Skip to content
2000
image of Role of Phytochemicals in the Management of Atopic Dermatitis: A Comprehensive Review

Abstract

Atopic dermatitis is a chronic inflammatory skin condition that affects millions of people around the world. In the past decades, phytochemicals have gained attention for the treatment of atopic dermatitis due to their inflammatory, antioxidant, and immunomodulatory properties, which could be beneficial in alleviating the suffering associated with atopic dermatitis. Although various conventional treatments, such as immune modulators and biologicals, are available for the treatment of atopic dermatitis their effectiveness can be limited due to some adverse effects. The present review aimed to explore the various phytochemicals to be identified as a complementary and alternative treatment option for the management of atopic dermatitis. Phytochemicals offer the potential advantage of reducing both local and systemic side effects associated with long-term use of corticosteroids, as well as addressing the higher costs of biological drug therapies. A comprehensive literature review was conducted using databases such as PubMed, Scopus, and Web of Science to identify the pharmacologically proven phytochemicals for the management of atopic dermatitis by covering articles published from 2015 to 2023. Various phytochemicals, such as berberine, piperine, ferulic acid, baicalin, vasicine, neferine, kaempferol, α- Boswellic Acid, gallic acid, etc., werebe highlighted for their potential therapeutic effects in atopic dermatitis. In conclusion, phytochemicals present a promising, safe, complementary, and alternative treatment option for atopic dermatitis management.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855319521240919065131
2024-10-02
2024-11-26
Loading full text...

Full text loading...

References

  1. Sidbury R. Davis D.M. Cohen D.E. Cordoro K.M. Berger T.G. Bergman J.N. Chamlin S.L. Cooper K.D. Feldman S.R. Hanifin J.M. Krol A. Margolis D.J. Paller A.S. Schwarzenberger K. Silverman R.A. Simpson E.L. Tom W.L. Williams H.C. Elmets C.A. Block J. Harrod C.G. Begolka W.S. Eichenfield L.F. Guidelines of care for the management of atopic dermatitis. J. Am. Acad. Dermatol. 2014 71 2 327 349 10.1016/j.jaad.2014.03.030 24813298
    [Google Scholar]
  2. Leung D.Y.M. Bieber T. Atopic dermatitis. Lancet 2003 361 9352 151 160 10.1016/S0140‑6736(03)12193‑9 12531593
    [Google Scholar]
  3. Akhtar N. Verma A. Pathak K. Exploring preclinical and clinical effectiveness of nanoformulations in the treatment of atopic dermatitis: Safety aspects and patent reviews. Bull. Fac. Pharm. Cairo Univ. 2017 55 1 1 10 10.1016/j.bfopcu.2016.12.003
    [Google Scholar]
  4. Souto E.B. Dias-Ferreira J. Oliveira J. Sanchez-Lopez E. Lopez-Machado A. Espina M. Garcia M.L. Souto S.B. Martins-Gomes C. Silva A.M. Trends in atopic dermatitis—from standard pharmacotherapy to novel drug delivery systems. Int. J. Mol. Sci. 2019 20 22 5659 10.3390/ijms20225659 31726723
    [Google Scholar]
  5. Novak N. Bieber T. Leung D.Y. Immune mechanisms leading to atopic dermatitis. J. Allergy Clin. Immunol. 2003 112 6 Suppl. S128 S139 10.1016/j.jaci.2003.09.032 14657843
    [Google Scholar]
  6. Schmid-Grendelmeier P. Simon D. Simon H.U. Akdis C.A. Wüthrich B. Epidemiology, clinical features, and immunology of the “intrinsic” (non-IgE-mediated) type of atopic dermatitis (constitutional dermatitis). Allergy 2001 56 9 841 849 10.1034/j.1398‑9995.2001.00144.x 11551248
    [Google Scholar]
  7. Wan Y.Y. Multi‐tasking of helper T cells. Immunology 2010 130 2 166 171 10.1111/j.1365‑2567.2010.03289.x 20557575
    [Google Scholar]
  8. Grewe M. Bruijnzeel-Koomen C.A.F.M. Schöpf E. Thepen T. Langeveld-Wildschut A.G. Ruzicka T. Krutmann J. A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol. Today 1998 19 8 359 361 10.1016/S0167‑5699(98)01285‑7 9709503
    [Google Scholar]
  9. Arkwright P.D. Motala C. Subramanian H. Spergel J. Schneider L.C. Wollenberg A. Management of difficult-to-treat atopic dermatitis. J. Allergy Clin. Immunol. Pract. 2013 1 2 142 151 10.1016/j.jaip.2012.09.002 24565453
    [Google Scholar]
  10. Vuurman E. Van Veggel L. Uiterwijk M. Leutner D. O’Hanlon J.F. Seasonal allergic rhinitis and antihistamine effects on children’s learning. Eur. Neuropsychopharmacol. 1992 2 3 263 265 10.1016/0924‑977X(92)90101‑D
    [Google Scholar]
  11. Rathi S.K. D’Souza P. Rational and ethical use of topical corticosteroids based on safety and efficacy. Indian J. Dermatol. 2012 57 4 251 259 10.4103/0019‑5154.97655 22837556
    [Google Scholar]
  12. Carr W.W. Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations. Paediatr. Drugs 2013 15 4 303 310 10.1007/s40272‑013‑0013‑9 23549982
    [Google Scholar]
  13. Man G. Hu L. Elias P.M. Man M. Therapeutic benefits of natural ingredients for atopic dermatitis. Chin. J. Integr. Med. 2018 24 4 308 314 10.1007/s11655‑017‑2769‑1 28861804
    [Google Scholar]
  14. Baran M.F. Keskin C. Baran A. Hatipoğlu A. Yildiztekin M. Küçükaydin S. Kurt K. Hoşgören H. Sarker M.M.R. Sufianov A. Beylerli O. Khalilov R. Eftekhari A. Green synthesis of silver nanoparticles from Allium cepa L. Peel extract, their antioxidant, antipathogenic, and anticholinesterase activity. Molecules 2023 28 5 2310 10.3390/molecules28052310 36903556
    [Google Scholar]
  15. Gashimova U. Guliyeva R. Javadova K. Ibishova A. Panakhova E. Histological examination of retinal function and the effects of curcuma longa on memory correction in experimental olfactory bulbectomy rat models. Adv. Biol. Earth Sci. 2024 9 1 216 222
    [Google Scholar]
  16. Miryusifova K. Malikova G. Allahverdiyeva A. Huseynova N. Umudlu A. The saffron effects on the dynamics of experimental epilepsy. Adv. Biol. Earth Sci. 2024 9 1 196 202
    [Google Scholar]
  17. Baran A. Baran M.F. Keskin C. Kandemir S.I. Valiyeva M. Mehraliyeva S. Khalilov R. Eftekhari A. Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities. J. Nanomater. 2021 2021 1 1 10 10.1155/2021/2270472
    [Google Scholar]
  18. Chauhan S. Gulati N. Nagaich U. Fabrication and evaluation of ultra deformable vesicles for atopic dermatitis as topical delivery. Int. J. Polym. Mater. 2019 68 5 266 277 10.1080/00914037.2018.1443932
    [Google Scholar]
  19. Palmer C.N.A. Irvine A.D. Terron-Kwiatkowski A. Zhao Y. Liao H. Lee S.P. Goudie D.R. Sandilands A. Campbell L.E. Smith F.J.D. O’Regan G.M. Watson R.M. Cecil J.E. Bale S.J. Compton J.G. DiGiovanna J.J. Fleckman P. Lewis-Jones S. Arseculeratne G. Sergeant A. Munro C.S. El Houate B. McElreavey K. Halkjaer L.B. Bisgaard H. Mukhopadhyay S. McLean W.H.I. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 2006 38 4 441 446 10.1038/ng1767 16550169
    [Google Scholar]
  20. Smith F.J.D. Irvine A.D. Terron-Kwiatkowski A. Sandilands A. Campbell L.E. Zhao Y. Liao H. Evans A.T. Goudie D.R. Lewis-Jones S. Arseculeratne G. Munro C.S. Sergeant A. O’Regan G. Bale S.J. Compton J.G. DiGiovanna J.J. Presland R.B. Fleckman P. McLean W.H.I. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat. Genet. 2006 38 3 337 342 10.1038/ng1743 16444271
    [Google Scholar]
  21. Irvine A.D. McLean W.H.I. Leung D.Y.M. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011 365 14 1315 1327 10.1056/NEJMra1011040 21991953
    [Google Scholar]
  22. Imokawa G. Ceramides as natural moisturizing factors. Skin moistur. 2002 26 267
    [Google Scholar]
  23. Suzuki Y. Nomura J. Koyama J. Horii I. The role of proteases in stratum corneum: involvement in stratum corneum desquamation. Arch. Dermatol. Res. 1994 286 5 249 253 10.1007/BF00387596 7520224
    [Google Scholar]
  24. Chavanas S. Bodemer C. Rochat A. Hamel-Teillac D. Ali M. Irvine A.D. Bonafé J.L. Wilkinson J. Taïeb A. Barrandon Y. Harper J.I. de Prost Y. Hovnanian A. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat. Genet. 2000 25 2 141 142 10.1038/75977 10835624
    [Google Scholar]
  25. Moffatt M.F. SPINK5 : A gene for atopic dermatitis and asthma. Clin. Exp. Allergy 2004 34 3 325 327 10.1111/j.1365‑2222.2004.01915.x 15005722
    [Google Scholar]
  26. Cork M.J. Robinson D.A. Vasilopoulos Y. Ferguson A. Moustafa M. MacGowan A. Duff G.W. Ward S.J. Tazi-Ahnini R. New perspectives on epidermal barrier dysfunction in atopic dermatitis: Gene–environment interactions. J. Allergy Clin. Immunol. 2006 118 1 3 21 10.1016/j.jaci.2006.04.042 16815133
    [Google Scholar]
  27. Egawa G. Weninger W. Pathogenesis of atopic dermatitis: A short review. Cogent Biol. 2015 1 1 1103459 10.1080/23312025.2015.1103459
    [Google Scholar]
  28. Kumar P. Sharma D.K. Ashawat M.S. Pathophysiology and management of atopic dermatitis: a laconic review. Curr. Drug Ther. 2020 15 4 321 336 10.2174/1574885514666190828152316
    [Google Scholar]
  29. Silverberg J.I. Hanifin J. Simpson E.L. Climatic factors are associated with childhood eczema prevalence in the United States. J. Invest. Dermatol. 2013 133 7 1752 1759 10.1038/jid.2013.19 23334343
    [Google Scholar]
  30. Baker B.S. The role of microorganisms in atopic dermatitis. Clin. Exp. Immunol. 2006 144 1 1 9 10.1111/j.1365‑2249.2005.02980.x 16542358
    [Google Scholar]
  31. Kobayashi T. Glatz M. Horiuchi K. Kawasaki H. Akiyama H. Kaplan D.H. Kong H.H. Amagai M. Nagao K. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 2015 42 4 756 766 10.1016/j.immuni.2015.03.014 25902485
    [Google Scholar]
  32. Cork M.J. Danby S. Vasilopoulos Y. Moustafa M. MacGowan A. Varghese J. Duff G.W. Tazi-Ahnini R. Ward S.J. Epidermal barrier dysfunction in atopic dermatitis. J. Invest. Dermatol. 2008 129 8 47 50
    [Google Scholar]
  33. Weidinger S. Novak N. Atopic dermatitis. Lancet 2016 387 10023 1109 1122 10.1016/S0140‑6736(15)00149‑X 26377142
    [Google Scholar]
  34. Egawa G. Kabashima K. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march. J. Allergy Clin. Immunol. 2016 138 2 350 358.e1 10.1016/j.jaci.2016.06.002 27497277
    [Google Scholar]
  35. Koga C. Kabashima K. Shiraishi N. Kobayashi M. Tokura Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J. Invest. Dermatol. 2008 128 11 2625 2630 10.1038/jid.2008.111 18432274
    [Google Scholar]
  36. Zhu F. Du B. Xu B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018 58 8 1260 1270 10.1080/10408398.2016.1251390 28605204
    [Google Scholar]
  37. Islam M.A. Alam F. Solayman M. Khalil M.I. Kamal M.A. Gan S.H. Dietary phytochemicals: Natural swords combating inflammation and oxidation-mediated degenerative diseases. Oxid Med Cell Longev. 2016 2016 5137431 10.1155/2016/5137431
    [Google Scholar]
  38. Sharma S. Naura A.S. Potential of phytochemicals as immune-regulatory compounds in atopic diseases: A review. Biochem. Pharmacol. 2020 173 113790 10.1016/j.bcp.2019.113790 31911090
    [Google Scholar]
  39. Wu S. Pang Y. He Y. Zhang X. Peng L. Guo J. Zeng J. A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed. Pharmacother. 2021 140 111741 10.1016/j.biopha.2021.111741 34087696
    [Google Scholar]
  40. Andoh T. Yoshihisa Y. Rehman M.U. Tabuchi Y. Shimizu T. Berberine induces anti-atopic dermatitis effects through the downregulation of cutaneous EIF3F and MALT1 in NC/Nga mice with atopy-like dermatitis. Biochem. Pharmacol. 2021 185 114439 10.1016/j.bcp.2021.114439 33539814
    [Google Scholar]
  41. Zhou Z. Shi T. Hou J. Li M. Ferulic acid alleviates atopic dermatitis-like symptoms in mice via its potent anti-inflammatory effect. Immunopharmacol. Immunotoxicol. 2020 42 2 156 164 10.1080/08923973.2020.1733012 32122212
    [Google Scholar]
  42. Jeong H.W. Hsu K.C. Lee J.W. Ham M. Huh J.Y. Shin H.J. Kim W.S. Kim J.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab. 2009 296 4 E955 E964 10.1152/ajpendo.90599.2008 19208854
    [Google Scholar]
  43. Kuo C.L. Chi C.W. Liu T.Y. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004 203 2 127 137 10.1016/j.canlet.2003.09.002 14732220
    [Google Scholar]
  44. Zhang B.J. Xu D. Guo Y. Ping J. Chen L. Wang H. Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors. Clin. Exp. Pharmacol. Physiol. 2008 35 3 303 309 10.1111/j.1440‑1681.2007.04819.x 17973934
    [Google Scholar]
  45. Li W. Liu F. Wang J. Long M. Wang Z. MicroRNA-21-mediated inhibition of mast cell degranulation involved in the protective effect of berberine on 2, 4-dinitrofluorobenzene-induced allergic contact dermatitis in rats via p38 pathway. Inflammation 2018 41 2 689 699 10.1007/s10753‑017‑0723‑1 29282578
    [Google Scholar]
  46. Kim S. Kim Y. Kim J.E. Cho K.H. Chung J.H. Berberine inhibits TPA-induced MMP-9 and IL-6 expression in normal human keratinocytes. Phytomedicine 2008 15 5 340 347 10.1016/j.phymed.2007.09.011 17951041
    [Google Scholar]
  47. Tsang M. Jiao D. Chan B. Hon K.L. Leung P. Lau C. Wong E. Cheng L. Chan C. Lam C. Wong C. Anti-inflammatory activities of pentaherbs formula, berberine, gallic acid and chlorogenic acid in atopic dermatitis-like skin inflammation. Molecules 2016 21 4 519 10.3390/molecules21040519 27104513
    [Google Scholar]
  48. Gorgani L. Mohammadi M. Najafpour G.D. Nikzad M. Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations. Compr. Rev. Food Sci. Food Saf. 2017 16 1 124 140 10.1111/1541‑4337.12246 33371546
    [Google Scholar]
  49. Zarai Z. Boujelbene E. Ben Salem N. Gargouri Y. Sayari A. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. Lebensm. Wiss. Technol. 2013 50 2 634 641 10.1016/j.lwt.2012.07.036
    [Google Scholar]
  50. Lee S.A. Hong S.S. Han X.H. Hwang J.S. Oh G.J. Lee K.S. Lee M.K. Hwang B.Y. Ro J.S. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem. Pharm. Bull. (Tokyo) 2005 53 7 832 835 10.1248/cpb.53.832 15997146
    [Google Scholar]
  51. Ghoshal S. Prasad B.N.K. Lakshmi V. Antiamoebic activity of Piper longum fruits against Entamoeba histolytica in vitro and in vivo. J. Ethnopharmacol. 1996 50 3 167 170 10.1016/0378‑8741(96)01382‑7 8691851
    [Google Scholar]
  52. Mehmood M.H. Gilani A.H. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. J. Med. Food 2010 13 5 1086 1096 10.1089/jmf.2010.1065 20828313
    [Google Scholar]
  53. Aswar U. Shintre S. Chepurwar S. Aswar M. Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice. Pharm. Biol. 2015 53 9 1358 1366 10.3109/13880209.2014.982299 25868617
    [Google Scholar]
  54. Choi D.W. Jung S.Y. Shon D.H. Shin H.S. Piperine ameliorates trimellitic anhydride-induced atopic dermatitis-like symptoms by suppressing Th2-mediated immune responses via inhibition of STAT6 phosphorylation. Molecules 2020 25 9 2186 10.3390/molecules25092186 32392825
    [Google Scholar]
  55. Marthandam Asokan S. Mariappan R. Muthusamy S. Velmurugan B.K. Pharmacological benefits of neferine - A comprehensive review. Life Sci. 2018 199 60 70 10.1016/j.lfs.2018.02.032 29499283
    [Google Scholar]
  56. Kadioglu O. Law B.Y.K. Mok S.W.F. Xu S.W. Efferth T. Wong V.K.W. Mode of action analyses of neferine, a bisbenzylisoquinoline alkaloid of lotus (Nelumbo nucifera) against multidrug-resistant tumor cells. Front. Pharmacol. 2017 8 238 10.3389/fphar.2017.00238 28529482
    [Google Scholar]
  57. Niu C.H. Wang Y. Liu J.D. Wang J.L. Xiao J.H. Protective effects of neferine on amiodarone-induced pulmonary fibrosis in mice. Eur. J. Pharmacol. 2013 714 1-3 112 119 10.1016/j.ejphar.2013.06.004 23792144
    [Google Scholar]
  58. Zhao L. Wang X. Chang Q. Xu J. Huang Y. Guo Q. Zhang S. Wang W. Chen X. Wang J. Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis. Eur. J. Pharmacol. 2010 627 1-3 304 312 10.1016/j.ejphar.2009.11.007 19909737
    [Google Scholar]
  59. Yang C.C. Hung Y.L. Ko W.C. Tsai Y.J. Chang J.F. Liang C.W. Chang D.C. Hung C.F. Effect of neferine on DNCB-induced atopic dermatitis in HaCaT cells and BALB/c mice. Int. J. Mol. Sci. 2021 22 15 8237 10.3390/ijms22158237 34361003
    [Google Scholar]
  60. Xu T. Kuang T. Du H. Li Q. Feng T. Zhang Y. Fan G. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity. Pharmacol. Res. 2020 152 104632 10.1016/j.phrs.2020.104632 31911246
    [Google Scholar]
  61. Sun D. Han Y. Wang W. Wang Z. Ma X. Hou Y. Bai G. Screening and identification of Caulis Sinomenii bioactive ingredients with dual‐target NF‐ κ B inhibition and β 2‐ AR agonizing activities. Biomed. Chromatogr. 2016 30 11 1843 1853 10.1002/bmc.3761 27187693
    [Google Scholar]
  62. Guo S. Jiang K. Wu H. Yang C. Yang Y. Yang J. Zhao G. Deng G. Magnoflorine ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation. Front. Pharmacol. 2018 9 982 10.3389/fphar.2018.00982 30214410
    [Google Scholar]
  63. Wu S. Yu D. Liu W. Zhang J. Liu X. Wang J. Yu M. Li Z. Chen Q. Li X. Ye X. Magnoflorine from Coptis chinese has the potential to treat DNCB-induced Atopic dermatits by inhibiting apoptosis of keratinocyte. Bioorg. Med. Chem. 2020 28 2 115093 10.1016/j.bmc.2019.115093 31859028
    [Google Scholar]
  64. Duraipandiyan V. Al-Dhabi N.A. Balachandran C. Ignacimuthu S. Sankar C. Balakrishna K. Antimicrobial, antioxidant, and cytotoxic properties of vasicine acetate synthesized from vasicine isolated from Adhatoda vasica L. Biomed. Res. Int. 2015 2015 727304 10.1155/2015/727304
    [Google Scholar]
  65. Liu W. Wang Y. He D. Li S. Zhu Y. Jiang B. Cheng X. Wang Z. Wang C. Antitussive, expectorant, and bronchodilating effects of quinazoline alkaloids (±)-vasicine, deoxyvasicine, and (±)-vasicinone from aerial parts of Peganum harmala L. Phytomedicine 2015 22 12 1088 1095 10.1016/j.phymed.2015.08.005 26547531
    [Google Scholar]
  66. Ahmad S. Garg M. Sanjrani M. Singh M. Athar T. A phyto-pharmacological overview on Adhatoda zeylanica medic. Syn. A. vasica (Linn.) Nees. Nat. Product Radiance 2009 8 5 549 554
    [Google Scholar]
  67. Gao H. Huang Y.N. Gao B. Li P. Inagaki C. Kawabata J. Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chem. 2008 108 3 965 972 10.1016/j.foodchem.2007.12.002 26065759
    [Google Scholar]
  68. Zhang Y. Du W. Zhu D. Li M. Qu L. Rao G. Lin Y. Tong X. Sun Y. Huang F. Vasicine alleviates 2,4-dinitrochlorobenzene-induced atopic dermatitis and passive cutaneous anaphylaxis in BALB/c mice. Clin. Immunol. 2022 244 109102 10.1016/j.clim.2022.109102 36049600
    [Google Scholar]
  69. Yin J. Liang Y. Wang D. Yan Z. Yin H. Wu D. Su Q. Naringenin induces laxative effects by upregulating the expression levels of c-Kit and SCF, as well as those of aquaporin 3 in mice with loperamide-induced constipation. Int. J. Mol. Med. 2018 41 2 649 658 29207043
    [Google Scholar]
  70. Karim N. Jia Z. Zheng X. Cui S. Chen W. A recent review of citrus flavanone naringenin on metabolic diseases and its potential sources for high yield-production. Trends Food Sci. Technol. 2018 79 35 54 10.1016/j.tifs.2018.06.012
    [Google Scholar]
  71. Ke J.Y. Banh T. Hsiao Y.H. Cole R.M. Straka S.R. Yee L.D. Belury M.A. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice. Mol. Nutr. Food Res. 2017 61 9 1600934 10.1002/mnfr.201600934 28370954
    [Google Scholar]
  72. Pinho-Ribeiro F.A. Zarpelon A.C. Fattori V. Manchope M.F. Mizokami S.S. Casagrande R. Verri W.A. Jr Naringenin reduces inflammatory pain in mice. Neuropharmacology 2016 105 508 519 10.1016/j.neuropharm.2016.02.019 26907804
    [Google Scholar]
  73. Moon P.D. Choi I.H. Kim H.M. Naringenin suppresses the production of thymic stromal lymphopoietin through the blockade of RIP2 and caspase-1 signal cascade in mast cells. Eur. J. Pharmacol. 2011 671 1-3 128 132 10.1016/j.ejphar.2011.09.163 21963452
    [Google Scholar]
  74. Kim T.H. Kim G.D. Ahn H.J. Cho J.J. Park Y.S. Park C.S. The inhibitory effect of naringenin on atopic dermatitis induced by DNFB in NC/Nga mice. Life Sci. 2013 93 15 516 524 10.1016/j.lfs.2013.07.027 23933131
    [Google Scholar]
  75. Tian L. Wang M. Wang Y. Li W. Yang Y. Naringenin ameliorates atopic dermatitis by inhibiting inflammation and enhancing immunity through the JAK2/STAT3 pathway. Genes Genomics 2023 1 8 37837514
    [Google Scholar]
  76. Lee H.S. Kim E.N. Jeong G.S. Oral administration of liquiritigenin confers protection from atopic dermatitis through the inhibition of T cell activation. Biomolecules 2020 10 5 786 10.3390/biom10050786 32438694
    [Google Scholar]
  77. Meng F.C. Lin J.K. Liquiritigenin inhibits colorectal cancer proliferation, invasion, and epithelial-to-mesenchymal transition by decreasing expression of runt-related transcription factor 2. Oncol. Res. 2019 27 2 139 146 10.3727/096504018X15185747911701 29471888
    [Google Scholar]
  78. Shi C. Wu H. Xu K. Cai T. Qin K. Wu L. Cai B. Liquiritigenin-loaded submicron emulsion protects against doxorubicin-induced cardiotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic activity. Int. J. Nanomedicine 2020 15 1101 1115 10.2147/IJN.S235832 32110010
    [Google Scholar]
  79. Lee J.Y. Lee J.H. Park J.H. Kim S.Y. Choi J.Y. Lee S.H. Kim Y.S. Kang S.S. Jang E.C. Han Y. Liquiritigenin, a licorice flavonoid, helps mice resist disseminated candidiasis due to Candida albicans by Th1 immune response, whereas liquiritin, its glycoside form, does not. Int. Immunopharmacol. 2009 9 5 632 638 10.1016/j.intimp.2009.02.007 19264152
    [Google Scholar]
  80. Garg M. Chaudhary S.K. Goyal A. Sarup P. Kumari S. Garg N. Vaid L. Shiveena B. Comprehensive review on therapeutic and phytochemical exploration of diosmetin: A promising moiety. Phytomed. Plus 2022 2 1 100179 10.1016/j.phyplu.2021.100179
    [Google Scholar]
  81. Lee D. Park J. Choi J. Jang H. Seol J. Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model. Int. Immunopharmacol. 2020 89 Pt A 107046 10.1016/j.intimp.2020.107046 33045572
    [Google Scholar]
  82. Park S. Bong S.K. Lee J.W. Park N.J. Choi Y. Kim S.M. Yang M.H. Kim Y.K. Kim S.N. Diosmetin and its glycoside, diosmin, improve atopic dermatitis-like lesions in 2, 4-dinitrochlorobenzene-induced murine models. Biomol. Ther. (Seoul) 2020 28 6 542 548 10.4062/biomolther.2020.135 32938818
    [Google Scholar]
  83. Lee W. Ku S.K. Bae J.S. Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo. Inflammation 2015 38 1 110 125 10.1007/s10753‑014‑0013‑0 25249339
    [Google Scholar]
  84. Tsai C. Lin M. Wang J. Liao J. Huang W. The antipyretic effects of baicalin in lipopolysaccharide-evoked fever in rabbits. Neuropharmacology 2006 51 4 709 717 10.1016/j.neuropharm.2006.05.010 16844151
    [Google Scholar]
  85. Zhu J. Wang J. Sheng Y. Zou Y. Bo L. Wang F. Lou J. Fan X. Bao R. Wu Y. Chen F. Deng X. Li J. Baicalin improves survival in a murine model of polymicrobial sepsis via suppressing inflammatory response and lymphocyte apoptosis. PLoS One 2012 7 5 e35523 10.1371/journal.pone.0035523 22590504
    [Google Scholar]
  86. Yan X. Yan J. Huang K. Pan T. Xu Z. Lu H. Protective effect of baicalin on the small intestine in rats with food allergy. Life Sci. 2017 191 111 114 10.1016/j.lfs.2017.09.036 28962865
    [Google Scholar]
  87. Wang L. Xian Y.F. Loo S.K.F. Ip S.P. Yang W. Chan W.Y. Lin Z.X. Wu J.C.Y. Baicalin ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway. Bioorg. Chem. 2022 119 105538 10.1016/j.bioorg.2021.105538 34929516
    [Google Scholar]
  88. Yang E.J. Kim G.S. Jun M. Song K.S. Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct. 2014 5 7 1395 1402 10.1039/c4fo00068d 24770605
    [Google Scholar]
  89. Crespo I. García-Mediavilla M.V. Gutiérrez B. Sánchez-Campos S. Tuñón M.J. González-Gallego J. A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Br. J. Nutr. 2008 100 5 968 976 10.1017/S0007114508966083 18394220
    [Google Scholar]
  90. Nasanbat B. Uchiyama A. Amalia S.N. Inoue Y. Yokoyama Y. Ogino S. Torii R. Hosoi M. Motegi S. Kaempferol therapy improved MC903 induced-atopic dermatitis in a mouse by suppressing TSLP, oxidative stress, and type 2 inflammation. J. Dermatol. Sci. 2023 111 3 93 100 10.1016/j.jdermsci.2023.06.008 37393173
    [Google Scholar]
  91. Ghosh S. Chowdhury S. Sarkar P. Sil P.C. Ameliorative role of ferulic acid against diabetes associated oxidative stress induced spleen damage. Food Chem. Toxicol. 2018 118 272 286 10.1016/j.fct.2018.05.029 29758315
    [Google Scholar]
  92. Shukla D. Nandi N.K. Singh B. Singh A. Kumar B. Narang R.K. Singh C. Ferulic acid-loaded drug delivery systems for biomedical applications. J. Drug Deliv. Sci. Technol. 2022 75 103621 10.1016/j.jddst.2022.103621
    [Google Scholar]
  93. Lampiasi N. Montana G. The molecular events behind ferulic acid mediated modulation of IL-6 expression in LPS-activated Raw 264.7 cells. Immunobiology 2016 221 3 486 493 10.1016/j.imbio.2015.11.001 26612455
    [Google Scholar]
  94. Wang H.M. Lee Y.C. Chen C.Y. Chang J.J. Hung H.C. Tsai P.C. Ferulic acid alleviates inflammatory manifestations in atopic dermatitis through modulation of the TRPV1/HMGB1 signaling pathway. 2023
    [Google Scholar]
  95. Hu G. Zhou X. Gallic acid ameliorates atopic dermatitis-like skin inflammation through immune regulation in a mouse model. Clin. Cosmet. Investig. Dermatol. 2021 14 1675 1683 10.2147/CCID.S327825 34815684
    [Google Scholar]
  96. Long R. Li T. Tong C. Wu L. Shi S. Molecularly imprinted polymers coated CdTe quantum dots with controllable particle size for fluorescent determination of p-coumaric acid. Talanta 2019 196 579 584 10.1016/j.talanta.2019.01.007 30683408
    [Google Scholar]
  97. Moon P.D. Han N.R. Lee J.S. Kim H.M. Jeong H.J. p-coumaric acid, an active ingredient of Panax ginseng, ameliolates atopic dermatitis-like skin lesions through inhibition of thymic stromal lymphopoietin in mice. J. Ginseng Res. 2021 45 1 176 182 10.1016/j.jgr.2020.06.004 33437169
    [Google Scholar]
  98. Iram F. Khan S.A. Husain A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac. J. Trop. Biomed. 2017 7 6 513 523 10.1016/j.apjtb.2017.05.001
    [Google Scholar]
  99. Tsai Y.C. Chang H.H. Chou S.C. Chu T.W. Hsu Y.J. Hsiao C.Y. Lo Y.H. Wu N.L. Chang D.C. Hung C.F. Evaluation of the anti-atopic dermatitis effects of α-boswellic acid on Tnf-α/Ifn-γ-Stimulated HaCat Cells and DNCB-Induced BALB/c Mice. Int. J. Mol. Sci. 2022 23 17 9863 10.3390/ijms23179863 36077254
    [Google Scholar]
  100. Lee K.M. Shin J.M. Chun J. Song K. Nho C.W. Kim Y.S. Igalan induces detoxifying enzymes mediated by the Nrf2 pathway in HepG2 cells. J. Biochem. Mol. Toxicol. 2019 33 5 e22297 10.1002/jbt.22297 30672058
    [Google Scholar]
  101. Dao T.T.P. Song K. Kim J.Y. Kim Y.S. Igalan from Inula helenium (L.) suppresses the atopic dermatitis-like response in stimulated HaCaT keratinocytes via JAK/STAT3 signaling. Inflamm. Res. 2020 69 3 309 319 10.1007/s00011‑020‑01322‑4 32002586
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855319521240919065131
Loading
/content/journals/cdth/10.2174/0115748855319521240919065131
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: atopic dermatitis ; inflammatory reaction ; Phytochemicals ; antioxidant stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test