayxay M. Mturi N. Munera-Huertas T. Musicha P. Musila L.A. Mussi-Pinhata M.M. Naidu R.N. Nakamura T. Nanavati R. Nangia S. Newton P. Ngoun C. Novotney A. Nwakanma D. Obiero C.W. Ochoa T.J. Olivas-Martinez A. Olliaro P. Ooko E. Ortiz-Brizuela E. Ounchanum P. Pak G.D. Paredes J.L. Peleg A.Y. Perrone C. Phe T. Phommasone K. Plakkal N. Ponce-de-Leon A. Raad M. Ramdin T. Rattanavong S. Riddell A. Roberts T. Robotham J.V. Roca A. Rosenthal V.D. Rudd K.E. Russell N. Sader H.S. Saengchan W. Schnall J. Scott J.A.G. Seekaew S. Sharland M. Shivamallappa M. Sifuentes-Osornio J. Simpson A.J. Steenkeste N. Stewardson A.J. Stoeva T. Tasak N. Thaiprakong A. Thwaites G. Tigoi C. Turner C. Turner P. van Doorn H.R. Velaphi S. Vongpradith A. Vongsouvath M. Vu H. Walsh T. Walson J.L. Waner S. Wangrangsimakul T. Wannapinij P. Wozniak T. Young Sharma T.E.M.W. Yu K.C. Zheng P. Sartorius B. Lopez A.D. Stergachis A. Moore C. Dolecek C. Naghavi M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022 399 10325 629 655 10.1016/S0140‑6736(21)02724‑0 35065702
    [Google Scholar]
  5. Turner J. Muraoka A. Bedenbaugh M. Childress B. Pernot L. Wiencek M. Peterson Y.K. The chemical relationship among beta-lactam antibiotics and potential impacts on reactivity and decomposition. Front. Microbiol. 2022 13 807955 10.3389/fmicb.2022.807955 35401470
    [Google Scholar]
  6. Bui T Preuss C V Cephalosporins. StatPearls Publishing Treasure Island (FL) 2024
    [Google Scholar]
  7. AM AboulMagd. Lipophilicity study of different cephalosporins: Computational prediction of minimum inhibitory concentration using salting-out chromatography. J. Pharm. Biomed. Anal. 2021 206
    [Google Scholar]
  8. Leone S. Damiani G. Pezone I. Kelly M.E. Cascella M. Alfieri A. Pace M.C. Fiore M. New antimicrobial options for the management of complicated intra-abdominal infections. Eur. J. Clin. Microbiol. Infect. Dis. 2019 38 5 819 827 10.1007/s10096‑019‑03533‑y 30903538
    [Google Scholar]
  9. Pichichero M.E. Zagursky R. Penicillin and Cephalosporin allergy. Ann. Allergy Asthma Immunol. 2014 112 5 404 412 10.1016/j.anai.2014.02.005 24767695
    [Google Scholar]
  10. Wu J.Y. Srinivas P. Pogue J.M. Cefiderocol: A Novel Agent for the Management of Multidrug-Resistant Gram-Negative Organisms. Infect. Dis. Ther. 2020 9 1 17 40 10.1007/s40121‑020‑00286‑6 32072491
    [Google Scholar]
  11. Seiffert S.N. Hilty M. Perreten V. Endimiani A. Extended-spectrum cephalosporin-resistant gram-negative organisms in livestock: An emerging problem for human health? Drug Resist. Updat. 2013 16 1-2 22 45 10.1016/j.drup.2012.12.001 23395305
    [Google Scholar]
  12. Midtvedt T. Penicillins, cephalosporins, other beta-lactam antibiotics, and tetracyclines. Side Eff. Drugs Annu. 2008 30 280 296 10.1016/S0378‑6080(08)00025‑1
    [Google Scholar]
  13. Sanderson P.J. Antimicrobial prophylaxis in surgery: Microbiological factors. J. Antimicrob. Chemother. 1993 31 Suppl. B 1 9 10.1093/jac/31.suppl_B.1 8449838
    [Google Scholar]
  14. Palmer D.L. Epidemiology of antibiotic resistance. Intensive Care Med 2000 26 Suppl 1 S14 S21
    [Google Scholar]
  15. Abo-Shama U.H. El-Gendy H. Mousa W.S. Hamouda R.A. Yousuf W.E. Hetta H.F. Abdeen E.E. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect. Drug Resist. 2020 13 351 362 10.2147/IDR.S234425 32104007
    [Google Scholar]
  16. Hussain M. Nafady A. Cefuroxime derived copper nanoparticles and their application as a colorimetric sensor for trace level detection of picric acid. 2016 Available from: https://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra08571g
  17. Hameed A. Fatima S. Rahman F.U. Yoon T-H. Azam A. Khan S. Khan A. Islam N.U. Synergistic enzyme inhibition effect of cefuroxime by conjugation with gold and silver. New J. Chem. 2014 38 4 1641 1646 10.1039/c3nj00974b
    [Google Scholar]
  18. Casey J.R. Pichichero M.E. The evidence base for cephalosporin superiority over penicillin in streptococcal pharyngitis. Diagn. Microbiol. Infect. Dis. 2007 57 3 Suppl. S39 S45 10.1016/j.diagmicrobio.2006.12.020 17292576
    [Google Scholar]
  19. Van Krimpen P.C. Van Bennekom W.P. Bult A. Penicillins and cephalosporins. Physicochemical properties and analysis in pharmaceutical and biological matrices. Pharm. Weekbl. Sci. 1987 9 1 1 23 3550684
    [Google Scholar]
  20. Tauzin M. Ouldali N. Béchet S. Caeymaex L. Cohen R. Pharmacokinetic and pharmacodynamic considerations of cephalosporin use in children. Expert Opin. Drug Metab. Toxicol. 2019 15 11 869 880 10.1080/17425255.2019.1678585 31597049
    [Google Scholar]
  21. Hodgkin D.C. Maslen E.N. The X-ray analysis of the structure of cephalosporin C. Biochem. J. 1961 79 2 393 402 10.1042/bj0790393 13714852
    [Google Scholar]
  22. Judson F.N. Treatment of uncomplicated gonorrhea with ceftriaxone: A review. Sex. Transm. Dis. 1986 13 3 Suppl. 199 202 10.1097/00007435‑198607000‑00021 3094173
    [Google Scholar]
  23. Andriole V.T. Pharmacokinetics of cephalosporins in patients with normal or reduced renal function. J Infect Dis 1978 137 Suppl S88 S99 10.1093/infdis/137.Supplement.S88
    [Google Scholar]
  24. Chaudhry S.B. Veve M.P. Wagner J.L. Cephalosporins: A focus on side chains and β-Lactam cross-reactivity. Pharmacy (Basel) 2019 7 3 103 10.3390/pharmacy7030103 31362351
    [Google Scholar]
  25. Singh A. Singhania N. Sharma A. Sharma N. Samal S. Ceftriaxone-induced immune hemolytic anemia. Cureus 2020 12 6 e8660 32699660
    [Google Scholar]
  26. Bui T Preuss C V Cephalosporins. StatPearls Publishing Treasure Island (FL) 2024
    [Google Scholar]
  27. Matthaiou A.M. Tomos I. Chaniotaki S. Liakopoulos D. Sakellaropoulou K. Koukidou S. Gheorghe L.M. Eskioglou S. Paspalli A. Hillas G. Dimakou K. Association of broad-spectrum antibiotic therapy and vitamin E supplementation with vitamin K deficiency-induced coagulopathy: A case report and narrative review of the literature. J. Pers. Med. 2023 13 9 1349 10.3390/jpm13091349 37763117
    [Google Scholar]
  28. Salehi H. Salehi A.M. A rare case of pseudomembranous colitis presenting with pleural effusion and ascites with literature review. Case Rep. Gastrointest. Med. 2021 2021 1 5 10.1155/2021/6019068 35003814
    [Google Scholar]
  29. Sharma V. Singh T.G. Drug induced nephrotoxicity- A mechanistic approach. Mol. Biol. Rep. 2023 50 8 6975 6986 10.1007/s11033‑023‑08573‑4 37378746
    [Google Scholar]
  30. Martín J.F. Ullán R.V. García-Estrada C. Regulation and compartmentalization of β‐lactam biosynthesis. Microb. Biotechnol. 2010 3 3 285 299 10.1111/j.1751‑7915.2009.00123.x 21255328
    [Google Scholar]
  31. Martín J.F. Ullán R.V. Casqueiro J. Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv. Biochem. Eng. Biotechnol. 2004 88 91 109 10.1007/b99258 15719553
    [Google Scholar]
  32. Singh H.B. Jogaiah S. Gupta V.K. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier 2018
    [Google Scholar]
  33. Zakaria A.S. Afifi S.A. Elkhodairy K.A. Newly developed topical cefotaxime sodium hydrogels: Antibacterial activity and in vivo evaluation. BioMed Res. Int. 2016 2016 1 15 10.1155/2016/6525163 27314033
    [Google Scholar]
  34. Cazzola M. Perna F.D. Boveri B. Marco F.D. Diamare F. Centanni S. Interrelationship between the pharmacokinetics and pharmacodynamics of cefaclor advanced formulation in patients with acute exacerbation of chronic bronchitis. J. Chemother. 2000 12 3 216 222 10.1179/joc.2000.12.3.216 10877516
    [Google Scholar]
  35. Verhaegen J. Verbist L. Oral Cephalosporins. Acta Clin. Belg. 1992 47 6 377 386 10.1080/17843286.1992.11718259 1337810
    [Google Scholar]
  36. Tang S. Xiao J. Guo G. He J. Hao Z. Xiao X. Preparation of a newly formulated long-acting ceftiofur hydrochloride suspension and evaluation of its pharmacokinetics in pigs. J. Vet. Pharmacol. Ther. 2010 33 3 238 245 10.1111/j.1365‑2885.2009.01126.x 20557440
    [Google Scholar]
  37. Zhanel G.G. Pozdirca M. Golden A.R. Lawrence C.K. Zelenitsky S. Berry L. Schweizer F. Bay D. Adam H. Zhanel M.A. Lagacé-Wiens P. Walkty A. Irfan N. Naber K. Lynch J.P. III Karlowsky J.A. Sulopenem: An intravenous and oral penem for the treatment of urinary tract infections due to multidrug-resistant bacteria. Drugs 2022 82 5 533 557 10.1007/s40265‑022‑01688‑1 35294769
    [Google Scholar]
  38. Felmingham D. Robbins M.J. Ghosh G. Bhogal H. Mehta M.D. Leakey A. Clark S. Dencer C.A. Ridgway G.L. Grüneberg R.N. An in vitro characterization of cefditoren, a new oral cephalosporin. Drugs Exp. Clin. Res. 1994 20 4 127 147 7813385
    [Google Scholar]
  39. Hassan M. Abeed F.A. Saif B. Hassan M. Abeed F.A. Saif B. A new kinetic spectrophotometric method for determination of cefadroxil in pharmaceutical formulations using Lawsonia inermis (Henna) as natural reagent. Adv. Biol. Chem. 2014 4 2 116 128 10.4236/abc.2014.42016
    [Google Scholar]
  40. Al-Rufaie M.M.M. Motaweq Z.Y. Estimation of cephalosporins (ceftriaxone, ceftazidime) antibiotics as pure and pharmaceutic forms by color produced reaction in uv-vis spectrophotometic technique. Journal of Islamic Pharmacy 2018 3 2 1 15 10.18860/jip.v3i2.6098
    [Google Scholar]
  41. Saleh G.A. Two selective spectrophotometric methods for the determination of amoxicillin and cefadroxil. Analyst 1996 121 5 641 10.1039/an9962100641
    [Google Scholar]
  42. Murillo J.A. Lernus J.M. García L.F. Analysis of binary mixtures of cephalothin and cefoxitin by using first-derivative spectrophotometry. J. Pharm. Biomed. Anal. 1996 14 3 257 266 10.1016/0731‑7085(95)01600‑7 8851749
    [Google Scholar]
  43. Trimm MA Abdelmageed OH Trimm TZ Kinetic spectrophotometric determination of certain cephalosporins in pharmaceutical formulations. Int J Anal Chem 2009 2009 596379 2011
    [Google Scholar]
  44. Amin A.S. Ragab G.H. Spectrophotometric determination of certain cephalosporins in pure form and in pharmaceutical formulations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004 60 12 2831 2835 10.1016/j.saa.2003.12.049 15350919
    [Google Scholar]
  45. Singh J. Shukla S.K. Sharma M. Chromatographic separation studies of carbapenem antibiotics on silica gel G layers with different solvent systems. J Planar Chromat 2016 229 231
    [Google Scholar]
  46. Rageh A.H. El-Shaboury S.R. Saleh G.A. Spectophotometric method for determination of certain cephalosporins using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) Nat Sci 2010 2 8 828 840
    [Google Scholar]
  47. El-Shaboury S.R. Saleh G.A. Mohamed F.A. Rageh A.H. Analysis of cephalosporin antibiotics. J. Pharm. Biomed. Anal. 2007 45 1 1 19 10.1016/j.jpba.2007.06.002 17689910
    [Google Scholar]
  48. Philip J.A. Uzairu A. Shallangwa G.A. Uba S. Virtual screening of novel pyridine derivatives as effective inhibitors of DNA gyrase (GyrA) of Salmonella typhi Curr Chem Lett 2023 12 1 16
    [Google Scholar]
  49. Lu H. Rosenbaum S. Developmental pharmacokinetics in pediatric populations. J. Pediatr. Pharmacol. Ther. 2014 19 4 262 276 10.5863/1551‑6776‑19.4.262 25762871
    [Google Scholar]
  50. Edwards D.J. Stoeckel K. The pharmacokinetics of new oral cephalosporins in children. Chemotherapy 1992 38 2 2 9 10.1159/000239090 1516460
    [Google Scholar]
  51. Batchelor H.K. Marriott J.F. Paediatric pharmacokinetics: Key considerations. Br. J. Clin. Pharmacol. 2015 79 3 395 404 10.1111/bcp.12267 25855821
    [Google Scholar]
  52. Craig W.A. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn. Microbiol. Infect. Dis. 1995 22 1-2 89 96 10.1016/0732‑8893(95)00053‑D 7587056
    [Google Scholar]
  53. Roberts J.A. Abdul-Aziz M.H. Lipman J. Mouton J.W. Vinks A.A. Felton T.W. Hope W.W. Farkas A. Neely M.N. Schentag J.J. Drusano G. Frey O.R. Theuretzbacher U. Kuti J.L. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect. Dis. 2014 14 6 498 509 10.1016/S1473‑3099(14)70036‑2 24768475
    [Google Scholar]
  54. Roberts J.A. Taccone F.S. Lipman J. Understanding PK/PD. Intensive Care Med. 2016 42 11 1797 1800 10.1007/s00134‑015‑4032‑6 26334756
    [Google Scholar]
  55. Pacifici G.M. Pharmacokinetics of cephalosporins in the neonate: A review. Clinics 2011 66 7 1267 1274 10.1590/S1807‑59322011000700024 21876985
    [Google Scholar]
  56. Mazzei T. Dentico P. The pharmacokinetics of oral cephalosporins. Clin. Microbiol. Infect. 2000 6 S3 Suppl. 3 53 54 10.1111/j.1469‑0691.2000.tb02042.x 11449651
    [Google Scholar]
  57. Starkey E.S. Sammons H.M. Practical pharmacokinetics: What do you really need to know? Arch. Dis. Child. Educ. Pract. Ed. 2015 100 1 37 43 10.1136/archdischild‑2013‑304555 25122157
    [Google Scholar]
  58. Meyers B.R. Srulevitch E.S. Jacobson J. Hirschman S.Z. Crossover study of the pharmacokinetics of ceftriaxone administered intravenously or intramuscularly to healthy volunteers. Antimicrob. Agents Chemother. 1983 24 5 812 814 10.1128/AAC.24.5.812 6318657
    [Google Scholar]
  59. Shi Z.R. Chen X.K. Tian L.Y. Wang Y.K. Zhang G.Y. Dong L. Jirasomprasert T. Jacqz-Aigrain E. Zhao W. Population pharmacokinetics and dosing optimization of ceftazidime in infants. Antimicrob. Agents Chemother. 2018 62 4 e02486-17 10.1128/AAC.02486‑17 29378703
    [Google Scholar]
  60. Jacobs R.F. Kearns G.L. Cefotaxime and desacetylcefotaxime in neonates and children: A review of microbiologic, pharmacokinetic, and clinical experience. Diagn. Microbiol. Infect. Dis. 1989 12 1 93 99 10.1016/0732‑8893(89)90052‑7 2653717
    [Google Scholar]
  61. Leroux S. Roué J.M. Gouyon J.B. Biran V. Zheng H. Zhao W. Jacqz-Aigrain E. A population and developmental pharmacokinetic analysis to evaluate and optimize cefotaxime dosing regimen in neonates and young infants. Antimicrob. Agents Chemother. 2016 60 11 6626 6634 10.1128/AAC.01045‑16 27572399
    [Google Scholar]
  62. Kearns G.L. Abdel-Rahman S.M. Alander S.W. Blowey D.L. Leeder J.S. Kauffman R.E. 2003 10.1056/NEJMra035092
  63. Bertels R.A. Semmekrot B.A. Gerrits G.P. Mouton J.W. Serum concentrations of cefotaxime and its metabolite desacetyl-cefotaxime in infants and children during continuous infusion. Infection 2008 36 5 415 420 10.1007/s15010‑008‑7274‑1 18791659
    [Google Scholar]
  64. Saleem T. Zamir A. Rasool M.F. Imran I. Saeed H. Alqahtani F. Exploring the pharmacokinetics of second-generation cephalosporin, cefaclor: a systematic review in healthy and diseased populations. Xenobiotica 2024 54 4 171 181 10.1080/00498254.2024.2333009 38517680
    [Google Scholar]
  65. Shetty Y.C. Manjesh P.S. Churiwala W. Jain S.M. Singh V.K. Drug use evaluation of cephalosporins in a tertiary care hospital. Perspect. Clin. Res. 2022 13 1 38 42 10.4103/picr.PICR_29_20 35198427
    [Google Scholar]
  66. John S.M. Panda B.K. Bhosle D.G. Soman N. Evaluation of cephalosporins utilization and compliance with reference to the hospital antibiotic policy of an Indian tertiary care hospital. Int. J. Basic Clin. Pharmacol. 2019 8 5 1044 10.18203/2319‑2003.ijbcp20191599
    [Google Scholar]
  67. Sartelli M. Barie P.S. Coccolini F. Ten golden rules for optimal antibiotic use in hospital settings: The warning call to action. World J. Emerg. Surg. 2023 18 1 50 10.1186/1749‑7922‑8‑50 37845673
    [Google Scholar]
  68. Nguyen-Tran H. MacBrayne C.E. Parker S.K. Poole N.M. Ambulatory cephalosporin prescribing practices at a freestanding children’s hospital network. Antimicrob. Steward. Healthc. Epidemiol. 2022 2 1 e175 10.1017/ash.2022.300 36386006
    [Google Scholar]
  69. Payne L.E. Gagnon D.J. Riker R.R. Seder D.B. Glisic E.K. Morris J.G. Fraser G.L. Cefepime-induced neurotoxicity: A systematic review. Crit. Care 2017 21 1 276 10.1186/s13054‑017‑1856‑1 29137682
    [Google Scholar]
  70. Tchapyjnikov D. Luedke M.W. Cefepime-induced encephalopathy and nonconvulsive status epilepticus: Dispelling an artificial dichotomy The Neurohospitalist 2019 9 2 100 104 10.1177/1941874418803225
    [Google Scholar]
  71. Veeraraghavan B. Bakthavatchalam Y.D. Sahni R.D. Oral antibiotics in clinical development for community-acquired urinary tract infections. Infect. Dis. Ther. 2021 10 4 1815 1835 10.1007/s40121‑021‑00509‑4 34357517
    [Google Scholar]
  72. Macy E. Blumenthal K.G. Are cephalosporins safe for use in penicillin allergy without prior allergy evaluation? J. Allergy Clin. Immunol. Pract. 2018 6 1 82 89 10.1016/j.jaip.2017.07.033 28958745
    [Google Scholar]
  73. Corsini Campioli C. Go J.R. Abu Saleh O. Challener D. Yetmar Z. Osmon D.R. Antistaphylococcal penicillin vs cefazolin for the treatment of methicillin-susceptible Staphylococcus aureus Spinal Epidural Abscesses. Open Forum Infect. Dis. 2021 8 3 ofab071 10.1093/ofid/ofab071 33738321
    [Google Scholar]
  74. Lupia T. Corcione S. Mornese Pinna S. De Rosa F.G. New cephalosporins for the treatment of pneumonia in internal medicine wards. J. Thorac. Dis. 2020 12 7 3747 3763 10.21037/jtd‑20‑417 32802454
    [Google Scholar]
  75. Paterson D.L. Bonomo R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005 18 4 657 686 10.1128/CMR.18.4.657‑686.2005 16223952
    [Google Scholar]
  76. Jacoby G.A. AmpC β-Lactamases. Clin. Microbiol. Rev. 2009 22 1 161 182 10.1128/CMR.00036‑08 19136439
    [Google Scholar]
  77. Nordmann P. Naas T. Poirel L. Global spread of carbapenemase-producing enterobacteriaceae. Emerg. Infect. Dis. 2011 17 10 1791 1798 10.3201/eid1710.110655 22000347
    [Google Scholar]
  78. Llanes C. Hocquet D. Vogne C. Benali-Baitich D. Neuwirth C. Plésiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob. Agents Chemother. 2004 48 5 1797 1802 10.1128/AAC.48.5.1797‑1802.2004 15105137
    [Google Scholar]
  79. Poole K. Efflux-mediated multiresistance in gram-negative bacteria. Clin. Microbiol. Infect. 2004 10 1 12 26 10.1111/j.1469‑0691.2004.00763.x 14706082
    [Google Scholar]
  80. Chambers H.F. DeLeo F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009 7 629 641
    [Google Scholar]
  81. Delcour A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta. Proteins Proteomics 2009 1794 5 808 816 10.1016/j.bbapap.2008.11.005
    [Google Scholar]
  82. Sonawane V.C. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit. Rev. Biotechnol. 2006 26 2 95 120 10.1080/07388550600718630 16809100
    [Google Scholar]
  83. Levina E. Tsirelson V. How does electron exchange correlation influence reactivity of metallo-β-lactamase L1 against cephalosporin antibiotics. Chem. Phys. 2023 566 111774 10.1016/j.chemphys.2022.111774
    [Google Scholar]
  84. Barber M.S. Giesecke U. Reichert A. Minas W. Industrial enzymatic production of cephalosporin-based beta-lactams. Adv. Biochem. Eng. Biotechnol. 2004 88 179 215 10.1007/b99261 15719556
    [Google Scholar]
  85. Vorobyev S.A. Novikova G.V. Demina A.V. Shidlovskiy I.P. Volochaev M.N. Synthesis and synergistic effect of antibacterial composites based on concentrated hydrosols of silver nanoparticles combined with cephalosporins antibiotics. Inorg. Chem. Commun. 2022 144 109862 10.1016/j.inoche.2022.109862
    [Google Scholar]
  86. Feinberg J.G. Allergy to antibiotics. Int. Arch. Allergy Immunol. 1968 33 5 439 443 10.1159/000230059 5657241
    [Google Scholar]
  87. Bush K. Bradford P.A. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med. 2016 6 8 a025247 10.1101/cshperspect.a025247 27329032
    [Google Scholar]
  88. Abbott B.J. Preparation of pharmaceutical compounds by immobilized enzymes and cells. Adv. Appl. Microbiol. 1976 20 C 203 257 10.1016/S0065‑2164(08)70113‑8 998365
    [Google Scholar]
  89. Brannon D.R. Fukuda D.S. Mabe J.A. Huber F.M. Whitney J.G. Detection of a cephalosporin C acetyl esterase in the carbamate cephalosporin antibiotic-producing culture, Streptomyces clavuligerus. Antimicrob. Agents Chemother. 1972 1 3 237 241 10.1128/AAC.1.3.237 5045469
    [Google Scholar]
  90. Cassat J.E. Skaar E.P. Iron in infection and immunity. Cell Host Microbe 2013 13 5 509 519 10.1016/j.chom.2013.04.010 23684303
    [Google Scholar]
  91. Huang L. Wu C. Gao H. Xu C. Dai M. Huang L. Hao H. Wang X. Cheng G. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: An overview. Antibiotics (Basel) 2022 11 4 520 10.3390/antibiotics11040520 35453271
    [Google Scholar]
  92. Tamma P.D. Doi Y. Bonomo R.A. Johnson J.K. Simner P.J. Tamma P.D. Doi Y. Bonomo R.A. A primer on AmpC β-lactamases: Necessary knowledge for an increasingly multidrug-resistant world. Clin. Infect. Dis. 2019 69 8 1446 1455 10.1093/cid/ciz173 30838380
    [Google Scholar]
  93. Zhou G. Wang Q. Wang Y. Wen X. Peng H. Peng R. Shi Q. Xie X. Li L. Outer membrane porins contribute to antimicrobial resistance in gram-negative bacteria. Microorganisms 2023 11 7 1690 10.3390/microorganisms11071690 37512863
    [Google Scholar]
  94. Araten A.H. Brooks R.S. Choi S.D.W. Esguerra L.L. Savchyn D. Wu E.J. Leon G. Sniezek K.J. Brynildsen M.P. Cephalosporin resistance, tolerance, and approaches to improve their activities. J. Antibiot. (Tokyo) 2024 77 3 135 146 10.1038/s41429‑023‑00687‑y 38114565
    [Google Scholar]
  95. Jia X. Ma W. He J. Tian X. Liu H. Zou H. Cheng S. Heteroresistance to cefepime in pseudomonas aeruginosa bacteraemia. Int. J. Antimicrob. Agents 2020 55 3 105832 10.1016/j.ijantimicag.2019.10.013 31669739
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855339119241204071146
Loading
/content/journals/cdth/10.2174/0115748855339119241204071146
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gram-positive ; clinical applications ; antibiotic use ; gram-negative ; spectrum ; Cephalosporin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test