Skip to content
2000
image of Bioengineering Marvels in Pharmaceutical Delivery: Pioneering Strategies for Future Therapeutics

Abstract

Many bacterial species have been considered as possible pharmacological biofactories for pharmaceuticals. Multiple hosts might now be used for bioproducts due to the development of biology combined with bioengineering technologies for genome modification.

This review highlighted the drug delivery various bioengineering tools for the targeted drug delivery using biochips, bacterial species, and many more. Bioengineering technologies are equally important for growing or enhancing metabolites that are linked to their increased strength and improvement of their bioactivities. There are various techniques such as biochips using microrobots, oral drug delivery through diatomic nanoparticles as a microcapsule, treatment bacterial gene and bacterial organelle , encapsulin, microfluidic chips for precision medicine, and other smart tactics that the pharmaceutical business is now employing.

In conclusion, the approval from the drug development authority on the most recent investigation and expansion of synthetic biology, animal, plant, and bacterial-based manufacturing techniques, as well as molecular bioengineered approaches, has led to the widespread acceptance of bioengineered tools for the creation of pharmaceuticals.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855364932250227112020
2025-03-10
2025-06-23
Loading full text...

Full text loading...

References

  1. Khatodia S. Khurana S.M.P. Genetic engineering for plant transgenesis. Omics technologies and bio-engineering. Academic Press 2018 71 86 10.1016/B978‑0‑12‑815870‑8.00005‑X
    [Google Scholar]
  2. Jozala A.F. Geraldes D.C. Tundisi L.L. Feitosa V.A. Breyer C.A. Cardoso S.L. Mazzola P.G. Nascimento O.L. Yagui R.C.O. Magalhães P.O. Oliveira M.A. Pessoa A. Jr Biopharmaceuticals from microorganisms: From production to purification. Braz. J. Microbiol. 2016 47 S1 51 63 10.1016/j.bjm.2016.10.007 27838289
    [Google Scholar]
  3. Sangwan N.S. Jadaun J.S. Tripathi S. Plant metabolic engineering. Omics technologies and bio-engineering. Elsevier 2018 143 175 10.1016/B978‑0‑12‑815870‑8.00009‑7
    [Google Scholar]
  4. Kalia A. Nanotechnology in bioengineering: Transmogrifying plant biotechnology. Omics technologies and bio-engineering. Barh D. Azevedo V. Academic Press 2018 211 229
    [Google Scholar]
  5. Jang Y. Kim A. Moon J.J. Lee J.Y. Park H. Novel bioengineering strategies for drug delivery systems. Appl. Mater. Today 2023 33 101834 10.1016/j.apmt.2023.101834
    [Google Scholar]
  6. Sarsaiya S Shi J Chen J. Bioengineering tools for the production of pharmaceuticals: Current perspective and future outlook. Bioengineered 2019 10 1 469 492 10.1080/21655979.2019.1682108
    [Google Scholar]
  7. Chen Y.C. Yeh M.K. Introductory chapter: Biopharmaceuticals. Biopharmaceuticals IntechOpen 2018
    [Google Scholar]
  8. Strand V. Girolomoni G. Schiestl M. Mayer E.R. Quecke F.H. McCamish M. The totality-of-the-evidence approach to the development and assessment of GP2015, a proposed etanercept biosimilar. Curr. Med. Res. Opin. 2017 33 6 993 1003 10.1080/03007995.2017.1288612 28133979
    [Google Scholar]
  9. Schellekens H. Smolen J.S. Dicato M. Rifkin R.M. Safety and efficacy of biosimilars in oncology. Lancet Oncol. 2016 17 11 e502 e509 10.1016/S1470‑2045(16)30374‑6 27819248
    [Google Scholar]
  10. Fuller H. Robotics and automation in cardiovascular-inspired platforms for bioengineering. Diss. University of Pittsburgh 2023
    [Google Scholar]
  11. Blair J.M.A. Webber M.A. Baylay A.J. Ogbolu D.O. Piddock L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015 13 1 42 51 10.1038/nrmicro3380 25435309
    [Google Scholar]
  12. Davies J. Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010 74 3 417 433 10.1128/MMBR.00016‑10 20805405
    [Google Scholar]
  13. Li J. Mooney D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016 1 12 16071 10.1038/natrevmats.2016.71 29657852
    [Google Scholar]
  14. Manzari M.T. Shamay Y. Kiguchi H. Rosen N. Scaltriti M. Heller D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021 6 4 351 370 10.1038/s41578‑020‑00269‑6 34950512
    [Google Scholar]
  15. Ceylan H. Yasa I.C. Kilic U. Hu W. Sitti M. Translational prospects of untethered medical microrobots. Prog. Biomed. Eng. 2019 1 1 012002 10.1088/2516‑1091/ab22d5
    [Google Scholar]
  16. Soto F. Karshalev E. Zhang F. de Avila E.F.B. Nourhani A. Wang J. Smart materials for microrobots. Chem. Rev. 2022 122 5 5365 5403 10.1021/acs.chemrev.0c00999 33522238
    [Google Scholar]
  17. Infective endocarditis. Available from: https://www.heart.org/en/healthtopics/infective-endocarditis 2022
  18. Cahill T.J. Harrison J.L. Jewell P. Onakpoya I. Chambers J.B. Dayer M. Lockhart P. Roberts N. Shanson D. Thornhill M. Heneghan C.J. Prendergast B.D. Antibiotic prophylaxis for infective endocarditis: A systematic review and meta-analysis. Heart 2017 103 12 937 944 10.1136/heartjnl‑2015‑309102 28213367
    [Google Scholar]
  19. Boyd N.K. Teng C. Frei C.R. Brief overview of approaches and challenges in new antibiotic development: A focus on drug repurposing. Front. Cell. Infect. Microbiol. 2021 11 684515 10.3389/fcimb.2021.684515 34079770
    [Google Scholar]
  20. Spellberg B. Rice L.B. Duration of antibiotic therapy: Shorter is better. Ann. Intern. Med. 2019 171 3 210 211 10.7326/M19‑1509 31284302
    [Google Scholar]
  21. Cruz M.M. Delgado Y. Castillo B. Figueroa C.M. Molina A.M. Torres A. Milián M. Griebenow K. Smart targeting to improve cancer therapeutics. Drug Design, Devel. Ther. 2019 13 3753 72
    [Google Scholar]
  22. Tibbitt M.W. Dahlman J.E. Langer R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016 138 3 704 717 10.1021/jacs.5b09974 26741786
    [Google Scholar]
  23. Villa K. Krejčová L. Novotný F. Heger Z. Sofer Z. Pumera M. Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Adv. Funct. Mater. 2018 28 43 1804343 10.1002/adfm.201804343
    [Google Scholar]
  24. Losic D. Mitchell J.G. Voelcker N.H. Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater. 2009 21 29 2947 2958 10.1002/adma.200803778
    [Google Scholar]
  25. Aw M.S. Simovic S. Yu Y. Mensah A.J. Losic D. Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol. 2012 223 52 58 10.1016/j.powtec.2011.04.023
    [Google Scholar]
  26. Sumper M. Brunner E. Learning from diatoms: Nature’s tools for the production of nanostructured silica. Adv. Funct. Mater. 2006 16 1 17 26 10.1002/adfm.200500616
    [Google Scholar]
  27. Zhang H. Shahbazi M.A. Mäkilä E.M. Silva d.T.H. Reis R.L. Salonen J.J. CAS. Biomaterials 2013 34 36 9210 9219 10.1016/j.biomaterials.2013.08.035 24008036
    [Google Scholar]
  28. Terracciano M. Shahbazi M.A. Correia A. Rea I. Lamberti A. Stefano D.L. Santos H.A. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. Nanoscale 2015 7 47 20063 20074 10.1039/C5NR05173H 26568517
    [Google Scholar]
  29. Terracciano M Stefano D.L Rea I Diatoms green nanotechnology for biosilica-based drug delivery systems. Pharmaceutics 2018 10 4 242 24008036
    [Google Scholar]
  30. Rea I. Martucci N.M. Stefano D.L. Ruggiero I. Terracciano M. Dardano P. Lamberti A. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochim. et Biophys. Acta (BBA)-General Subj. 2014 1840 12 3393 3403
    [Google Scholar]
  31. Martinez J.O. Brown B.S. Quattrocchi N. Evangelopoulos M. Ferrari M. Tasciotti E. Multifunctional to multistage delivery systems: The evolution of nanoparticles for biomedical applications. Chin. Sci. Bull. 2012 57 31 3961 3971 10.1007/s11434‑012‑5387‑5 24587616
    [Google Scholar]
  32. Liou J.C. Diao C.C. Lin J.J. Chen Y.L. Yang C.F. Prepare dispersed CIS nano-scale particles and spray coating CIS absorber layers using nano-scale precursors. Nanoscale Res. Lett. 2014 9 1 1 10.1186/1556‑276X‑9‑1 24380376
    [Google Scholar]
  33. Alcantar N.A. Aydil E.S. Israelachvili J.N. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 2000 51 3 343 351 10.1002/1097‑4636(20000905)51:3<343::AID‑JBM7>3.0.CO;2‑D 10880075
    [Google Scholar]
  34. Huang Y. Jiang Y. Wang H. Wang J. Shin M.C. Byun Y. He H. Liang Y. Yang V.C. Curb challenges of the “Trojan Horse” approach: Smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv. Drug Deliv. Rev. 2013 65 10 1299 1315 10.1016/j.addr.2012.11.007 23369828
    [Google Scholar]
  35. Hussein HA Nazir MS Azra N Qamar Z Seeni A Din T.TA Abdullah MA Novel drug and gene delivery system and imaging agent based on marine diatom biosilica nanoparticles. Marine Drugs. 2022 20 8 480 10.1039/C5NR05173H 26568517
    [Google Scholar]
  36. Van de Steen A. Khalife R. Colant N. Khan M.H. Deveikis M. Charalambous S. Robinson C.M. Dabas R. Serna E.S. Catana D.A. Pildish K. Kalinovskiy V. Gustafsson K. Frank S. Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system. Synth. Syst. Biotechnol. 2021 6 3 231 241 10.1016/j.synbio.2021.09.001 34541345
    [Google Scholar]
  37. Choi S.H. Kwon I.C. Hwang K.Y. Kim I.S. Ahn H.J. Small heat shock protein as a multifunctional scaffold: Integrated tumor targeting and caspase imaging within a single cage. Biomacromolecules 2011 12 8 3099 3106 10.1021/bm200743g 21728293
    [Google Scholar]
  38. Min J. Kim S. Lee J. Kang S. Lumazine synthase protein cage nanoparticles as modular delivery platforms for targeted drug delivery. RSC Advances 2014 4 89 48596 48600 10.1039/C4RA10187A
    [Google Scholar]
  39. Han J.A. Kang Y.J. Shin C. Ra J.S. Shin H.H. Hong S.Y. Do Y. Kang S. Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell (DC)-based vaccine development. Nanomedicine 2014 10 3 561 569 10.1016/j.nano.2013.11.003 24262997
    [Google Scholar]
  40. Moon H. Lee J. Min J. Kang S. Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Biomacromolecules 2014 15 10 3794 3801 10.1021/bm501066m 25180761
    [Google Scholar]
  41. Nichols RJ Amstutz C.C Chaijarasphong T Savage DF Encapsulins: Molecular biology of the shell. Crit. Rev. Biochem. Mol. Biol. 2017 52 5 583 594 10.1080/10409238.2017.1337709
    [Google Scholar]
  42. Jones JA Giessen TW Advances in encapsulin nanocompartment biology and engineering. Biotechnol. Bioengineer. 2021 118 491 505 10.1002/bit.27564
    [Google Scholar]
  43. Sutter M. Boehringer D. Gutmann S. Günther S. Prangishvili D. Loessner M.J. Stetter K.O. Ban W.E. Ban N. Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat. Struct. Mol. Biol. 2008 15 9 939 947 10.1038/nsmb.1473 19172747
    [Google Scholar]
  44. Choi H. Eom S. Kim H.U. Bae Y. Jung H.S. Kang S. Load and display: Engineering encapsulin as a modular nanoplatform for protein-cargo encapsulation and proteinligand decoration using split intein and SpyTag/SpyCatcher. Biomacromolecules 2021 22 7 3028 3039 10.1021/acs.biomac.1c00481 34142815
    [Google Scholar]
  45. Bae Y. Kim G.J. Kim H. Park S.G. Jung H.S. Kang S. Engineering tunable dual functional protein cage nanoparticles using bacterial superglue. Biomacromolecules 2018 19 7 2896 2904 10.1021/acs.biomac.8b00457 29847113
    [Google Scholar]
  46. Amstutz C.C. Oltrogge L. Going C.C. Lee A. Teng P. Quintanilla D. Identification of a minimal peptide tag for in-vivo and in vitro loading of encapsulin. Biochemistry 2016 55 24 3461 3468 10.1021/acs.biochem.6b00294 27224728
    [Google Scholar]
  47. Torra J. Lafaye C. Signor L. Aumonier S. Flors C. Shu X. Nonell S. Gotthard G. Royant A. Tailing miniSOG: Structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein. Sci. Rep. 2019 9 1 2428 10.1038/s41598‑019‑38955‑3 30787421
    [Google Scholar]
  48. Rosenblum D. Joshi N. Tao W. Karp J.M. Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018 9 1 1410 10.1038/s41467‑018‑03705‑y 29650952
    [Google Scholar]
  49. Proshkina G.M. Shilova O.N. Ryabova A.V. Stremovskiy O.A. Deyev S.M. A new anticancer toxin based on HER2/neu-specific DARPin and photoactive flavoprotein miniSOG. Biochimie 2015 118 116 122 10.1016/j.biochi.2015.08.013 26319592
    [Google Scholar]
  50. Toita R. Murata M. Abe K. Narahara S. Piao J.S. Kang J.H. Hashizume M. A nanocarrier based on a genetically engineered protein cage to deliver doxorubicin to human hepatocellular carcinoma cells. Chem. Commun. 2013 49 67 7442 4 25180761
    [Google Scholar]
  51. Bae Y. Fukushima S. Harada A. Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed. 2003 42 38 4640 4643 10.1002/anie.200250653 14533151
    [Google Scholar]
  52. Jia F. Gao Y. Wang H. Recent advances in drug delivery system fabricated by microfluidics for disease therapy. Bioengineering 2022 9 11 625 10.3390/bioengineering9110625 36354536
    [Google Scholar]
  53. Shang L. Cheng Y. Zhao Y. Emerging droplet microfluidics. Chem. Rev. 2017 117 12 7964 8040 10.1021/acs.chemrev.6b00848 28537383
    [Google Scholar]
  54. Mark D. Haeberle S. Roth G. Stetten v.F. Zengerle R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 2010 39 3 1153 1182 10.1039/b820557b 20179830
    [Google Scholar]
  55. Sackmann E.K. Fulton A.L. Beebe D.J. The present and future role of microfluidics in biomedical research. Nature 2014 507 7491 181 189 10.1038/nature13118 24622198
    [Google Scholar]
  56. Wang L. Li P.C.H. Microfluidic DNA microarray analysis: A review. Anal. Chim. Acta 2011 687 1 12 27 10.1016/j.aca.2010.11.056 21241842
    [Google Scholar]
  57. Wang X. Li C. Wang Y. Chen H. Zhang X. Luo C. Zhou W. Li L. Teng L. Yu H. Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharmaceut. Sinica B. 2022 12 11 4098 121 34950512
    [Google Scholar]
  58. Vargason A.M. Anselmo A.C. Mitragotri S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021 5 9 951 967 10.1038/s41551‑021‑00698‑w 33795852
    [Google Scholar]
  59. Kearney C.J. Mooney D.J. Macroscale delivery systems for molecular and cellular payloads. Nat. Mater. 2013 12 11 1004 1017 10.1038/nmat3758 24150418
    [Google Scholar]
  60. Zhu P. Wang L. Passive and active droplet generation with microfluidics: A review. Lab Chip 2017 17 1 34 75 10.1039/C6LC01018K 27841886
    [Google Scholar]
  61. Felton H. Hughes R. Gaxiola D.A. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLoS One 2021 16 2 e0245206 10.1371/journal.pone.0245206 33534849
    [Google Scholar]
  62. Waheed S. Cabot J.M. Macdonald N.P. Lewis T. Guijt R.M. Paull B. Breadmore M.C. 3D printed microfluidic devices: Enablers and barriers. Lab Chip 2016 16 11 1993 2013 10.1039/C6LC00284F 27146365
    [Google Scholar]
  63. Chen C. Mehl B.T. Munshi A.S. Townsend A.D. Spence D.M. Martin R.S. 3D-printed microfluidic devices: Fabrication, advantages and limitations—A mini review. Anal. Methods 2016 8 31 6005 6012 10.1039/C6AY01671E 27617038
    [Google Scholar]
  64. Ingber D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022 23 8 467 491 10.1038/s41576‑022‑00466‑9 35338360
    [Google Scholar]
  65. Gough A. Gutierrez S.A. Vernetti L. Ebrahimkhani M.R. Stern A.M. Taylor D.L. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat. Rev. Gastroenterol. Hepatol. 2021 18 4 252 268 10.1038/s41575‑020‑00386‑1 33335282
    [Google Scholar]
  66. Alitalo K. The lymphatic vasculature in disease. Nat. Med. 2011 17 11 1371 1380 10.1038/nm.2545 22064427
    [Google Scholar]
  67. Kim S. Chung M. Jeon N.L. Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. Biomaterials 2016 78 115 128 10.1016/j.biomaterials.2015.11.019 26691234
    [Google Scholar]
  68. Cao X. Ashfaq R. Cheng F. Maharjan S. Li J. Ying G. Hassan S. Xiao H. Yue K. Zhang Y.S. A tumor-on-a-chip system with bioprinted blood and lymphatic vessel pair. Adv. Funct. Mater. 2019 29 31 1807173 10.1002/adfm.201807173 33041741
    [Google Scholar]
  69. Urry D.W. Luan C.H. Parker T.M. Gowda D.C. Prasad K.U. Reid M.C. Safavy A. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J. Am. Chem. Soc. 1991 113 11 4346 4348 10.1021/ja00011a057
    [Google Scholar]
  70. Chambre L. Moldes M.Z. Parker R.N. Kaplan D.L. Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv. Drug Deliv. Rev. 2020 160 186 198 10.1016/j.addr.2020.10.008 33080258
    [Google Scholar]
  71. Maeda H. Tsukigawa K. Fang J. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: Next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects. Microcirculation 2016 23 3 173 182 10.1111/micc.12228 26237291
    [Google Scholar]
  72. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001 41 1 189 207 10.1016/S0065‑2571(00)00013‑3 11384745
    [Google Scholar]
  73. Farokhzad O.C. Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009 3 1 16 20 10.1021/nn900002m 19206243
    [Google Scholar]
  74. Le D.H.T. Narutaki S.A. Elastin-like polypeptides as building motifs toward designing functional nanobiomaterials. Mol. Syst. Des. Eng. 2019 4 3 545 565 10.1039/C9ME00002J
    [Google Scholar]
  75. Bessa P.C. Machado R. Nürnberger S. Dopler D. Banerjee A. Cunha A.M. Cabello R.J.C. Redl H. Griensven v.M. Reis R.L. Casal M. Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J. Control. Release 2010 142 3 312 318 10.1016/j.jconrel.2009.11.003 19913578
    [Google Scholar]
  76. Fujita Y. Mie M. Kobatake E. Construction of nanoscale protein particle using temperature-sensitive elastin-like peptide and polyaspartic acid chain. Biomaterials 2009 30 20 3450 3457 10.1016/j.biomaterials.2009.03.012 19324406
    [Google Scholar]
  77. Cheng J. Park M. Lim D.W. Hyun J. Polypeptide microgel capsules as drug carriers. Macromol. Res. 2013 21 11 1163 1166 10.1007/s13233‑013‑1167‑6
    [Google Scholar]
  78. Costa R.R. Custódio C.A. Testera A.M. Arias F.J. Cabello R.J.C. Alves N.M. Mano J.F. Stimuli-responsive thin coatings using elastin-like polymers for biomedical applications. Adv. Funct. Mater. 2009 19 20 3210 3218 10.1002/adfm.200900568
    [Google Scholar]
  79. Teng W. Cappello J. Wu X. Physical crosslinking modulates sustained drug release from recombinant silk-elastinlike protein polymer for ophthalmic applications. J. Control. Release 2011 156 2 186 194 10.1016/j.jconrel.2011.07.036 21839125
    [Google Scholar]
  80. Ahadian S. Sadeghian R.B. Salehi S. Ostrovidov S. Bae H. Ramalingam M. Khademhosseini A. Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjug. Chem. 2015 26 10 1984 2001 10.1021/acs.bioconjchem.5b00360 26280942
    [Google Scholar]
  81. Peppas NA Hilt JZ Khademhosseini A Langer R Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advan. Mat. 2006 18 11 1345 1360 10.1002/adma.200501612
    [Google Scholar]
  82. Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002 54 1 3 12 10.1016/S0169‑409X(01)00239‑3 11755703
    [Google Scholar]
  83. Hoare T.R. Kohane D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008 49 8 1993 2007 10.1016/j.polymer.2008.01.027
    [Google Scholar]
  84. Dragojevic S. Mackey R. Raucher D. Evaluation of elastin-like polypeptides for tumor targeted delivery of doxorubicin to glioblastoma. Molecules 2019 24 18 3242 10.3390/molecules24183242 31489879
    [Google Scholar]
  85. Shmidov Y. Zhou M. Yosefi G. Bitton R. Matson J.B. Hydrogels composed of hyaluronic acid and dendritic ELPs: Hierarchical structure and physical properties. Soft Matter 2019 15 5 917 925 10.1039/C8SM02450B 30644510
    [Google Scholar]
  86. Mane S.R. Chatterjee K. Dinda H. Sarma J.D. Shunmugam R. Stimuli responsive nanocarrier for an effective delivery of multi-frontline tuberculosis drugs. Polym. Chem. 2014 5 8 2725 2735 10.1039/C3PY01589K
    [Google Scholar]
  87. Mane S.R. Sathyan A. Shunmugam R. Synthesis of norbornene derived helical copolymer by simple molecular marriage approach to produce smart nanocarrier. Sci. Rep. 2017 7 1 44857 10.1038/srep44857 28327656
    [Google Scholar]
  88. O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011 14 3 88 95 10.1016/S1369‑7021(11)70058‑X
    [Google Scholar]
  89. Singh B.N. Panda N.N. Mund R. Pramanik K. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr. Polym. 2016 151 335 347 10.1016/j.carbpol.2016.05.088 27474575
    [Google Scholar]
  90. Karimi M. Zangabad S.P. Ghasemi A. Amiri M. Bahrami M. Malekzad H. Asl G.H. Mahdieh Z. Bozorgomid M. Ghasemi A. Boyuk R.T.M.R. Hamblin M.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances. ACS Appl. Mater. Interfaces 2016 8 33 21107 21133 10.1021/acsami.6b00371 27349465
    [Google Scholar]
  91. Bedoya D.A. Figueroa F.N. Macchione M.A. Strumia M.C. Stimuli-responsive polymeric systems for smart drug delivery. A New Era for microbial corrosion mitigation using nanotechnology. Cham, Switzerland Springer 2020 115 134
    [Google Scholar]
  92. Henríquez C.L. Alpízar C.J. Correa L.M. Baudrit V.J. Exploration of bioengineered scaffolds composed of thermo-responsive polymers for drug delivery in wound healing. Int. J. Mol. Sci. 2021 22 3 1408 10.3390/ijms22031408 33573351
    [Google Scholar]
  93. Mousavi S.M. Soroshnia S. Hashemi S.A. Babapoor A. Ghasemi Y. Savardashtaki A. Amani A.M. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug Metab. Rev. 2019 51 1 91 104 10.1080/03602532.2019.1582661 30784324
    [Google Scholar]
  94. Amado S. Morouço P. Faria P.P. Alves N. Tailoring bioengineered scaffolds for regenerative medicine. Biomaterials in regenerative medicine. London, UK IntechOpen 2018 10.5772/intechopen.69857
    [Google Scholar]
  95. Zhao C. Ma Z. Zhu X.X. Rational design of thermoresponsive polymers in aqueous solutions: A thermodynamics map. Prog. Polym. Sci. 2019 90 269 291 10.1016/j.progpolymsci.2019.01.001
    [Google Scholar]
  96. Suntornnond R. An J. Chua C.K. Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: A review. Macromol. Mater. Eng. 2017 302 1 1600266 10.1002/mame.201600266
    [Google Scholar]
  97. Dubský M. Kubinová Š. Širc J. Voska L. Zajíček R. Zajícová A. Lesný P. Jirkovská A. Michálek J. Munzarová M. Holáň V. Syková E. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J. Mater. Sci. Mater. Med. 2012 23 4 931 941 10.1007/s10856‑012‑4577‑7 22331377
    [Google Scholar]
  98. Spontak R.J. Polymer blend compatibilization by the addition of block copolymers. Compatibilization of polymer blends Elsevier 2020 57 102
    [Google Scholar]
  99. Mondschein RJ Kanitkar A Williams CB Verbridge SS Long TE Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 2017 140 170 188
    [Google Scholar]
  100. el H.Y. Gerstenhaber J.A. Brodsky R. Huneke R.B. Lelkes P.I. Electrospun soy protein scaffolds as wound dressings: Enhanced reepithelialization in a porcine model of wound healing. Wound Med. 2014 5 9 15 10.1016/j.wndm.2014.04.007
    [Google Scholar]
  101. Mulholland E.J. Electrospun biomaterials in the treatment and prevention of scars in skin wound healing. Front. Bioeng. Biotechnol. 2020 8 481 10.3389/fbioe.2020.00481 32582653
    [Google Scholar]
  102. Mahalingam S. Abraham R.B.T. Craig D.Q.M. Edirisinghe M. Solubility–spinnability map and model for the preparation of fibres of polyethylene (terephthalate) using gyration and pressure. Chem. Eng. J. 2015 280 344 353 10.1016/j.cej.2015.05.114
    [Google Scholar]
  103. Ding J. Zhang J. Li J. Li D. Xiao C. Xiao H. Yang H. Zhuang X. Chen X. Electrospun polymer biomaterials. Prog. Polym. Sci. 2019 90 1 34 10.1016/j.progpolymsci.2019.01.002
    [Google Scholar]
  104. Ward M.A. Georgiou T.K. Thermoresponsive polymers for biomedical applications. Polymers 2011 3 3 1215 1242 10.3390/polym3031215
    [Google Scholar]
  105. Garg T. Singh O. Arora S. Murthy R.S.R. Scaffold: A novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2012 29 1 1 63 10.1615/CritRevTherDrugCarrierSyst.v29.i1.10 22356721
    [Google Scholar]
  106. Calori I.R. Braga G. Jesus d.P.C.C. Bi H. Tedesco A.C. Polymer scaffolds as drug delivery systems. Eur. Polym. J. 2020 129 109621 10.1016/j.eurpolymj.2020.109621
    [Google Scholar]
  107. Nicolas J. Mura S. Brambilla D. Mackiewicz N. Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 2013 42 3 1147 1235 10.1039/C2CS35265F 23238558
    [Google Scholar]
  108. Kutlu B. Aydın T.R.S. Akman A.C. Gümüşderelioglu M. Nohutcu R.M. Platelet‐rich plasma‐loaded chitosan scaffolds: Preparation and growth factor release kinetics. J. Biomed. Mater. Res. B Appl. Biomater. 2013 101B 1 28 35 10.1002/jbm.b.32806 22987323
    [Google Scholar]
  109. Kurakula M. Rao G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020 60 102046 10.1016/j.jddst.2020.102046 32905026
    [Google Scholar]
  110. Zuo D.Y. Wang Y.W-L. Xu W.L. Liu H.T. Effects of polyvinylpyrrolidone on structure and performance of composite scaffold of chitosan superfine powder and polyurethane. Adv. Polym. Technol. 2012 31 4 310 318 10.1002/adv.20254
    [Google Scholar]
  111. Doval R.R. Cruz T.M.M. Chávez R.H. Martínez C.H. Torres C.G. Garzón V.V.R. Enhancing electrospun scaffolds of PVP with polypyrrole/iodine for tissue engineering of skin regeneration by coating via a plasma process. J. Mater. Sci. 2019 54 4 3342 3353 10.1007/s10853‑018‑3024‑7
    [Google Scholar]
  112. Duncan R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003 2 5 347 360 10.1038/nrd1088 12750738
    [Google Scholar]
  113. Dastidar G.D. Thermoresponsive drug delivery systems, characterization and application. Applications of targeted nano drugs and delivery systems. Elsevier 2019 133 155
    [Google Scholar]
  114. Wu Y. Zhou F. Yang L. Liu J. A shrinking strategy for creating dynamic SERS hot spots on the surface of thermosensitive polymer nanospheres. Chem. Commun. 2013 49 44 5025 5027 10.1039/c3cc40875b 23619464
    [Google Scholar]
  115. Biswas A. Amarajeewa M. Senapati S. Sahu M. Maiti P. Sustained release of herbal drugs using biodegradable scaffold for faster wound healing and better patient compliance. Nanomedicine 2018 14 7 2131 2141 10.1016/j.nano.2018.07.003 30031095
    [Google Scholar]
  116. Mane S.R. N R.V. Chatterjee K. Dinda H. Nag S. Kishore A. Sarma J.D. Shunmugam R. A unique polymeric nano-carrier for anti-tuberculosis therapy. J. Mater. Chem. 2012 22 37 19639 19642 10.1039/c2jm33860b
    [Google Scholar]
  117. Mane S.R. Sathyan A. Shunmugam R. Biomedical applications of pH-responsive amphiphilic polymer nanoassemblies. ACS Appl. Nano Mater. 2020 3 3 2104 2117 10.1021/acsanm.0c00410
    [Google Scholar]
  118. Kawashima Y. Yamamoto H. Takeuchi H. Fujioka S. Hino T. Pulmonary delivery of insulin with nebulized dl-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J. Control. Release 1999 62 1-2 279 287 10.1016/S0168‑3659(99)00048‑6 10518661
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855364932250227112020
Loading
/content/journals/cdth/10.2174/0115748855364932250227112020
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: diatomite NPs ; biochips ; drug delivery ; encapsulin ; Bioengineering ; microrobots
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test